Investigation of Electro-Thermal Performance for TreeFET from the Perspective of Structure Parameters
Abstract
:1. Introduction
2. Device Structure and Simulation Calibration
2.1. Device Structure
2.2. Calibration
3. Investigation of Electrical and Thermal Characteristics
3.1. Impact of IB Width
3.2. Impact of NS Space
3.3. Trade-off of Electro-Thermal Performance
3.4. Impact of NS Width
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hisamoto, D.; Lee, W.-C.; Kedzierski, J.; Takeuchi, H.; Asano, K.; Kuo, C.; Anderson, E.; Tsu-Jae, K.; Bokor, J.; Chenming, H. FinFET-a self-aligned double-gate MOSFET scalable to 20 nm. IEEE Trans. Electron Devices 2000, 47, 2320–2325. [Google Scholar] [CrossRef]
- Yakimets, D.; Eneman, G.; Schuddinck, P.; Bao, T.H. Vertical GAAFETs for the Ultimate CMOS Scaling. IEEE Trans. Electron Devices 2015, 62, 1433–1439. [Google Scholar] [CrossRef]
- Singh, N.; Agarwal, A.; Bera, L.K.; Liow, T.Y.; Yang, R.; Rustagi, S.C.; Tung, C.H.; Kumar, R.; Lo, G.Q.; Balasubramanian, N.; et al. High-performance fully depleted silicon nanowire (diameter/spl les/5 nm) gate-all-around CMOS devices. IEEE Electron Device Lett. 2006, 27, 383–386. [Google Scholar] [CrossRef]
- Weckx, P.; Ryckaert, J.; Litta, E.D.; Yakimets, D.; Matagne, P.; Schuddinck, P.; Jang, D.; Chehab, B.; Baert, R.; Gupta, M.; et al. Novel forksheet device architecture as ultimate logic scaling device towards 2 nm. In Proceedings of the 2019 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 36.5.1–36.5.4. [Google Scholar] [CrossRef]
- Ryckaert, J.; Schuddinck, P.; Weckx, P.; Bouche, G.; Vincent, B.; Smith, J.; Sherazi, Y.; Mallik, A.; Mertens, H.; Demuynck, S.; et al. The Complementary FET (CFET) for CMOS scaling beyond N3. In Proceedings of the 2018 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 18–22 June 2018; pp. 141–142. [Google Scholar] [CrossRef]
- Yang, B.; Buddharaju, K.D.; Teo, S.H.G.; Singh, N.; Lo, G.Q.; Kwong, D.L. Vertical Silicon-Nanowire Formation and Gate-All-Around MOSFET. IEEE Electron Device Lett. 2008, 29, 791–794. [Google Scholar] [CrossRef]
- Kuhn, K.J. Considerations for Ultimate CMOS Scaling. IEEE Trans. Electron Devices 2012, 59, 1813–1828. [Google Scholar] [CrossRef]
- Ritzenthaler, R.; Mertens, H.; Pena, V.; Santoro, G.; Chasin, A.; Kenis, K.; Devriendt, K.; Mannaert, G.; Dekkers, H.; Dangol, A.; et al. Vertically Stacked Gate-All-Around Si Nanowire CMOS Transistors with Reduced Vertical Nanowires Separation, New Work Function Metal Gate Solutions, and DC/AC Performance Optimization. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 21.5.1–21.5.4. [Google Scholar] [CrossRef]
- Loubet, N.; Hook, T.; Montanini, P.; Yeung, C.-W.; Kanakasabapathy, S.; Guillom, M.; Yamashita, T.; Zhang, J.; Miao, X.; Wang, J.; et al. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In Proceedings of the 2017 Symposium on VLSI Technology, Kyoto, Japan, 5–8 June 2017; pp. T230–T231. [Google Scholar] [CrossRef]
- Bae, G.; Bae, D.-I.; Kang, M.; Hwang, S.M.; Kim, S.S.; Seo, B.; Kwon, T.Y.; Lee, T.J.; Moon, C.; Choi, Y.M.; et al. 3nm GAA Technology featuring Multi-Bridge-Channel FET for Low Power and High Performance Applications. In Proceedings of the 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 1–5 December 2018; pp. 28.7.1–28.7.4. [Google Scholar] [CrossRef]
- Kim, S.; Kim, M.; Ryu, D.; Lee, K.; Kim, S.; Lee, J.; Lee, R.; Kim, S.; Lee, J.-H.; Park, B.-G. Investigation of Electrical Characteristic Behavior Induced by Channel-Release Process in Stacked Nanosheet Gate-All-Around MOSFETs. IEEE Trans. Electron Devices 2020, 67, 2648–2652. [Google Scholar] [CrossRef]
- Kim, S.; Guillorn, M.; Lauer, I.; Oldiges, P.; Hook, T.; Na, M. Performance trade-offs in FinFET and gate-all-around device architectures for 7nm-node and beyond. In Proceedings of the 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conference (S3S), Rohnert Park, CA, USA, 5–8 October 2015; pp. 1–3. [Google Scholar] [CrossRef]
- Trivedi, V.; Fossum, J.G.; Chowdhury, M.M. Nanoscale FinFETs with gate-source/drain underlap. IEEE Trans. Electron Devices 2005, 52, 56–62. [Google Scholar] [CrossRef]
- Ye, H.-Y.; Liu, C.W. On-Current Enhancement in TreeFET by Combining Vertically Stacked Nanosheets and Interbridges. IEEE Electron Device Lett. 2020, 41, 1292–1295. [Google Scholar] [CrossRef]
- Tu, C.-T.; Hsieh, W.-H.; Huang, B.-W.; Chen, Y.-R.; Liu, Y.-C.; Tsai, C.-E.; Chueh, S.-J.; Liu, C.W. Experimental Demonstration of TreeFETs Combining Stacked Nanosheets and Low Doping Interbridges by Epitaxy and Wet Etching. IEEE Electron Device Lett. 2022, 43, 682–685. [Google Scholar] [CrossRef]
- Valasa, S.; Tayal, S.; Thoutam, L.R. An Intensive Study of Tree-Shaped JL-NSFET: Digital and Analog/RF Perspective. IEEE Trans. Electron Devices 2022, 69, 6561–6568. [Google Scholar] [CrossRef]
- Sun, Y.; Li, X.; Liu, Z.; Liu, Y.; Li, X.; Shi, Y. Vertically Stacked Nanosheets Tree-Type Reconfigurable Transistor with Improved ON-Current. IEEE Trans. Electron Devices 2022, 69, 370–374. [Google Scholar] [CrossRef]
- Cao, L.; Zhang, Q.; Luo, Y.; Gu, J.; Gan, W.; Lu, P.; Yao, J.; Xu, H.; Zhao, P.; Luo, K.; et al. Novel Channel-First Fishbone FETs With Symmetrical Threshold Voltages and Balanced Driving Currents Using Single Work Function Metal Process. IEEE Trans. Electron Devices 2022, 69, 5971–5977. [Google Scholar] [CrossRef]
- Kim, H.; Son, D.; Myeong, I.; Kang, M.; Jeon, J.; Shin, H. Analysis on Self-Heating Effects in Three-Stacked Nanoplate FET. IEEE Trans. Electron Devices 2018, 65, 4520–4526. [Google Scholar] [CrossRef]
- Myeong, I.; Song, I.; Kang, M.J.; Shin, H. Self-Heating and Electrothermal Properties of Advanced Sub-5-nm Node Nanoplate FET. IEEE Electron Device Lett. 2020, 41, 977–980. [Google Scholar] [CrossRef]
- Tsen, C.; Chung, C.-C.; Liu, C.W. Self-Heating Mitigation of TreeFETs by Interbridges. IEEE Trans. Electron Devices 2022, 69, 4123–4128. [Google Scholar] [CrossRef]
- Liu, Y.; Kijima, S.; Sugimata, E.; Masahara, M.; Endo, K.; Matsukawa, T.; Ishii, K.; Sakamoto, K.; Sekigawa, T.; Yamauchi, H.; et al. Investigation of the TiN Gate Electrode with Tunable Work Function and Its Application for FinFET Fabrication. IEEE Trans. Nanotechnol. 2006, 5, 723–730. [Google Scholar] [CrossRef]
- Niimi, H.; Liu, Z.; Gluschenkov, O.; Mochizuki, S.; Fronheiser, J.; Li, J.; Demarest, J.; Zhang, C.; Liu, B.; Yang, J.; et al. Sub-10−9 Ωcm−2 n-Type Contact Resistivity for FinFET Technology. IEEE Electron Device Lett. 2016, 37, 1371–1374. [Google Scholar] [CrossRef]
- Balestra, F.; Ghibaudo, G. Physics and performance of nanoscale semiconductor devices at cryogenic temperatures. Semicond. Sci. Technol. 2017, 32, 23002. [Google Scholar] [CrossRef]
- Park, J.-Y.; Lee, B.-H.; Chang, K.S.; Kim, D.U.; Jeong, C.; Kim, C.-K.; Bae, H.; Choi, Y.-K. Investigation of Self-Heating Effects in Gate-All-Around MOSFETs With Vertically Stacked Multiple Silicon Nanowire Channels. IEEE Trans. Electron Devices 2017, 64, 4393–4399. [Google Scholar] [CrossRef]
- Mertens, H.; Ritzenthaler, R.; Hikavyy, A.; Kim, M.S.; Tao, Z.; Wostyn, K.; Chew, S.A.; de Keersgieter, A.; Mannaert, G.; Rosseel, E.; et al. Gate-all-around MOSFETs based on vertically stacked horizontal Si nanowires in a replacement metal gate process on bulk Si substrate. In Proceedings of the 2016 IEEE Symposium on VLSI Technology, Honolulu, HI, USA, 14–16 June 2016; pp. 1–2. [Google Scholar] [CrossRef]
- Liu, R.; Li, X.; Sun, Y.; Shi, Y. A Vertical Combo Spacer to Optimize Electrothermal Characteristics of 7-nm Nanosheet Gate-All-Around Transistor. IEEE Trans. Electron Devices 2020, 67, 2249–2254. [Google Scholar] [CrossRef]
- Venkateswarlu, S.; Nayak, K. Hetero-Interfacial Thermal Resistance Effects on Device Performance of Stacked Gate-All-Around Nanosheet FET. IEEE Trans. Electron Devices 2020, 67, 4493–4499. [Google Scholar] [CrossRef]
- Pop, E.; Dutton, R.; Goodson, K. Thermal analysis of ultra-thin body device scaling [SOI and FinFet devices]. In Proceedings of the IEEE International Electron Devices Meeting 2003, Washington, DC, USA, 8–10 December 2003; pp. 36.6.1–36.6.4. [Google Scholar] [CrossRef]
- Yan, J.-Y.; Jan, S.-R.; Peng, Y.-J.; Lin, H.H.; Wan, W.K.; Huang, Y.H.; Hung, B.; Chan, K.T.; Huang, M.; Yang, M.; et al. Thermal resistance modeling of back-end interconnect and intrinsic FinFETs, and transient simulation of inverters with capacitive loading effects. In Proceedings of the 2016 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 3–7 December 2016; pp. 35.6.1–35.6.4. [Google Scholar] [CrossRef]
- Venkateswarlu, S.; Badami, O.; Nayak, K. Electro-Thermal Performance Boosting in Stacked Si Gate-all-Around Nanosheet FET with Engineered Source/Drain Contacts. IEEE Trans. Electron Devices 2021, 68, 4723–4728. [Google Scholar] [CrossRef]
- Cai, L.; Chen, W.; Du, G.; Zhang, X.; Liu, X. Layout Design Correlated with Self-Heating Effect in Stacked Nanosheet Transistors. IEEE Trans. Electron Devices 2018, 65, 2647–2653. [Google Scholar] [CrossRef]
- Cai, L.; Chen, W.; Du, G.; Kang, J.; Zhang, X.; Liu, X. Investigation of self-heating effect on stacked nanosheet GAA transistors. In Proceedings of the 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), Hsinchu, Taiwan, 16–19 April 2018; pp. 1–2. [Google Scholar] [CrossRef]
- Liu, R.; Li, X.; Sun, Y.; Li, F.; Shi, Y. Thermal Coupling Among Channels and Its DC Modeling in Sub-7-nm Vertically Stacked Nanosheet Gate-All-Around Transistor. IEEE Trans. Electron Devices 2021, 68, 6563–6570. [Google Scholar] [CrossRef]
Symbol | Parameter | Value |
---|---|---|
LG | Gate length | 12 nm |
TNS | Nanosheet thickness | 5 nm |
WNS | Nanosheet width | 10–40 nm |
SNS | Nanosheet space | 5–40 nm |
WIB | Interbridge width | 3–7 nm |
LSD | Source/drain length | 13 nm |
LSP | Spacer length | 5 nm |
TBulk | Bulk thickness | 100 nm |
EOT | Equivalent oxide thickness | 1 nm |
CGP | Contacted gate pitch | 48 nm |
Nch | Channel doping | 1015 cm−3 |
NSD | Source/drain doping | 1021 cm−3 |
NBulk | Bulk doping | 5 × 1018 cm−3 |
Material | Thermal Conductivity (WK−1 m−1) |
---|---|
Gate metal (TiN) | 19.2 |
Bulk region (Si) | 148 |
Source/Drain region (Si) | 16.61 |
Channel region (Si) | 8.07 |
Spacer (Si3N4) | 18.5 |
SiO2 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, W.; Pan, X.; Liu, J.; Li, Q. Investigation of Electro-Thermal Performance for TreeFET from the Perspective of Structure Parameters. Electronics 2023, 12, 1529. https://doi.org/10.3390/electronics12071529
Liu W, Pan X, Liu J, Li Q. Investigation of Electro-Thermal Performance for TreeFET from the Perspective of Structure Parameters. Electronics. 2023; 12(7):1529. https://doi.org/10.3390/electronics12071529
Chicago/Turabian StyleLiu, Weijing, Xinfu Pan, Jiangnan Liu, and Qinghua Li. 2023. "Investigation of Electro-Thermal Performance for TreeFET from the Perspective of Structure Parameters" Electronics 12, no. 7: 1529. https://doi.org/10.3390/electronics12071529