Biological Prognostic Value of miR-155 for Survival Outcome in Head and Neck Squamous Cell Carcinomas: Systematic Review, Meta-Analysis and Trial Sequential Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol
2.2. Eligibility Criteria
2.3. Sources of Information, Research and Selection
2.4. Data Collection Process, Data Characteristics
2.5. Risk of Bias in Individual Studies, Summary Measures, Summary of Results, Risk of Bias between Studies, Additional Measures
3. Results
3.1. Selection of Studies
3.2. Data Characteristics
3.3. Risk of Bias in Studies
3.4. Meta-Analysis
3.5. Risk of Bias across Study, Sensitivity Analysis, Subgroup Analysis, Publication Bias
3.6. Trial Sequential Analysis, Grade
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 2019, 144, 1941–1953. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fasano, M.; D’Onofrio, I.; Belfiore, M.P.; Angrisani, A.; Caliendo, V.; Della Corte, C.M.; Pirozzi, M.; Facchini, S.; Caterino, M.; Guida, C.; et al. Head and Neck Squamous Cell Carcinoma in Elderly Patients: Role of Radiotherapy and Chemotherapy. Cancers 2022, 14, 472. [Google Scholar] [CrossRef] [PubMed]
- Shinohara, S.; Kikuchi, M.; Harada, H.; Hamaguchi, K.; Asato, R.; Tamaki, H.; Mizuta, M.; Hori, R.; Kojima, T.; Honda, K.; et al. Clinicopathological Characteristics and Survival Outcomes of Patients with Buccal Squamous Cell Carcinoma: Results of a Multi-Institutional Study. Medicina 2021, 57, 1361. [Google Scholar] [CrossRef] [PubMed]
- Pires, R.C.; Carvalho, R.; Gama, R.R.; Carvalho, A.L.; Santos, C.R.; Capuzzo, R.d.C. Progressive Increase Trend in HPV-Related Oropharyngeal Squamous Cell Carcinoma in Brazil. Int. Arch. Otorhinolaryngol. 2021, 26, e132–e136. [Google Scholar] [CrossRef] [PubMed]
- Yi, L.; Zhong, X.; Chen, Z.; Wang, Q.; Yan, Y.; Wang, J.; Deng, X. MicroRNA-147b Promotes Proliferation and Invasion of Human Colorectal Cancer by Targeting RAS Oncogene Family (RAP2B). Pathobiology 2019, 86, 173–181. [Google Scholar] [CrossRef]
- Wu, Z.C.; Hui, X.G.; Huo, L.; Sun, D.X.; Peng, W.; Zhang, Y.; Li, X.B.; Ma, T.; Li, W.H.; Liang, J.; et al. Antiproliferative effects of isoalantolactone in human liver cancer cells are mediated through caspase-dependent apoptosis, ROS generation, suppression of cell migration and invasion and targeting Ras/Raf/MEK signalling pathway. Acta Biochim. Pol. 2022. [Google Scholar] [CrossRef]
- Goretzki, P.E.; Lyons, J.; Stacy-Phipps, S.; Rosenau, W.; Demeure, M.; Clark, O.H.; McCormick, F.; Roher, H.D.; Bourne, H.R. Mutational activation of RAS and GSP oncogenes in differentiated thyroid cancer and their biological implications. World J. Surg. 1992, 16, 576–581; discussion 572–581. [Google Scholar] [CrossRef]
- Tong, L.; Yang, H.; Xiong, W.; Tang, G.; Zu, X.; Qi, L. circ_100984-miR-432-3p axis regulated c-Jun/YBX-1/beta-catenin feedback loop promotes bladder cancer progression. Cancer Sci. 2021, 112, 1429–1442. [Google Scholar] [CrossRef]
- Yang, F.; Duan, M.; Zheng, F.; Yu, L.; Wang, Y.; Wang, G.; Lin, J.; Han, S.; Gan, D.; Meng, Z.; et al. Fas signaling in adipocytes promotes low-grade inflammation and lung metastasis of colorectal cancer through interaction with Bmx. Cancer Lett. 2021, 522, 93–104. [Google Scholar] [CrossRef]
- Llanos, S.; Iglesias, T.; Riese, H.H.; Garrido, T.; Caelles, C.; Munoz, A. v-erbA oncogene induces invasiveness and anchorage-independent growth in cultured glial cells by mechanisms involving platelet-derived growth factor. Cell Growth Differ. 1996, 7, 373–382. [Google Scholar]
- Pendergast, A.M.; Witte, O.N. Role of the ABL oncogene tyrosine kinase activity in human leukaemia. Bailliere’s Clin. Haematol. 1987, 1, 1001–1020. [Google Scholar] [CrossRef]
- Kozak, C.A.; Sears, J.F.; Hoggan, M.D. Genetic mapping of the mouse proto-oncogene c-sis to chromosome 15. Science 1983, 221, 867–869. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Cao, Z.; Pang, Y.; Feng, T.; Tian, H. CARF, As An Oncogene, Promotes Colorectal Cancer Stemness By Activating ERBB Signaling Pathway. Onco Targets Ther. 2019, 12, 9041–9051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, H.H.; Chambers, S.K. Regulation of closely juxtaposed proto-oncogene c-fms and HMGXB3 gene expression by mRNA 3’ end polymorphism in breast cancer cells. RNA 2021, 27, 1068–1081. [Google Scholar] [CrossRef]
- Alizadeh-Sedigh, M.; Mahmoodzadeh, H.; Fazeli, M.S.; Haddadi-Aghdam, M.; Teimoori-Toolabi, L. The potential of PIK3CA, KRAS, BRAF, and APC hotspot mutations as a non-invasive detection method for colorectal cancer. Mol. Cell. Probes 2022, 63, 101807. [Google Scholar] [CrossRef]
- Chen, L.; Qing, J.; Xiao, Y.; Huang, X.; Chi, Y.; Chen, Z. TIM-1 promotes proliferation and metastasis, and inhibits apoptosis, in cervical cancer through the PI3K/AKT/p53 pathway. BMC Cancer 2022, 22, 370. [Google Scholar] [CrossRef]
- Rajkumar, S.; Berry, D.; Heney, K.A.; Strong, C.; Ramsay, L.; Lajoie, M.; Alkallas, R.; Nguyen, T.T.; Thomson, C.; Ahanfeshar-Adams, M.; et al. Melanomas with concurrent BRAF non-p.V600 and NF1 loss-of-function mutations are targetable by BRAF/MEK inhibitor combination therapy. Cell Rep. 2022, 39, 110634. [Google Scholar] [CrossRef]
- Stransky, L.A.; Vigeant, S.M.; Huang, B.; West, D.; Denize, T.; Walton, E.; Signoretti, S.; Kaelin, W.G., Jr. Sensitivity of VHL mutant kidney cancers to HIF2 inhibitors does not require an intact p53 pathway. Proc. Natl. Acad. Sci. USA 2022, 119, e2120403119. [Google Scholar] [CrossRef]
- Engeland, K. Cell cycle regulation: p53-p21-RB signaling. Cell Death Differ. 2022. [Google Scholar] [CrossRef]
- Ibrahiem, A.T.; Makhdoom, A.K.; Alanazi, K.S.; Alanazi, A.M.; Mukhlef, A.M.; Elshafey, S.H.; Toraih, E.A.; Fawzy, M.S. Analysis of anti-apoptotic PVT1 oncogene and apoptosis-related proteins (p53, Bcl2, PD-1, and PD-L1) expression in thyroid carcinoma. J. Clin. Lab. Anal. 2022, e24390. [Google Scholar] [CrossRef]
- Złowocka-Perłowska, E.; Tołoczko-Grabarek, A.; Narod, S.A.; Lubiński, J. Germline BRCA1 and BRCA2 mutations and the risk of bladder or kidney cancer in Poland. Hered. Cancer Clin. Pract. 2022, 20, 13. [Google Scholar] [CrossRef] [PubMed]
- Paudel, S.; Raina, K.; Tiku, V.R.; Maurya, A.; Orlicky, D.J.; You, Z.; Rigby, C.M.; Deep, G.; Kant, R.; Raina, B.; et al. Chemopreventive Efficacy of Silibinin against Basal Cell Carcinoma Growth and Progression in UVB-irradiated Ptch +/− mice. Carcinogenesis 2022, bgac023. [Google Scholar] [CrossRef] [PubMed]
- Risso, V.; Lafont, E.; Le Gallo, M. Therapeutic approaches targeting CD95L/CD95 signaling in cancer and autoimmune diseases. Cell Death Dis. 2022, 13, 248. [Google Scholar] [CrossRef]
- Lichy, J.H.; Majidi, M.; Elbaum, J.; Tsai, M.M. Differential expression of the human ST5 gene in HeLa-fibroblast hybrid cell lines mediated by YY1: Evidence that YY1 plays a part in tumor suppression. Nucleic Acids Res. 1996, 24, 4700–4708. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peinado, P.; Andrades, A.; Cuadros, M.; Rodriguez, M.I.; Coira, I.F.; Garcia, D.J.; Benitez-Cantos, M.S.; Cano, C.; Zarzuela, E.; Muñoz, J.; et al. Multi-omic alterations of the SWI/SNF complex define a clinical subgroup in lung adenocarcinoma. Clin. Epigenetics 2022, 14, 42. [Google Scholar] [CrossRef] [PubMed]
- Fan, Z.; Qin, Y.; Zhou, J.; Chen, R.; Gu, J.; Li, M.; Zhou, J.; Li, X.; Lin, D.; Wang, J.; et al. Feasibility of using P16 methylation as a cytologic marker for esophageal squamous cell carcinoma screening: A pilot study. Cancer Med. 2022. [Google Scholar] [CrossRef]
- Zhang, J.; Wen, X.; Ren, X.-Y.; Li, Y.-Q.; Tang, X.-R.; Wang, Y.-Q.; He, Q.-M.; Yang, X.-J.; Sun, Y.; Liu, N.; et al. Correction to: YPEL3 suppresses epithelial-mesenchymal transition and metastasis of nasopharyngeal carcinoma cells through the Wnt/β-catenin signaling pathway. J. Exp. Clin. Cancer Res. 2021, 40, 400. [Google Scholar] [CrossRef]
- Hooi, C.F.; Blancher, C.; Qiu, W.; Revet, I.M.; Williams, L.H.; Ciavarella, M.L.; Anderson, R.L.; Thompson, E.W.; Connor, A.; Phillips, W.A.; et al. ST7-mediated suppression of tumorigenicity of prostate cancer cells is characterized by remodeling of the extracellular matrix. Oncogene 2006, 25, 3924–3933. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.; Yang, J.W.; Kim, C.; Kim, M.G. Impact of suppression of tumorigenicity 14 (ST14)/serine protease 14 (Prss14) expression analysis on the prognosis and management of estrogen receptor negative breast cancer. Oncotarget 2016, 7, 34643–34663. [Google Scholar] [CrossRef] [Green Version]
- Bajbouj, K.; Al-Ali, A.; Ramakrishnan, R.K.; Saber-Ayad, M.; Hamid, Q. Histone Modification in NSCLC: Molecular Mechanisms and Therapeutic Targets. Int. J. Mol. Sci. 2021, 22, 1701. [Google Scholar] [CrossRef]
- Hasbullah, H.H.; Musa, M. Gene Therapy Targeting p53 and KRAS for Colorectal Cancer Treatment: A Myth or the Way Forward? Int. J. Mol. Sci. 2021, 22, 1941. [Google Scholar] [CrossRef] [PubMed]
- Hu, J.; Cao, J.; Topatana, W.; Juengpanich, S.; Li, S.; Zhang, B.; Shen, J.; Cai, L.; Cai, X.; Chen, M. Targeting mutant p53 for cancer therapy: Direct and indirect strategies. J. Hematol. Oncol. 2021, 14, 157. [Google Scholar] [CrossRef] [PubMed]
- Kasikci, Y.; Gronemeyer, H. Complexity against current cancer research—Are we on the wrong track? Int. J. Cancer 2021, 150, 1569–1578. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.K.; Sun, X.J.; Gao, X.D.; Qian, Y.; Wang, L.; Zhao, W.L. Methylation alterations and advance of treatment in lymphoma. Front. Biosci. 2021, 26, 602–613. [Google Scholar] [CrossRef]
- Otmani, K.; Lewalle, P. Tumor Suppressor miRNA in Cancer Cells and the Tumor Microenvironment: Mechanism of Deregulation and Clinical Implications. Front. Oncol. 2021, 11, 708765. [Google Scholar] [CrossRef]
- Perri, P.; Ponzoni, M.; Corrias, M.V.; Ceccherini, I.; Candiani, S.; Bachetti, T. A Focus on Regulatory Networks Linking MicroRNAs, Transcription Factors and Target Genes in Neuroblastoma. Cancers 2021, 13, 5528. [Google Scholar] [CrossRef]
- Rozenberg, J.M.; Zvereva, S.; Dalina, A.; Blatov, I.; Zubarev, I.; Luppov, D.; Bessmertnyi, A.; Romanishin, A.; Alsoulaiman, L.; Kumeiko, V.; et al. The p53 family member p73 in the regulation of cell stress response. Biol. Direct 2021, 16, 23. [Google Scholar] [CrossRef]
- Sahin, I.; George, A.; Seyhan, A.A. Therapeutic Targeting of Alternative RNA Splicing in Gastrointestinal Malignancies and Other Cancers. Int. J. Mol. Sci. 2021, 22, 1790. [Google Scholar] [CrossRef]
- Rapado-González, O.; Martínez-Reglero, C.; Salgado-Barreira, A.; López-López, R.; Suárez-Cunqueiro, M.M.; Muinelo-Romay, L. miRNAs in liquid biopsy for oral squamous cell carcinoma diagnosis: Systematic review and meta-analysis. Oral Oncol. 2019, 99, 104465. [Google Scholar] [CrossRef]
- Qiu, K.; Song, Y.; Rao, Y.; Liu, Q.; Cheng, D.; Pang, W.; Ren, J.; Zhao, Y. Diagnostic and Prognostic Value of MicroRNAs in Metastasis and Recurrence of Head and Neck Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 711171. [Google Scholar] [CrossRef]
- Zhang, Z.; Qin, Y.-W.; Brewer, G.; Jing, Q. MicroRNA degradation and turnover: Regulating the regulators. Wiley Interdiscip. Rev. RNA 2012, 3, 593–600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moisoiu, T.; Dragomir, M.P.; Iancu, S.D.; Schallenberg, S.; Birolo, G.; Ferrero, G.; Burghelea, D.; Stefancu, A.; Cozan, R.G.; Licarete, E.; et al. Combined miRNA and SERS urine liquid biopsy for the point-of-care diagnosis and molecular stratification of bladder cancer. Mol. Med. 2022, 28, 39. [Google Scholar] [CrossRef] [PubMed]
- Shiiba, M.; Uzawa, K.; Tanzawa, H. MicroRNAs in Head and Neck Squamous Cell Carcinoma (HNSCC) and Oral Squamous Cell Carcinoma (OSCC). Cancers 2010, 2, 653–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Emmett, S.E.; Stark, M.S.; Pandeya, N.; Panizza, B.; Whiteman, D.C.; Antonsson, A. MicroRNA expression is associated with human papillomavirus status and prognosis in mucosal head and neck squamous cell carcinomas. Oral Oncol. 2021, 113, 105136. [Google Scholar] [CrossRef] [PubMed]
- Doukas, S.G.; Vageli, D.P.; Lazopoulos, G.; Spandidos, D.A.; Sasaki, C.T.; Tsatsakis, A. The Effect of NNK, A Tobacco Smoke Carcinogen, on the miRNA and Mismatch DNA Repair Expression Profiles in Lung and Head and Neck Squamous Cancer Cells. Cells 2020, 9, 1031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dioguardi, M.; Spirito, F.; Sovereto, D.; Alovisi, M.; Troiano, G.; Aiuto, R.; Garcovich, D.; Crincoli, V.; Laino, L.; Cazzolla, A.P.; et al. MicroRNA-21 Expression as a Prognostic Biomarker in Oral Cancer: Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2022, 19, 3396. [Google Scholar] [CrossRef]
- Jakob, M.; Mattes, L.M.; Küffer, S.; Unger, K.; Hess, J.; Bertlich, M.; Haubner, F.; Ihler, F.; Canis, M.; Weiss, B.G.; et al. MicroRNA expression patterns in oral squamous cell carcinoma: Hsa-mir-99b-3p and hsa-mir-100-5p as novel prognostic markers for oral cancer. Head Neck 2019, 41, 3499–3515. [Google Scholar] [CrossRef]
- Wu, M.; Duan, Q.; Liu, X.; Zhang, P.; Fu, Y.; Zhang, Z.; Liu, L.; Cheng, J.; Jiang, H. MiR-155-5p promotes oral cancer progression by targeting chromatin remodeling gene ARID2. Biomed. Pharmacother. 2020, 122, 109696. [Google Scholar] [CrossRef]
- Manikandan, M.; Deva Magendhra Rao, A.K.; Rajkumar, K.S.; Rajaraman, R.; Munirajan, A.K. Altered levels of miR-21, miR-125b-2*, miR-138, miR-155, miR-184, and miR-205 in oral squamous cell carcinoma and association with clinicopathological characteristics. J. Oral Pathol. Med. 2015, 44, 792–800. [Google Scholar] [CrossRef]
- Shi, L.-J.; Zhang, C.-Y.; Zhou, Z.-T.; Ma, J.-Y.; Liu, Y.; Bao, Z.-X.; Jiang, W.-W. MicroRNA-155 in oral squamous cell carcinoma: Overexpression, localization, and prognostic potential. Head Neck 2015, 37, 970–976. [Google Scholar] [CrossRef]
- Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gøtzsche, P.C.; Ioannidis, J.P.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher, D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLoS Med. 2009, 6, e1000100. [Google Scholar] [CrossRef] [PubMed]
- Tierney, J.F.; Stewart, L.A.; Ghersi, D.; Burdett, S.; Sydes, M.R. Practical methods for incorporating summary time-to-event data into meta-analysis. Trials 2007, 8, 16. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sauerbrei, W.; Taube, S.E.; McShane, L.M.; Cavenagh, M.M.; Altman, D.G. Reporting Recommendations for Tumor Marker Prognostic Studies (REMARK): An Abridged Explanation and Elaboration. J. Natl. Cancer Inst. 2018, 110, 803–811. [Google Scholar] [CrossRef] [PubMed]
- Altman, D.G.; McShane, L.M.; Sauerbrei, W.; Taube, S.E. Reporting recommendations for tumor marker prognostic studies (REMARK): Explanation and elaboration. BMC Med. 2012, 10, 51. [Google Scholar] [CrossRef] [Green Version]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef] [PubMed]
- Hess, A.K.; Müer, A.; Mairinger, F.D.; Weichert, W.; Stenzinger, A.; Hummel, M.; Budach, V.; Tinhofer, I. MiR-200b and miR-155 as predictive biomarkers for the efficacy of chemoradiation in locally advanced head and neck squamous cell carcinoma. Eur. J. Cancer 2017, 77, 3–12. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Zhang, W.; Ji, W. YB-1 promotes laryngeal squamous cell carcinoma progression by inducing miR-155 expression via c-Myb. Future Oncol. 2018, 14, 1579–1589. [Google Scholar] [CrossRef] [PubMed]
- Baba, O.; Hasegawa, S.; Nagai, H.; Uchida, F.; Yamatoji, M.; Kanno, N.I.; Yamagata, K.; Sakai, S.; Yanagawa, T.; Bukawa, H. MicroRNA-155-5p is associated with oral squamous cell carcinoma metastasis and poor prognosis. J. Oral Pathol. Med. 2016, 45, 248–255. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Yang, J.M.; Ahn, S.H.; Jeong, W.J.; Chung, J.H.; Paik, J.H. Potential Oncogenic Role and Prognostic Implication of MicroRNA-155-5p in Oral Squamous Cell Carcinoma. Anticancer Res. 2018, 38, 5193–5200. [Google Scholar] [CrossRef]
- Bersani, C.; Mints, M.; Tertipis, N.; Haeggblom, L.; Näsman, A.; Romanitan, M.; Dalianis, T.; Ramqvist, T. MicroRNA-155, -185 and -193b as biomarkers in human papillomavirus positive and negative tonsillar and base of tongue squamous cell carcinoma. Oral Oncol. 2018, 82, 8–16. [Google Scholar] [CrossRef]
- Kumarasamy, C.; Madhav, M.R.; Sabarimurugan, S.; Krishnan, S.; Baxi, S.; Gupta, A.; Gothandam, K.M.; Jayaraj, R. Prognostic Value of miRNAs in Head and Neck Cancers: A Comprehensive Systematic and Meta-Analysis. Cells 2019, 8, 772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, C.; Yang, F.; Qin, Z.; Jing, X.; Shu, Y.; Shen, H. The value of miR-155 as a biomarker for the diagnosis and prognosis of lung cancer: A systematic review with meta-analysis. BMC Cancer 2019, 19, 1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tang, L.; Peng, Y.Z.; Li, C.G.; Jiang, H.W.; Mei, H.; Hu, Y. Prognostic and Clinicopathological Significance of MiR-155 in Hematologic Malignancies: A Systematic Review and Meta-analysis. J. Cancer 2019, 10, 654–664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Y.; Wang, X.; Liu, Z.; Huang, X.; Li, X.; Cheng, K.; Jiang, X. Prognostic role of microRNA-155 expression in gliomas: A meta-analysis. Clin. Neurol. Neurosurg. 2019, 176, 103–109. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhang, F.; Wu, Y.; Zhang, W.; Zhu, X.; He, X.; Zhao, Y.; Zhang, W.; Zhao, Y. Prognostic role of microRNA-155 in various carcinomas: Results from a meta-analysis. Dis. Markers 2013, 34, 379–386. [Google Scholar] [CrossRef]
Lead Author, Data | Country | Study Design | Number of Patients (Male, Female); Grading (G1, G2, G3); Staging (I-II, III-IV). | Follow up Max | Tumor Type/Tumor Site | Cut-Off | miR | HR miR-155 Low and High Expression (OS, PFS, CSS, DFS, RFS) |
---|---|---|---|---|---|---|---|---|
Jakob (2019) [47] | Germany | RT | 36 (27, 9); G (2,30,4); S (10, 26) | 60 months | OSCC | median | miR-21, miR-29, miR-31, miR-99a, miR-99b, miR-100, miR-143, miR-155. | OS:HR 2.94 (0.93–0.29) p = 0.005415 RFS:HR 2.04 (0.67–6.2) p = 0.19692 PFS: HR 1.92 (0.7–5.22) p = 0.19524 |
Hess (2017) [56] | Germany | RT | 149 (123, 26) | 61 months | HNSCC (oropharynx, n = 78; hypopharynx, n = 71) | median | miR-155, miR-200b, miR-146a. | OS: HR 1.90 (1–1.37) p = 0.051 |
Zhao (2018) [57] | China | RT | 120 (107, 13); | 79 months | LSCC | median | miR-155. | OS: HR 1.23 (1.059–1.373) p = 0.105 |
Baba (2016) [58] | Japan | RT | 73(49, 24); S (29, 44) | 24 months | OSCC | median | miR-155. | OS: HR 5.156 p = 0.023 DFS:HR 1.3300 p = 0.47 1 |
Shi (2015) [50] | China | RT | 30 (19, 11); S (8, 22). | 31.93 months (5–50) | OSCC | median | miR-155. | OS: HR 1.748 (0.508–6.015) p = 0.375 |
Kim (2018) [59] | Korea | RT | 68 (45, 23); S (15, 19). | 80 months | OSCC | median | miR-155. | DFS:HR 1.6300 p = 0.7592 1 |
Bersani 2018 [60] | Sweden | RT | 168 (126, 42); S (17, 151). | 34 months | TSCC/BOTSCC 2 | Quartile | miR-155, miR-185, miR-193b. | PFS: HR 0.5760 p = 0.30 1 |
Wu (2020) [48] | China | RT | 62 (42, 20); S (46, 16). | 60 months | OSCC | median | miR-155. | OS:HR 1.6600 p = 0.6780 1 DFS:HR 1.4900 p = 0.7861 1 |
Lead Author, Data | Sample | Clinical Data | Marker Quantification | Prognostication | Statistics | Classical Prognostic Factors | Score |
---|---|---|---|---|---|---|---|
Jakob (2019) [47] | 1 | 3 | 3 | 3 | 3 | 3 | 16 |
Hess (2017) [56] | 3 | 2 | 3 | 2 | 2 | 2 | 14 |
Zhao (2018) [57] | 3 | 2 | 3 | 2 | 2 | 2 | 14 |
Baba (2016) [58] | 2 | 3 | 3 | 2 | 2 | 2 | 14 |
Shi (2015) [50] | 1 | 2 | 3 | 2 | 2 | 2 | 12 |
Kim (2018) [59] | 2 | 2 | 3 | 2 | 2 | 1 | 12 |
Bersani (2018) [60] | 3 | 3 | 3 | 2 | 2 | 1 | 14 |
Wu (2020) [48] | 2 | 2 | 3 | 3 | 3 | 2 | 15 |
Certainty Assessment | № of Patients | Effect | Certainty | |||||||
---|---|---|---|---|---|---|---|---|---|---|
№ of Studies | Study Design | Risk of Bias | Inconsistency | Indirectness | Imprecision | Other Considerations | Relative (95% CI | Absolute (95% CI) | ||
6 | observational studies | not serious | not serious | not serious | Serious 1 | all plausible residual confounding would suggest spurious effect, while no effect was observed | 470 | HR 1.40 (1.13 to 1.75) | 2 fewer per 1.000 (From 2 fewer to 1 fewer) | ⨁⨁◯◯ Low |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dioguardi, M.; Spirito, F.; Sovereto, D.; La Femina, L.; Campobasso, A.; Cazzolla, A.P.; Di Cosola, M.; Zhurakivska, K.; Cantore, S.; Ballini, A.; et al. Biological Prognostic Value of miR-155 for Survival Outcome in Head and Neck Squamous Cell Carcinomas: Systematic Review, Meta-Analysis and Trial Sequential Analysis. Biology 2022, 11, 651. https://doi.org/10.3390/biology11050651
Dioguardi M, Spirito F, Sovereto D, La Femina L, Campobasso A, Cazzolla AP, Di Cosola M, Zhurakivska K, Cantore S, Ballini A, et al. Biological Prognostic Value of miR-155 for Survival Outcome in Head and Neck Squamous Cell Carcinomas: Systematic Review, Meta-Analysis and Trial Sequential Analysis. Biology. 2022; 11(5):651. https://doi.org/10.3390/biology11050651
Chicago/Turabian StyleDioguardi, Mario, Francesca Spirito, Diego Sovereto, Lucia La Femina, Alessandra Campobasso, Angela Pia Cazzolla, Michele Di Cosola, Khrystyna Zhurakivska, Stefania Cantore, Andrea Ballini, and et al. 2022. "Biological Prognostic Value of miR-155 for Survival Outcome in Head and Neck Squamous Cell Carcinomas: Systematic Review, Meta-Analysis and Trial Sequential Analysis" Biology 11, no. 5: 651. https://doi.org/10.3390/biology11050651
APA StyleDioguardi, M., Spirito, F., Sovereto, D., La Femina, L., Campobasso, A., Cazzolla, A. P., Di Cosola, M., Zhurakivska, K., Cantore, S., Ballini, A., Lo Muzio, L., & Troiano, G. (2022). Biological Prognostic Value of miR-155 for Survival Outcome in Head and Neck Squamous Cell Carcinomas: Systematic Review, Meta-Analysis and Trial Sequential Analysis. Biology, 11(5), 651. https://doi.org/10.3390/biology11050651