Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (167)

Search Parameters:
Keywords = CPW

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2919 KB  
Article
Design and Preparation of Compact 3-Bit Reconfigurable RF MEMS Attenuators for Millimeter-Wave Bands
by Shilong Miao, Rui Chai, Yuheng Si, Yulong Zhang, Qiannan Wu and Mengwei Li
Micromachines 2025, 16(10), 1117; https://doi.org/10.3390/mi16101117 - 29 Sep 2025
Abstract
As a core functional device in microwave systems, attenuators play a crucial role in key aspects such as signal power regulation, amplitude attenuation, and impedance matching. Addressing the pressing technical issues currently exposed by attenuators in practical applications, such as excessive insertion loss, [...] Read more.
As a core functional device in microwave systems, attenuators play a crucial role in key aspects such as signal power regulation, amplitude attenuation, and impedance matching. Addressing the pressing technical issues currently exposed by attenuators in practical applications, such as excessive insertion loss, low attenuation accuracy, large physical dimensions, and insufficient process reliability, this paper proposes a design scheme for an RF three-bit reconfigurable stepped attenuator based on radio frequency micro-electromechanical systems (RF MEMS) switches. The attenuator employs planar integration of the T-type attenuation network, Coplanar Waveguide (CPW), Y-shaped power divider, and RF MEMS switches. While ensuring rational power distribution and stable attenuation performance over the full bandwidth, it reduces the number of switches to suppress parasitic parameters, thereby enhancing process feasibility. Test results confirm that this device demonstrates significant advancements in attenuation accuracy, achieving a precision of 1.18 dB across the 0–25 dB operational range from DC to 20 GHz, with insertion loss kept below 1.65 dB and return loss exceeding 12.15 dB. Additionally, the device boasts a compact size of merely 0.66 mm × 1.38 mm × 0.32 mm, significantly smaller than analogous products documented in existing literature. Meanwhile, its service life approaches 5 × 107 cycles. Together, these two attributes validate the device’s performance reliability and miniaturization advantages. Full article
12 pages, 3114 KB  
Article
Planar CPW-Fed MIMO Antenna Array Design with Enhanced Isolation Using T-Shaped Neutralization Lines
by Mohamed Morsy
Electronics 2025, 14(18), 3683; https://doi.org/10.3390/electronics14183683 - 17 Sep 2025
Viewed by 207
Abstract
This paper presents the design and performance evaluation of a compact four-element coplanar waveguide (CPW)-fed antenna array operating in the 3.3–3.6 GHz frequency band. The proposed antenna is tailored for sub-6 GHz 5G New Radio (NR) applications, specifically aligning with the n77/n78 bands [...] Read more.
This paper presents the design and performance evaluation of a compact four-element coplanar waveguide (CPW)-fed antenna array operating in the 3.3–3.6 GHz frequency band. The proposed antenna is tailored for sub-6 GHz 5G New Radio (NR) applications, specifically aligning with the n77/n78 bands widely adopted for mid-band 5G deployment. The CPW feeding technique enables low-profile integration and ease of fabrication, while the multi-element configuration supports enhanced gain and spatial diversity. Both simulated and measured results demonstrate good impedance matching (|S11| < −10 dB), stable radiation patterns, and inter-element isolation suitable for MIMO operation. The design offers a promising solution for compact 5G antenna systems and can be extended to future wireless communication platforms requiring high efficiency and compact form factors. Full article
Show Figures

Figure 1

12 pages, 3669 KB  
Article
Development of an Extended-Band mTRL Calibration Kit for On-Wafer Characterization of InP-HEMTs up to 1.1 THz
by Rita Younes, Mahmoud Abou Daher, Mohammed Samnouni, Sylvie Lepilliet, Guillaume Ducournau, Nicolas Wichmann and Sylvain Bollaert
Electronics 2025, 14(17), 3472; https://doi.org/10.3390/electronics14173472 - 29 Aug 2025
Viewed by 518
Abstract
In this work, we present a wideband on-wafer characterization technique for InAlAs/InGaAs/InAs InP-based high-electron mobility transistors (HEMTs) using an optimized multiline Thru-Reflect-Line (mTRL) calibration kit. Our goal is to directly extract transition frequency fT and maximum frequency of oscillation fmax values [...] Read more.
In this work, we present a wideband on-wafer characterization technique for InAlAs/InGaAs/InAs InP-based high-electron mobility transistors (HEMTs) using an optimized multiline Thru-Reflect-Line (mTRL) calibration kit. Our goal is to directly extract transition frequency fT and maximum frequency of oscillation fmax values from S-parameters measurements with frequencies up to 1.1 THz and overcome the limitations of the traditional 20 dB/dec extrapolation method using lower-frequency band measurements. Indeed, as the state-of-the-art transistors now exhibit cutoff frequencies exceeding 1 THz, standard low-frequency extrapolation methods become increasingly inaccurate. Full-wave electromagnetic simulations were used to design low-loss coplanar waveguide (CPW) access structures with stable impedance and minimal parasitic effects. These structures were co-fabricated with HEMTs and calibration standards on the same InP substrate. The 2-finger transistor with a 80 nm gate length exhibits a directly measured fT = 320 GHz and fmax = 800 GHz. The technique showed high consistency across six frequency bands and confirms that direct broadband measurement with mTRL improves accuracy. This work highlights the metrological strength of mTRL-based setups for next-generation THz device characterization. Full article
(This article belongs to the Section Electronic Materials, Devices and Applications)
Show Figures

Graphical abstract

12 pages, 5974 KB  
Article
A Low-Profile Beam-Scanning Antenna Array for 5G Low-Cost Millimeter-Wave Applications
by Guan-Long Huang, Ming-Feng Xu, Jing Wu, Zi-Yu Pang, Yan-Ji Chen, Chow-Yen-Desmond Sim, Wei Lin, Su-Wei Chang and Yiannis Vardaxoglou
Electronics 2025, 14(17), 3453; https://doi.org/10.3390/electronics14173453 - 29 Aug 2025
Viewed by 481
Abstract
A low-profile beam-scanning antenna array for cost-effective 5G millimeter-wave (mmWave) applications is proposed in this work. The array features a compact single-layer substrate structure while achieving a wide operating bandwidth covering the 5G n257 band (26.5–29.5 GHz). A novel antenna element is first [...] Read more.
A low-profile beam-scanning antenna array for cost-effective 5G millimeter-wave (mmWave) applications is proposed in this work. The array features a compact single-layer substrate structure while achieving a wide operating bandwidth covering the 5G n257 band (26.5–29.5 GHz). A novel antenna element is first designed and analyzed, employing a metallic rectangular patch with shorting pins as the radiator, excited through a modified coplanar waveguide (CPW) feeding structure. Based on this element, four-element and eight-element linear arrays are developed with an overall profile of only 0.07 λ at 28 GHz and fabricated to experimentally assess beam-scanning performance. To accurately characterize and validate the radiation behavior, an mmWave beam box system is utilized for pattern measurements. The results demonstrate that the fabricated arrays achieve an impedance bandwidth fully covering the 5G n257 band with VSWR < 2, while the measured beam-scanning performance closely agrees with simulations. These findings confirm that the proposed design and its extensions offer strong potential for practical integration into future 5G mmWave communication devices. Full article
Show Figures

Figure 1

21 pages, 5469 KB  
Article
Radio Frequency Passive Tagging System Enabling Object Recognition and Alignment by Robotic Hands
by Armin Gharibi, Mahmoud Tavakoli, André F. Silva, Filippo Costa and Simone Genovesi
Electronics 2025, 14(17), 3381; https://doi.org/10.3390/electronics14173381 - 25 Aug 2025
Viewed by 1164
Abstract
Robotic hands require reliable and precise sensing systems to achieve accurate object recognition and manipulation, particularly in environments where vision- or capacitive-based approaches face limitations such as poor lighting, dust, reflective surfaces, or non-metallic materials. This paper presents a novel radiofrequency (RF) pre-touch [...] Read more.
Robotic hands require reliable and precise sensing systems to achieve accurate object recognition and manipulation, particularly in environments where vision- or capacitive-based approaches face limitations such as poor lighting, dust, reflective surfaces, or non-metallic materials. This paper presents a novel radiofrequency (RF) pre-touch sensing system that enables robust localization and orientation estimation of objects prior to grasping. The system integrates a compact coplanar waveguide (CPW) probe with fully passive chipless RF resonator tags fabricated using a patented flexible and stretchable conductive ink through additive manufacturing. This approach provides a low-cost, durable, and highly adaptable solution that operates effectively across diverse object geometries and environmental conditions. The experimental results demonstrate that the proposed RF sensor maintains stable performance under varying distances, orientations, and inter-tag spacings, showing robustness where traditional methods may fail. By combining compact design, cost-effectiveness, and reliable near-field sensing independent of an object or lighting, this work establishes RF sensing as a practical and scalable alternative to optical and capacitive systems. The proposed method advances robotic perception by offering enhanced precision, resilience, and integration potential for industrial automation, warehouse handling, and collaborative robotics. Full article
Show Figures

Figure 1

24 pages, 7981 KB  
Article
A Flexible and Compact UWB MIMO Antenna with Dual-Band-Notched Double U-Shaped Slot on Mylar® Polyester Film
by Vanvisa Chutchavong, Wanchalerm Chanwattanapong, Norakamon Wongsin, Paitoon Rakluea, Maleeya Tangjitjetsada, Chawalit Rakluea, Chatree Mahatthanajatuphat and Prayoot Akkaraekthalin
Electronics 2025, 14(17), 3363; https://doi.org/10.3390/electronics14173363 - 24 Aug 2025
Viewed by 1359
Abstract
Ultra-wideband (UWB) technology is a crucial facilitator for high-data-rate wireless communication due to its extensive frequency spectrum and low power consumption. Simultaneously, multiple-input multiple-output (MIMO) systems have garnered considerable attention owing to their capability to enhance channel capacity and link dependability. This article [...] Read more.
Ultra-wideband (UWB) technology is a crucial facilitator for high-data-rate wireless communication due to its extensive frequency spectrum and low power consumption. Simultaneously, multiple-input multiple-output (MIMO) systems have garnered considerable attention owing to their capability to enhance channel capacity and link dependability. This article discusses the development of small, high-performance MIMO UWB antennas with mutual suppression capabilities to fully use the benefits of both technologies. Additionally, the suggested antenna features a straightforward design and dual-band-notched characteristics. The antenna structure includes two radiating elements measuring 85 × 45 mm2. These elements use a rectangular patch provided by a coplanar waveguide (CPW). Double U-shaped slots are incorporated into the rectangular patch to introduce dual-band-notched properties, which help mitigate interference from WiMAX and WLAN communication systems. The antenna is fabricated on a Mylar® polyester film substrate of 0.3 mm in thickness, with a dielectric constant of 3.2. According to the measurement results, the suggested antenna functions efficiently across the frequency spectrum of 2.29 to 20 GHz, with excellent impedance matching throughout the bandwidth. Furthermore, it provides dual-band-notched coverage at 3.08–3.8 GHz for WiMAX and 4.98–5.89 GHz for WLAN. The antenna exhibits impressive performance, including favorable radiation attributes, consistent gain, and little mutual coupling (less than −20 dB). Additionally, the envelope correlation coefficient (ECC) is extremely low (ECC < 0.01) across the working bandwidth, which indicates excellent UWB MIMO performance. This paper offers an appropriate design methodology for future flexible and compact UWB MIMO systems that can serve as interference-resilient antennas for next-generation wireless applications. Full article
(This article belongs to the Collection MIMO Antennas)
Show Figures

Figure 1

19 pages, 12156 KB  
Article
Dual-Port Butterfly Slot Antenna for Biosensing Applications
by Marija Milijic, Branka Jokanovic, Miodrag Tasic, Sinisa Jovanovic, Olga Boric-Lubecke and Victor Lubecke
Sensors 2025, 25(16), 4980; https://doi.org/10.3390/s25164980 - 12 Aug 2025
Viewed by 377
Abstract
This paper presents the novel design of a printed, low-cost, dual-port, and dual-polarized slot antenna for microwave biomedical radars. The butterfly shape of the radiating element, with orthogonally positioned arms, enables simultaneous radiation of both vertically and horizontally polarized waves. The antenna is [...] Read more.
This paper presents the novel design of a printed, low-cost, dual-port, and dual-polarized slot antenna for microwave biomedical radars. The butterfly shape of the radiating element, with orthogonally positioned arms, enables simultaneous radiation of both vertically and horizontally polarized waves. The antenna is intended for full-duplex in-band applications using two mutually isolated antenna ports, with the CPW port on the same side of the substrate as the slot antenna and the microstrip port positioned orthogonally on the other side of the substrate. Those two ports can be used as transmit and receive ports in a radar transceiver, with a port isolation of 25 dB. Thanks to the bow-tie shape of the slots and an additional coupling region between the butterfly arms, there is more flexibility in simultaneous optimization of the resonant frequency and input impedance at both ports, avoiding the need for a complicated matching network that introduces the attenuation and increases antenna dimensions. The advantage of this design is demonstrated through the modeling of an eight-element dual-port linear array with an extremely simple feed network for high-gain biosensing applications. To validate the simulation results, prototypes of the proposed antenna were fabricated and tested. The measured operating band of the antennas spans from 2.35 GHz to 2.55 GHz, with reflection coefficients of less than—10 dB, a maximum gain of 8.5 dBi, and a front-to-back gain ratio that is greater than 15 dB, which is comparable with other published single dual-port slot antennas. This is the simplest proposed dual-port, dual-polarization antenna that enables straightforward scaling to other frequency bands. Full article
(This article belongs to the Special Issue Design and Application of Millimeter-Wave/Microwave Antenna Array)
Show Figures

Figure 1

24 pages, 8252 KB  
Article
A Constant-Pressure Air Storage Operation Strategy for an Isothermal Compressed Air Energy Storage System Based on a Linear-Drive Liquid Piston
by Yan Cui, Tong Jiang and Zhengda Chen
Energies 2025, 18(12), 3178; https://doi.org/10.3390/en18123178 - 17 Jun 2025
Viewed by 712
Abstract
Compressed air energy storage (CAES) systems represent a critical technological solution for addressing power grid load fluctuations by generating electrical power during peak load periods and storing energy during low load periods. As a prominent branch of CAES, isothermal compressed air energy storage [...] Read more.
Compressed air energy storage (CAES) systems represent a critical technological solution for addressing power grid load fluctuations by generating electrical power during peak load periods and storing energy during low load periods. As a prominent branch of CAES, isothermal compressed air energy storage (ICAES) systems have attracted significant research attention due to their elimination of requirements for high-temperature storage chambers and high-temperature compressors. Implementing constant-pressure operation in air storage reservoirs not only enhances energy storage density but also improves system safety. However, existing constant-pressure air storage methodologies necessitate supplementary infrastructure, such as high-pressure water reservoirs or elevated hydraulic columns, thereby escalating capital expenditures. This study introduces a novel constant-pressure air storage strategy for ICAES systems utilizing a linear-driven liquid piston mechanism. The proposed approach achieves constant-pressure air storage through the dual-mode operation strategies of buffer tanks (CBA and CBP modes) and hydraulic cylinders (CPP and CPW modes), eliminating the requirement for an auxiliary high-pressure apparatus or extensive civil engineering modifications. A prototype two-stage constant-pressure ICAES architecture was proposed, integrating low-pressure equipment with liquid pistons and providing detailed operational processes for preconditioning, energy storage, and power generation. A comprehensive mathematical model of the system is developed and validated through process simulation and performance characterization of a 100 kWh capacity system. It demonstrates that under operational conditions of 1 MPa of low pressure and 5 MPa of storage pressure, the system achieves an efficiency of 74.0% when the low-pressure equipment and liquid piston exhibit efficiencies of 85% and 90%, respectively. Furthermore, parametric analysis reveals a negative correlation between system efficiency and low-pressure parameters. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

23 pages, 7384 KB  
Article
Hydrogeochemical and Isotopic Approach to Groundwater Management in a Mediterranean City Dependent on External Water Supply (Aix-en-Provence, SE France)
by Christelle Claude, Hélène Miche, Ghislain Gassier, Ferhat Cherigui and Yves Dutour
Water 2025, 17(11), 1634; https://doi.org/10.3390/w17111634 - 28 May 2025
Viewed by 1024
Abstract
Drought frequency and severity intensify with climate change, challenging many Mediterranean cities to face securing sustainable water supplies. In this context, groundwater emerges as a key but often overlooked resource, particularly in urban areas historically reliant on external drinking water systems. This study [...] Read more.
Drought frequency and severity intensify with climate change, challenging many Mediterranean cities to face securing sustainable water supplies. In this context, groundwater emerges as a key but often overlooked resource, particularly in urban areas historically reliant on external drinking water systems. This study provides a comprehensive hydrogeological characterisation of the groundwater system in Aix-en-Provence (southeastern France), with a specific focus on hypothermal springs and the cold springs of the Vallon des Pinchinats, which historically supplied the town before the creation of the Canal de Provence by the company of the same name (Société du Canal de Provence (SCP)). By combining chemical and isotopic analyses (δ18O, δ2H, and chloride concentrations) with a statistical clustering (DACMAD method), we characterise the origin and dynamics of distinct water sources and evaluate their influence with surface water and external supply systems. Four key hydrological entities influencing the study area were identified. (1) regional precipitation (RRW) contributing significantly to groundwater recharge in the region. The isotope composition of the RRW was calculated (δ18O: −6.68‰, δ2H: −41.80‰, Cl: 2.2 mg/L) (2) Groundwater from the Oligocene aquifer (OG) characterised by an enrichment in chloride and sulphate. (3) Groundwater from the Cretaceous–Jurassic aquifer (CJG), a karstified aquifer from the Sainte-Victoire-Concors massif, which supplies the cold and hypothermal springs in Aix-en-Provence and multiple springs in the region. (4) Canal de Provence water (CPW) as an external water source, used for domestic supply, which has left a traceable signal in the local hydrosystem. The study reveals that cold springs of the Vallon des Pinchinats result from the mixing of Oligocene and Cretaceous–Jurassic groundwaters. Hypothermal springs (20–30 °C) circulate at moderate depths (165–500 m), unlike previous models suggesting deeper infiltration and mixing processes. This study contributes a novel hydrogeochemical and isotopic framework applicable to other Mediterranean urban areas facing similar pressures and highlights the strategic role that local groundwater can play in building long-term water resilience. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

15 pages, 5870 KB  
Article
An Efficient System for Mesophyll Protoplast Isolation, Purification, and Transformation in Loquat: Studies on Fluorescent Marker Analysis and Subcellular Localization
by Shuming Wang, Liyun Wang, Zhixiang Liu, Yan Xia, Danlong Jing, Qigao Guo, Guolu Liang and Qiao He
Horticulturae 2025, 11(4), 391; https://doi.org/10.3390/horticulturae11040391 - 7 Apr 2025
Cited by 2 | Viewed by 621
Abstract
Loquat (Eriobotrya japonica Lindl.) is one of the most important subtropical evergreen fruit trees. However, due to the lack of widely applicable genetic transformation platforms, the research about gene functional characterization and molecular mechanisms is largely confined. In this study, the efficient [...] Read more.
Loquat (Eriobotrya japonica Lindl.) is one of the most important subtropical evergreen fruit trees. However, due to the lack of widely applicable genetic transformation platforms, the research about gene functional characterization and molecular mechanisms is largely confined. In this study, the efficient protocol of protoplast isolation (the enzyme solution composed of 2.4% macerozyme R-10, 4.8% cellulase RS, dissolved in a 0.6 M mannitol solution) and the method of protoplast purification (CPW solution containing 5% sucrose and 11% mannitol) have been achieved with protoplast yields of 12.6 × 106/g·FW, reaching a viability rate of up to 91%. A protoplast transient gene expression system has been established with an efficiency of approximately 40% using GFP reporter gene. Using this reliable and efficient system, the protein localization characteristics of transcription factor EjDELLA, EjbHLH79, and marker gene OsPHT4 were also utilized for further analysis. To our knowledge, this is the first report on establishing an efficient system for protoplast isolation, purification, and transformation of loquat mesophyll. The system reported here will definitely promote rapid progress in breeding, genetic transformation, and molecular research. Full article
Show Figures

Figure 1

14 pages, 9642 KB  
Article
Design and Process Implementation of Silicon-Based Carrier for 100 G/200 G Electro-Absorption Modulated Laser Chips
by Liang Li, Xuan Chen, Linfeng Zhan, Chenggang Guan, Wengang Yao, Yuming Zhang, Yifan Xiao, Xuelong Fan, Chen Xu and Yifeng Chen
Electronics 2025, 14(7), 1398; https://doi.org/10.3390/electronics14071398 - 30 Mar 2025
Viewed by 604
Abstract
This paper presents a highly stable and integrated silicon-based carrier with broad application prospects. Traditional 800 G optical modules employ architectures based on aluminum nitride (AlN) carriers with externally mounted capacitors. However, such AlN-based architectures suffer from issues including high process complexity, elevated [...] Read more.
This paper presents a highly stable and integrated silicon-based carrier with broad application prospects. Traditional 800 G optical modules employ architectures based on aluminum nitride (AlN) carriers with externally mounted capacitors. However, such AlN-based architectures suffer from issues including high process complexity, elevated costs, poor environmental temperature adaptability, and difficulties in systematic crosstalk optimization. To address these challenges, this study conducted research on coplanar waveguide (CPW) transmission line structure design and optimization, high-density capacitor design and process implementation, and multi-channel crosstalk suppression. Based on these investigations, a silicon-based integrated carrier was designed and fabricated, incorporating resistors, capacitors, high-speed signal lines, and preformed AuSn structures. Test results demonstrate that the CPW transmission line structures fabricated on the silicon carrier exhibit excellent radio frequency performance with transmission losses below 1 dB within 67 GHz. The developed high-density capacitor structure achieves a remarkable capacitance density of 26.83 nF/mm2 and withstands voltages exceeding 24 V at 1 μA current, reaching state-of-the-art levels. This paper also proposes crosstalk reduction solutions including increased channel spacing, the addition of wave-absorbing materials, and the implementation of metal barriers. Experimental results confirm that the developed integrated carrier demonstrates outstanding performance and reliability in high-frequency communications and optoelectronic devices. Full article
Show Figures

Figure 1

12 pages, 3003 KB  
Article
Construction of CPW Pogo Pin Probes for RFIC Measurements
by K. M. Lee, J. S. Kim, S. Ahn, E. Park, J. Myeong and M. Kim
Sensors 2025, 25(6), 1677; https://doi.org/10.3390/s25061677 - 8 Mar 2025
Viewed by 1697
Abstract
A new radio frequency (RF) probe using pogo pin tips for integrated chip (IC) measurement up to 50 GHz is proposed. It offers high durability due to the pogo pins and meets three key design criteria for general IC measurement: (1) a 45° [...] Read more.
A new radio frequency (RF) probe using pogo pin tips for integrated chip (IC) measurement up to 50 GHz is proposed. It offers high durability due to the pogo pins and meets three key design criteria for general IC measurement: (1) a 45° tilted shape with a 70 μm tip protrusion for easy microscope inspection, (2) linear pogo pin alignment for commercial chip pad contact, and (3) a 250 μm pitch compatible with standard IC pad pitches. This design is distinct from traditional pogo pin probe cards which place pogo pins in vertical form, in a diagonal arrangement, and at wide intervals. The probe exhibits a low insertion loss of 1.6 dB at 45 GHz. A printed circuit board (PCB)-based calibration standard for the calibration of the designed probe is constructed, which is adjusted to inductance and capacitance values using a simulation to form the Vector Network Analyzer (VNA) calibration set. The measurements of a commercial amplifier IC using this probe show a nearly identical performance to commercial RF probes, confirming its accuracy and reliability. Full article
(This article belongs to the Special Issue Intelligent Circuits and Sensing Technologies: Second Edition)
Show Figures

Figure 1

18 pages, 13167 KB  
Article
Research on Low-Profile Directional Flexible Antenna with 3D Coplanar Waveguide for Partial Discharge Detection
by Yan Mi, Wentao Liu, Yiqin Peng, Lei Deng, Benxiang Shu, Xiaopeng Wang and Songyuan Li
Micromachines 2025, 16(3), 253; https://doi.org/10.3390/mi16030253 - 24 Feb 2025
Viewed by 1664
Abstract
Due to the challenges in antenna installation and detection performance caused by metal obstruction along the propagation path at a Gas-Insulated Switchgear (GIS) cable terminal, as well as the adverse effects of environmental interference on the detection of partial discharge (PD) by existing [...] Read more.
Due to the challenges in antenna installation and detection performance caused by metal obstruction along the propagation path at a Gas-Insulated Switchgear (GIS) cable terminal, as well as the adverse effects of environmental interference on the detection of partial discharge (PD) by existing flexible antennas, this paper proposes a directional flexible antenna design to mitigate these issues and improve detection performance. The proposed design employs a coplanar waveguide (CPW)-fed monopole antenna structure, where the grounding plane is extended to the back of the antenna to enhance directional reception. The designed flexible antenna measures 88.5 × 70 × 20 mm, and its low-profile design allows it to be easily mounted on the outer wall of the epoxy sleeve at the GIS cable terminal. The measurement results show that the flexible antenna has a Voltage Standing Wave Ratio (VSWR) of less than 2 in the 0.541–3 GHz frequency range. It also maintains stable impedance characteristics across various bending radii, with an average effective height of 10.79 mm in the 0.3–1.5 GHz frequency range. A GIS cable terminal PD experimental platform was established, and the experimental results demonstrate that the bending has minimal impact on the detection performance of the flexible antenna, which can cover the detection range of the GIS cable terminal; metal obstruction significantly impacts the PD signal amplitude, and the designed flexible antenna is suitable for detecting PDs in confined spaces with metal obstruction. Full article
(This article belongs to the Section E:Engineering and Technology)
Show Figures

Figure 1

22 pages, 8673 KB  
Article
A Dual-Polarized and Broadband Multiple-Antenna System for 5G Cellular Communications
by Haleh Jahanbakhsh Basherlou, Naser Ojaroudi Parchin and Chan Hwang See
Sensors 2025, 25(4), 1032; https://doi.org/10.3390/s25041032 - 9 Feb 2025
Cited by 1 | Viewed by 1721
Abstract
This study presents a new multiple-input multiple-output (MIMO) antenna array system designed for sub-6 GHz fifth generation (5G) cellular applications. The design features eight compact trapezoid slot elements with L-shaped CPW (Coplanar Waveguide) feedlines, providing broad bandwidth and radiation/polarization diversity. The antenna elements [...] Read more.
This study presents a new multiple-input multiple-output (MIMO) antenna array system designed for sub-6 GHz fifth generation (5G) cellular applications. The design features eight compact trapezoid slot elements with L-shaped CPW (Coplanar Waveguide) feedlines, providing broad bandwidth and radiation/polarization diversity. The antenna elements are compact in size and function within the frequency spectrum spanning from 3.2 to 6 GHz. They have been strategically positioned at the peripheral corners of the smartphone mainboard, resulting in a compact overall footprint of 75 mm × 150 mm FR4. Within this design framework, there are four pairs of antennas, each aligned to offer both horizontal and vertical polarization options. In addition, despite the absence of decoupling structures, the adjacent elements in the array exhibit high isolation. The array demonstrates a good bandwidth of 2800 MHz, essential for 5G applications requiring high data rates and reliable connectivity, high radiation efficiency, and dual-polarized/full-coverage radiation. Furthermore, it achieves low ECC (Envelope Correlation Coefficient) and TARC (Total Active Reflection Coefficient) values, measuring better than 0.005 and −20 dB, respectively. With its compact and planar configuration, quite broad bandwidth, acceptable SAR (Specific Absorption Rate) and excellent radiation characteristics, this suggested MIMO antenna array design shows good promise for integration into 5G hand-portable devices. Furthermore, a compact phased-array millimeter-wave (mmWave) antenna with broad bandwidth is introduced as a proof of concept for higher frequency antenna integration. This design underscores the potential to support future 5G and 6G applications, enabling advanced connectivity in smartphones. Full article
(This article belongs to the Special Issue Antenna Design and Optimization for 5G, 6G, and IoT)
Show Figures

Figure 1

20 pages, 11484 KB  
Article
Tunable Filters Using Defected Ground Structures at Millimeter-Wave Frequencies
by Kaushik Annam, Birhanu Alemayehu, Eunsung Shin and Guru Subramanyam
Micromachines 2025, 16(1), 60; https://doi.org/10.3390/mi16010060 - 31 Dec 2024
Cited by 2 | Viewed by 1251
Abstract
This paper explores the potential of phase change materials (PCM) for dynamically tuning the frequency response of a dumbbell u-slot defected ground structure (DGS)-based band stop filter. The DGSs are designed using co-planar waveguide (CPW) line structure on top of a barium strontium [...] Read more.
This paper explores the potential of phase change materials (PCM) for dynamically tuning the frequency response of a dumbbell u-slot defected ground structure (DGS)-based band stop filter. The DGSs are designed using co-planar waveguide (CPW) line structure on top of a barium strontium titanate (Ba0.6Sr0.4TiO3) (BST) thin film. BST film is used as the high-dielectric material for the planar DGS. Lower insertion loss of less than −2 dB below the lower cutoff frequency, and enhanced band-rejection with notch depth of −39.64 dB at 27.75 GHz is achieved by cascading two-unit cells, compared to −12.26 dB rejection with a single-unit cell using BST thin film only. Further tunability is achieved by using a germanium telluride (GeTe) PCM layer. The electrical properties of PCM can be reversibly altered by transitioning between amorphous and crystalline phases. We demonstrate that incorporating a PCM layer into a DGS device allows for significant tuning of the resonance frequency: a shift in resonance frequency from 30.75 GHz to 33 GHz with a frequency shift of 2.25 GHz is achieved, i.e., 7.32% tuning is shown with a single DGS cell. Furthermore, by cascading two DGS cells with PCM, an even wider tuning range is achievable: a shift in resonance frequency from 27 GHz to 30.25 GHz with a frequency shift of 3.25 GHz is achieved, i.e., 12.04% tuning is shown by cascading two DGS cells. The results are validated through simulations and measurements, showcasing excellent agreement. Full article
(This article belongs to the Special Issue Microwave Passive Components, 2nd Edition)
Show Figures

Figure 1

Back to TopTop