Broadband Coplanar Waveguide to Air-Filled Rectangular Waveguide Transition
Abstract
:1. Introduction
2. Configuration and Design
3. Measurement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simons, R.A. Coplanar Waveguide Circuits, Components and Systems; John Wiley & Sons: New York, NY, USA, 2001. [Google Scholar]
- Dong, J.; Yang, T.; Liu, Y.; Yang, Z.; Zhou, Y.H. Broadband Rectangular Waveguide to GCPW Transition. Prog. Electromagn. Res. Lett. 2014, 46, 107–112. [Google Scholar] [CrossRef] [Green Version]
- Lin, M.T.; Liu, P.G.; Gao, Y.; Liu, J.B. Improved SIW Corrugated Technique with Grounded Coplanar Waveguide Transition. IEEE Antennas Wirel. Propag. Lett. 2018, 17, 978–982. [Google Scholar] [CrossRef]
- Wong, K.L.; Chang, H.J.; Wang, C.Y.; Wang, S.Y. Very-Low-Profile Grounded Coplanar Waveguide-Fed Dual-Band WLAN Slot Antenna for On-Body Antenna Application. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 213–217. [Google Scholar] [CrossRef]
- Lalbakhsh, A.; Mohamadpour, G.; Roshani, S.; Ami, M.; Roshani, S.; Sayem, A.S.M.; Koziel, S. Design of a Compact Planar Transmission Line for Miniaturized Rat-Race Coupler with Harmonics Suppression. IEEE Access 2021, 9, 129207–129217. [Google Scholar]
- Xu, K.D.; Xia, S.P.; Jiang, Y.N.; Guo, Y.J.; Liu, Y.Q.; Wu, R.; Cui, J.L.; Chen, Q. Compact millimeter-wave on-chip dual-band bandpass filter in 0.15-μm GaAs Technology. IEEE J. Electron. Devices Soc. 2022, 10, 152–156. [Google Scholar]
- Elliott, R.S. An Improved Design Procedure for Small Arrays of Shunt Slots. IEEE Trans. Antennas Propagat. 1983, 31, 48–53. [Google Scholar] [CrossRef]
- Wu, Q.; Zhu, F.; Yang, Y.; Shi, X. An Effective Approach to Suppressing the Spurious Mode in Rectangular Waveguide Filters. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 703–705. [Google Scholar] [CrossRef]
- Roshani, S. Two-section Impedance Transformer Design and Modeling for Power Amplifier Applications. Appl. Comput. Electromagn. Soc. J. (ACES) 2017, 32, 1042–1047. [Google Scholar]
- Möttönen, V.S. Wideband Coplanar Waveguide-to-Rectangular Waveguide Transition using Fin-Line Taper. IEEE Microw. Wirel. Compon. Lett. 2005, 15, 119–121. [Google Scholar] [CrossRef]
- Moon, S.W.; Lee, S.J.; Han, M.; Rhee, J.K.; Kim, S.D. Transition of 94-GHz Coplanar Waveguide to Rectangular Waveguide on Flip-Chip Bonding Compatible Substrate. Microw. Opt. Technol. Lett. 2011, 53, 1694–1697. [Google Scholar] [CrossRef]
- Fang, R.Y.; Wang, C.L. Miniaturized Coplanar Waveguide to Rectangular Waveguide Transition Using Inductance-Compensated Slotline. IEEE Trans. Compon. Packag. Manuf. Technol. 2012, 2, 1666–1671. [Google Scholar] [CrossRef]
- Wang, S.H.; Chang, C.C.; Lee, Y.C.; Wang, C.L. Compact and Broadband CPW-to-RWG Transition Using Stub Resonators. IEEE Trans. Microw. Theory Tech. 2016, 64, 3198–3207. [Google Scholar] [CrossRef]
- Fang, R.Y.; Wang, C.T.; Wang, C.L. Coplanar-to-Rectangular Waveguide Transitions Using Slot Antennas. IEEE Trans. Compon. Packag. Manuf. Technol. 2011, 1, 681–688. [Google Scholar] [CrossRef]
- Wang, C.; Yao, Y.; Wang, J.; Cheng, X.H.; Yu, J.S.; Chen, X.D. A Wideband Contactless CPW to W-Band Waveguide Transition. IEEE Microw. Wirel. Compon. Lett. 2019, 29, 706–709. [Google Scholar] [CrossRef]
- Dong, Y.F.; Zhurbenko, V.; Johansen, T.K. A U-Band Rectangular Waveguide-to-Coplanar waveguide Transition Using Metal Ridge. In Proceedings of the 50th European Microwave Conference, Utrecht, The Netherlands, 2 February 2021. [Google Scholar]
Wp1 | Lp1 | Ea | ratio_1 | d_hole | p | Wf |
4 | 2.5 | 3.5 | 0.9 | 0.45 | 0.8 | 1.5 |
Wsg | Lpd | Wxx | Wzz | Lshort | a | b |
0.41 | 0.95 | 8.2 | 7.9 | 4.408 | 22.86 | 10.16 |
Wp2 | Lp2 | Ea_1 | ratio_2 | Wf | Wsg |
4 | 2.5 | 3.5 | 0.7 | 1.5 | 0.41 |
Lpd_1 | Wxx | Wzz | Lshort | a | b |
0.95 | 8.2 | 7.9 | 4.408 | 22.86 | 10.16 |
Frquency Band | BW (GHz) | Relative BW | RL (dB) | IL (dB) | Structure | Fabrication Substrate (Permittivity) | Transition Direction | |
---|---|---|---|---|---|---|---|---|
[10] | X | 8.2–12.4 | 40.78% | >16 | <0.4 | back-to-back | NA/(2.33) | In-line |
8.2–12.4 | 40.78% | >10 | <1 | NA/(10.8) | ||||
[12] | X | 8.2–12.4 | 40.78% | >13.24 | <0.43 | single | RT/Duroid 5880 (2.22) | In-line |
[13] | X | 8.6–12.75 | 39.5% | >20 | <1 | single | RT/Duroid 5880 (2.22) | In-line |
[14] | X | 9.45–12.9 | 30.9% | >10 | <1 | back-to-back | RT/Duroid 5880 (2.22) | Right-angle |
[15] | W | 80–109 | 31.5% | >10 | <1.2 | back-to-back | Quartz (3.78) | Right-angle |
[16] | U | 40–60 | 40% | >12 | <2.6 | back-to-back | RT/Duroid 6002 (2.94) | Right-angle |
This work | X | 8–13 | 47.6% | >15 | <0.95 | back-to-back | RT/Duroid 5880 (2.22) | Right-angle |
8–12.58 | 44.7% | <1 | RT/Duroid 6010 (10.2) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Dong, J.; Yin, F.; Fang, X.; Xiao, K. Broadband Coplanar Waveguide to Air-Filled Rectangular Waveguide Transition. Electronics 2022, 11, 1057. https://doi.org/10.3390/electronics11071057
Zhao Y, Dong J, Yin F, Fang X, Xiao K. Broadband Coplanar Waveguide to Air-Filled Rectangular Waveguide Transition. Electronics. 2022; 11(7):1057. https://doi.org/10.3390/electronics11071057
Chicago/Turabian StyleZhao, Yuyu, Jun Dong, Fan Yin, Xinchun Fang, and Ke Xiao. 2022. "Broadband Coplanar Waveguide to Air-Filled Rectangular Waveguide Transition" Electronics 11, no. 7: 1057. https://doi.org/10.3390/electronics11071057
APA StyleZhao, Y., Dong, J., Yin, F., Fang, X., & Xiao, K. (2022). Broadband Coplanar Waveguide to Air-Filled Rectangular Waveguide Transition. Electronics, 11(7), 1057. https://doi.org/10.3390/electronics11071057