Entering the Next Dimension: A Review of 3D User Interfaces for Virtual Reality
Abstract
:1. Introduction
- A novel metaphor-guided quadrant model to delineate the 3D UI problem in an end-to-end manner from the dimensional perspective is proposed.
- Thirty-three unique articles selected using a meta-analyses methodology were reviewed.
- Reiterate design recommendations based on the proposed model.
2. Approach
2.1. Proposed Categorization Model
2.2. Survey Approach
2.3. Research Questions
3. Input Dimensional Semantics
3.1. 2D Input
3.2. 3D Input
4. Outcomes of Virtual Targets
4.1. 2D Interfaces
4.1.1. Menus
4.1.2. Typing
4.1.3. Surface
4.2. 3D Interfaces
4.2.1. Point
4.2.2. Grasp
4.2.3. Indirect
4.2.4. Navigation
5. Discussion
5.1. Applications
5.2. Reiterated Design Recommendations
5.3. Challenges and Future Direction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
VR | Virtual Reality |
HMD | Head Mounted Display |
WIMP | Windows, Icons, Menus, Pointers |
3D | 3 Dimensional |
2D | 2 Dimensional |
UI | User Interface |
DoF | Degrees of Freedom |
UX | User Experience |
HUD | Head’s Up Display |
HCI | Human Computer Interaction |
VDV | Virtual Data Visualizer |
TULIP | Three Up Labels In Palm |
WIM | Worlds in Miniature |
WPM | Words Per Minute |
RBI | Reality Based Interaction |
HOMER | Hand-Centered Object Manipulation Extending Ray Casting |
References
- Lanier, J.; Biocca, F. An insider’s view of the future of virtual reality. J. Commun. 1992, 42, 150–172. [Google Scholar] [CrossRef]
- Williams, A. Reality check [virtual reality technology]. Eng. Technol. 2015, 10, 52–55. [Google Scholar] [CrossRef]
- Korolov, M. The real risks of virtual reality. Risk Manag. 2014, 61, 20–24. [Google Scholar]
- Ebert, C. Looking into the Future. IEEE Softw. 2015, 32, 92–97. [Google Scholar] [CrossRef]
- Castelvecchi, D. Low-cost headsets boost virtual reality’s lab appeal. Nature 2016, 533, 153–154. [Google Scholar] [CrossRef]
- Dorabjee, R.; Bown, O.; Sarkar, S.; Tomitsch, M. Back to the Future: Identifying Interface Trends from the Past, Present and Future in Immersive Applications. In Proceedings of the Annual Meeting of the Australian Special Interest Group for Computer Human Interaction, Parkville, VIC, Australia, 7–10 December 2015. [Google Scholar] [CrossRef]
- Hand, C. A survey of 3D interaction techniques. In Proceedings of the Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 1997; Volume 16, pp. 269–281. [Google Scholar]
- Riva, G.; Gaggioli, A.; Grassi, A.; Raspelli, S.; Cipresso, P.; Pallavicini, F.; Vigna, C.; Gagliati, A.; Gasco, S.; Donvito, G. NeuroVR 2—A free virtual reality platform for the assessment and treatment in behavioral health care. In Medicine Meets Virtual Reality 18; IOS Press: Amsterdam, The Netherlands, 2011; pp. 493–495. [Google Scholar]
- Cipresso, P. Modeling behavior dynamics using computational psychometrics within virtual worlds. Front. Psychol. 2015, 6, 1725. [Google Scholar] [CrossRef]
- Brown, A.; Green, T. Virtual reality: Low-cost tools and resources for the classroom. TechTrends 2016, 60, 517–519. [Google Scholar] [CrossRef]
- Cipresso, P.; Serino, S.; Riva, G. Psychometric assessment and behavioral experiments using a free virtual reality platform and computational science. BMC Med. Inform. Decis. Mak. 2016, 16, 1–11. [Google Scholar] [CrossRef]
- Zeng, X.; Hedge, A.; Guimbretiere, F. Fitts’ law in 3D space with coordinated hand movements. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting; SAGE Publications: Los Angeles, CA, USA, 2012. [Google Scholar] [CrossRef]
- Norman, D.A. Natural user interfaces are not natural. Interactions 2010, 17, 6–10. [Google Scholar] [CrossRef]
- Fröjdman, S. User Experience Guidelines for Design of Virtual Reality Graphical User Interface Controlled by Head Orientation Input. Bachelor’s Thesis, University of Skövde, Skövde, Sweden, 2016. [Google Scholar]
- Bowman, D.A.; Johnson, D.B.; Hodges, L.F. Testbed evaluation of virtual environment interaction techniques. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology, London, UK, 20–22 December 1999; pp. 26–33. [Google Scholar]
- Poupyrev, I.; Ichikawa, T. Manipulating objects in virtual worlds: Categorization and empirical evaluation of interaction techniques. J. Vis. Lang. Comput. 1999, 10, 19–35. [Google Scholar] [CrossRef]
- Argelaguet, F.; Andujar, C. A survey of 3D object selection techniques for virtual environments. Comput. Graph. 2013, 37, 121–136. [Google Scholar] [CrossRef]
- Dewez, D.; Hoyet, L.; Lécuyer, A.; Argelaguet Sanz, F. Towards “avatar-friendly” 3D manipulation techniques: Bridging the gap between sense of embodiment and interaction in virtual reality. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Virtual Event, 8–13 May 2021; pp. 1–14. [Google Scholar]
- Mendes, D.; Caputo, F.M.; Giachetti, A.; Ferreira, A.; Jorge, J. A survey on 3d virtual object manipulation: From the desktop to immersive virtual environments. In Proceedings of the Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2019; Volume 38, pp. 21–45. [Google Scholar]
- Hinckley, K.; Pausch, R.; Goble, J.C.; Kassell, N.F. A survey of design issues in spatial input. In Proceedings of the 7th Annual ACM Symposium on User Interface Software and Technology, Marina del Rey, CA, USA, 2–4 November 1994; pp. 213–222. [Google Scholar]
- Takala, T.M.; Rauhamaa, P.; Takala, T. Survey of 3DUI applications and development challenges. In Proceedings of the 2012 IEEE Symposium on 3D User Interfaces (3DUI), Costa Mesa, CA, USA, 4–5 March 2012; pp. 89–96. [Google Scholar]
- Lacoche, J.; Duval, T.; Arnaldi, B.; Maisel, E.; Royan, J. A survey of plasticity in 3D user interfaces. In Proceedings of the 2014 IEEE 7th Workshop on Software Engineering and Architectures for Realtime Interactive Systems (SEARIS), Minneapolis, MN, USA, 30 March 2014; pp. 19–26. [Google Scholar]
- Purwar, S. Designing User Experience for Virtual Reality (VR) Applications. Available online: https://uxplanet.org/designing-user-experience-for-virtual-reality-vr-applications-fc8e4faadd96 (accessed on 4 March 2019).
- Kharoub, H.; Lataifeh, M.; Ahmed, N. 3D user interface design and usability for immersive VR. Appl. Sci. 2019, 9, 4861. [Google Scholar] [CrossRef]
- Bowman, D.A.; McMahan, R.P.; Ragan, E.D. Questioning naturalism in 3D user interfaces. Commun. ACM 2012, 55, 78–88. [Google Scholar] [CrossRef]
- Kim, T.; Karlson, A.; Gupta, A.; Grossman, T.; Wu, J.; Abtahi, P.; Collins, C.; Glueck, M.; Surale, H.B. STAR: Smartphone-analogous Typing in Augmented Reality. In Proceedings of the 36th Annual ACM Symposium on User Interface Software and Technology, San Francisco, CA, USA, 29 October–1 November 2023; pp. 1–13. [Google Scholar]
- Steinicke, F.; Benko, H.; Krüger, A.; Keefe, D.; de la Riviére, J.B.; Anderson, K.; Häkkilä, J.; Arhippainen, L.; Pakanen, M. The 3rd dimension of CHI (3DCHI) touching and designing 3D user interfaces. In Proceedings of the CHI’12 Extended Abstracts on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012; pp. 2695–2698. [Google Scholar]
- Jacob, R.J.; Girouard, A.; Hirshfield, L.M.; Horn, M.S.; Shaer, O.; Solovey, E.T.; Zigelbaum, J. Reality-based interaction: A framework for post-WIMP interfaces. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Florence, Italy, 5–10 April 2008; pp. 201–210. [Google Scholar]
- Tan, C.T.; Foo, L.C.; Yeo, A.; Lee, J.S.A.; Wan, E.; Kok, X.F.K.; Rajendran, M. Understanding user experiences across VR Walking-in-Place locomotion methods. In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 30 April–5 May 2022; pp. 1–13. [Google Scholar]
- Riecke, B.E.; LaViola Jr, J.J.; Kruijff, E. 3D user interfaces for virtual reality and games: 3D selection, manipulation, and spatial navigation. In ACM SIGGRAPH 2018 Courses; Association for Computing Machinery: New York, NY, USA, 2018; pp. 1–94. [Google Scholar]
- Baloup, M.; Pietrzak, T.; Casiez, G. Raycursor: A 3d pointing facilitation technique based on raycasting. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar]
- Bowman, D.A.; Hodges, L.F. An evaluation of techniques for grabbing and manipulating remote objects in immersive virtual environments. In Proceedings of the 1997 Symposium on Interactive 3D Graphics, Providence, RI, USA, 27–30 April 1997; pp. 35–ff. [Google Scholar]
- Monteiro, P.; Gonçalves, G.; Peixoto, B.; Melo, M.; Bessa, M. Evaluation of hands-free VR interaction methods during a Fitts’ task: Efficiency and Effectiveness. IEEE Access 2023, 11, 70898–70911. [Google Scholar] [CrossRef]
- Monteiro, P.; Gonçalves, G.; Coelho, H.; Melo, M.; Bessa, M. Hands-free interaction in immersive virtual reality: A systematic review. IEEE Trans. Vis. Comput. Graph. 2021, 27, 2702–2713. [Google Scholar] [CrossRef]
- Lubos, P.; Bruder, G.; Steinicke, F. Analysis of direct selection in head-mounted display environments. In Proceedings of the 2014 IEEE Symposium on 3D User Interfaces (3DUI), Minneapolis, MN, USA, 29–30 March 2014; pp. 11–18. [Google Scholar]
- Bowman, D.A.; Coquillart, S.; Froehlich, B.; Hirose, M.; Kitamura, Y.; Kiyokawa, K.; Stuerzlinger, W. 3d user interfaces: New directions and perspectives. IEEE Comput. Graph. Appl. 2008, 28, 20–36. [Google Scholar] [CrossRef]
- Xing, Y.; Shell, J.; Fahy, C.; Wen, C.; Da, Z.; Kwan, H.Y. Web XR user interface study in designing 3D layout framework in static websites. In Proceedings of the 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), Christchurch, New Zealand, 12–16 March 2022; pp. 243–246. [Google Scholar]
- Chen, Q.; Low, S.E.; Yap, J.W.; Sim, A.K.; Tan, Y.Y.; Kwok, B.W.; Lee, J.S.; Tan, C.T.; Loh, W.P.; Loo, B.L.; et al. Immersive virtual reality training of bioreactor operations. In Proceedings of the 2020 IEEE International Conference on Teaching, Assessment, and Learning for Engineering (TALE), Takamatsu, Japan, 8–11 December 2020; pp. 873–878. [Google Scholar]
- Kwok, B.W.; Yeo, A.C.L.; Wong, A.; Loo, L.W.B.; Lee, J.S.A. Improving Immersive Virtual Reality Training of Bioreactor Operations using Gamification. In Proceedings of the 2023 IEEE International Conference on Teaching, Assessment, and Learning for Engineering, Auckland, New Zealand, 27 November–1 December 2023. [Google Scholar] [CrossRef]
- Xing, Y.; Shell, J.; Fahy, C.; Guan, K.; Zhang, Q.; Xie, T. User Interface Research in Web Extended Reality. In Proceedings of the 2021 IEEE 7th International Conference on Virtual Reality (ICVR), Foshan, China, 20–22 May 2021; pp. 76–81. [Google Scholar]
- Lindeman, R.W.; Sibert, J.L.; Templeman, J.N. The effect of 3D widget representation and simulated surface constraints on interaction in virtual environments. In Proceedings of the IEEE Virtual Reality 2001, Yokohama, Japan, 13–17 March 2001; pp. 141–148. [Google Scholar]
- Argelaguet, F.; Andujar, C. Efficient 3D pointing selection in cluttered virtual environments. IEEE Comput. Graph. Appl. 2009, 29, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Dang, N.T. A survey and classification of 3D pointing techniques. In Proceedings of the 2007 IEEE International Conference on Research, Innovation and Vision for the Future, Hanoi, Vietnam, 5–9 March 2007; pp. 71–80. [Google Scholar]
- Shi, Y.; Zhao, L.; Lu, X.; Hoang, T.; Wang, M. Grasping 3D Objects With Virtual Hand in VR Environment. In Proceedings of the 18th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry, Shenzhen, China, 10–11 December 2022; pp. 1–8. [Google Scholar]
- Zhou, Y.; Shi, L.; He, Z.; Li, Z.; Wang, J. Design Paradigms of 3D User Interfaces for VR Exhibitions. In Proceedings of the IFIP Conference on Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2023; pp. 618–627. [Google Scholar]
- Molina, J.P.; González, P.; Lozano, M.D.; Montero, F.; López-Jaquero, V. Bridging the gap: Developing 2D and 3D user interfaces with the IDEAS methodology. In Proceedings of the Interactive Systems. Design, Specification, and Verification: 10th International Workshop, DSV-IS 2003, Funchal, Madeira Island, Portugal, 11–13 June 2003; Revised Papers 10. Springer: Berlin/Heidelberg, Germany, 2003; pp. 303–315. [Google Scholar]
- Kim, Y.M.; Rhiu, I.; Yun, M.H. A systematic review of a virtual reality system from the perspective of user experience. Int. J. Hum.–Comput. Interact. 2020, 36, 893–910. [Google Scholar] [CrossRef]
- Xie, H. The Applications of Interface Design and User Experience in Virtual Reality. Highlights Sci. Eng. Technol. 2023, 44, 189–198. [Google Scholar] [CrossRef]
- Wingrave, C.A.; Laviola Jr, J.J.; Bowman, D.A. A natural, tiered and executable UIDL for 3D user interfaces based on Concept-Oriented Design. ACM Trans. Comput.–Hum. Interact. (TOCHI) 2009, 16, 1–36. [Google Scholar] [CrossRef]
- Al-Jundi, H.A.; Tanbour, E.Y. A framework for fidelity evaluation of immersive virtual reality systems. Virtual Real. 2022, 26, 1103–1122. [Google Scholar] [CrossRef]
- Korkut, E.H.; Surer, E. Visualization in virtual reality: A systematic review. Virtual Real. 2023, 27, 1447–1480. [Google Scholar] [CrossRef]
- Dachselt, R. Action Spaces-A Metaphorical Concept to Support Navigation and Interaction in 3D User Interfaces. Available online: https://www.researchgate.net/publication/2415437_Action_Spaces_-_A_Metaphorical_Concept_to_Support_Navigation_and_Interaction_in_3D_Interfaces (accessed on 19 June 2000).
- Dede, C. Immersive interfaces for engagement and learning. Science 2009, 323, 66–69. [Google Scholar] [CrossRef]
- Dachselt, R.; Hübner, A. Three-dimensional menus: A survey and taxonomy. Comput. Graph. 2007, 31, 53–65. [Google Scholar] [CrossRef]
- Olsson, A. Virtual Reality Menu Structures: How 2D and 3D Menus Affect the User Experience in a Virtual Game Environment. Bachelor’s Thesis, Linnaeus University, Kalmar, Sweden, 2022. [Google Scholar]
- Oprea, S.; Martinez-Gonzalez, P.; Garcia-Garcia, A.; Castro-Vargas, J.A.; Orts-Escolano, S.; Garcia-Rodriguez, J. A visually realistic grasping system for object manipulation and interaction in virtual reality environments. Comput. Graph. 2019, 83, 77–86. [Google Scholar] [CrossRef]
- Trichopoulos, G.; Aliprantis, J.; Konstantakis, M.; Caridakis, G. ARTISTS: A virtual Reality culTural experIence perSonalized arTworks System: The “Children Concert” painting case study. In Proceedings of the International Conference on Digital Culture & AudioVisual Challenges (DCAC-2018), Corfu, Greece, 1 –2 June 2018. [Google Scholar]
- Yue, G. 3D User Interface in Virtual Reality. In Proceedings of the International Conference on Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2021; pp. 418–423. [Google Scholar]
- Jansen, B.J. The Graphical User Interface. SIGCHI Bull. 1998, 30, 22–26. [Google Scholar] [CrossRef]
- Fitts, P.M. The information capacity of the human motor system in controlling the amplitude of movement. J. Exp. Psychol. 1954, 47, 381. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.; Kruijff, E.; LaViola, J.J., Jr.; Poupyrev, I. 3D User Interfaces: Theory and Practice, CourseSmart eTextbook; Addison-Wesley: Boston, MA, USA, 2004. [Google Scholar]
- Bowman, D.A.; Fröhlich, B.; Kitamura, Y.; Stuerzlinger, W. New directions in 3D user interfaces. Int. J. Virtual Real. 2006, 5, 3–14. [Google Scholar] [CrossRef]
- Liang, J.; Green, M. JDCAD: A highly interactive 3D modeling system. Comput. Graph. 1994, 18, 499–506. [Google Scholar] [CrossRef]
- Teylingen, R.V.; Ribarsky, W.; Mast, C.D.V. Virtual data visualizer. IEEE Trans. Vis. Comput. Graph. 1997, 3, 65–74. [Google Scholar] [CrossRef]
- Bowman, D.A.; Wingrave, C.A. Design and evaluation of menu systems for immersive virtual environments. In Proceedings of the IEEE Virtual Reality 2001, Yokohama, Japan, 13–17 March 2001. [Google Scholar] [CrossRef]
- Mine, M.R. Virtual Environment Interaction Techniques; Technical Report for University of North Carolina at Chapel Hill: Chapel Hill, NC, USA, 1995. [Google Scholar]
- Gerber, D.; Bechmann, D. The spin menu: A menu system for virtual environments. In IEEE Virtual Reality 2005; IEEE Computer Society: Washington, DC, USA, 2005. [Google Scholar] [CrossRef]
- Mine, M.R.; Brooks, F.P.; Sequin, C.H. Moving objects in space: Exploiting proprioception in virtual-environment interaction. In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, CA, USA, 3–8 August 1997. [Google Scholar] [CrossRef]
- Salthouse, T.A. Effects of age and skill in typing. J. Exp. Psychol. Gen. 1984, 113, 345. [Google Scholar] [CrossRef]
- Boletsis, C.; Kongsvik, S. Controller-based text-input techniques for virtual reality: An empirical comparison. Int. J. Virtual Real. (Ijvr) 2019, 19. [Google Scholar] [CrossRef]
- Wang, J.; Lindeman, R.W. Object impersonation: Towards effective interaction in tablet-and HMD-based hybrid virtual environments. In Proceedings of the 2015 IEEE Virtual Reality (VR), Provence, France, 23–27 March 2015; pp. 111–118. [Google Scholar]
- Afonso, L.; Dias, P.; Ferreira, C.; Santos, B.S. Effect of hand-avatar in a selection task using a tablet as input device in an immersive virtual environment. In Proceedings of the 2017 IEEE Symposium on 3D User Interfaces (3DUI), Los Angeles, CA, USA, 18–19 March 2017; pp. 247–248. [Google Scholar]
- Pan, J.; Weng, D.; Mo, J. Object Manipulation: Interaction for Virtual Reality on Multi-touch Screen. In Proceedings of the 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Beijing, China, 10–18 October 2019; pp. 280–284. [Google Scholar]
- Besançon, L.; Ynnerman, A.; Keefe, D.F.; Yu, L.; Isenberg, T. The state of the art of spatial interfaces for 3D visualization. In Proceedings of the Computer Graphics Forum; Wiley Online Library: Hoboken, NJ, USA, 2021; Volume 40, pp. 293–326. [Google Scholar]
- Sun, Q.; Lin, J.; Fu, C.W.; Kaijima, S.; He, Y. A multi-touch interface for fast architectural sketching and massing. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, France, 27 April–2 May 2013; pp. 247–256. [Google Scholar]
- Fu, C.W.; Goh, W.B.; Ng, J.A. Multi-touch techniques for exploring large-scale 3D astrophysical simulations. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Atlanta, GA, USA, 10–15 April 2010; pp. 2213–2222. [Google Scholar]
- Chen, K.; Lee, E. A two-point map-based interface for architectural walkthrough. In Proceedings of the 2019 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct), Beijing, China, 10–18 October 2019; pp. 136–137. [Google Scholar]
- Kazi, R.H.; Chua, K.C.; Zhao, S.; Davis, R.; Low, K.L. SandCanvas: A multi-touch art medium inspired by sand animation. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 7–12 May 2011; pp. 1283–1292. [Google Scholar]
- Bowman, D.A.; Kruijff, E.; LaViola, J.J.; Poupyrev, I. An introduction to 3-D user interface design. Presence 2001, 10, 96–108. [Google Scholar] [CrossRef]
- Reyes-Lecuona, A.; Diaz-Estrella, A. New interaction paradigms in virtual environments. In Proceedings of the MELECON 2006-2006 IEEE Mediterranean Electrotechnical Conference, Benalmádena (Málaga), Spain, 16–19 May 2006; pp. 449–452. [Google Scholar]
- Weiß, Y.; Hepperle, D.; Sieß, A.; Wölfel, M. What user interface to use for virtual reality? 2d, 3d or speech—A user study. In Proceedings of the 2018 International Conference on Cyberworlds (CW), Singapore, 3–5 October 2018; pp. 50–57. [Google Scholar]
- Hepperle, D.; Weiß, Y.; Siess, A.; Wölfel, M. 2D, 3D or speech? A case study on which user interface is preferable for what kind of object interaction in immersive virtual reality. Comput. Graph. 2019, 82, 321–331. [Google Scholar] [CrossRef]
- Wagner, J.; Stuerzlinger, W.; Nedel, L. Comparing and combining virtual hand and virtual ray pointer interactions for data manipulation in immersive analytics. IEEE Trans. Vis. Comput. Graph. 2021, 27, 2513–2523. [Google Scholar] [CrossRef]
- Grossman, T.; Balakrishnan, R. Pointing at trivariate targets in 3D environments. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vienna, Austria, 24–29 April 2004; pp. 447–454. [Google Scholar]
- Song, P.; Goh, W.B.; Hutama, W.; Fu, C.W.; Liu, X. A handle bar metaphor for virtual object manipulation with mid-air interaction. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Austin, TX, USA, 5–10 May 2012; pp. 1297–1306. [Google Scholar]
- Caputo, F.M.; Emporio, M.; Giachetti, A. The smart pin: A novel object manipulation technique for immersive virtual environments. In Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology, Gothenburg, Sweden, 8–10 November 2017; pp. 1–2. [Google Scholar]
- Gloumeau, P.C.; Stuerzlinger, W.; Han, J. Pinnpivot: Object manipulation using pins in immersive virtual environments. IEEE Trans. Vis. Comput. Graph. 2020, 27, 2488–2494. [Google Scholar] [CrossRef]
- Mendes, D.; Relvas, F.; Ferreira, A.; Jorge, J. The benefits of dof separation in mid-air 3d object manipulation. In Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology, Munich, Germany, 2–4 November 2016; pp. 261–268. [Google Scholar]
- Lee, C.Y.; Hsieh, W.A.; Brickler, D.; Babu, S.V.; Chuang, J.H. Design and empirical evaluation of a novel near-field interaction metaphor on distant object manipulation in vr. In Proceedings of the 2021 ACM Symposium on Spatial User Interaction, Virtual Event, 9–10 November 2021; pp. 1–11. [Google Scholar]
- Darken, R.P.; Sibert, J.L. Wayfinding strategies and behaviors in large virtual worlds. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Vancouver, BC, Canada, 13–18 April 1996. [Google Scholar] [CrossRef]
- Kamal, A.; Andujar, C. Designing, testing and adapting navigation techniques for the immersive web. Comput. Graph. 2022, 106, 66–76. [Google Scholar] [CrossRef]
- Tan, T.J.; Teng, D.K.P.; Ng, Y.Y.; Chen, K.; Lee, J.S.A. Towards Decontamination Facility Training in VR. In Proceedings of the AAAI Symposium Series; Association for the Advancement of Artificial Intelligence: Palo Alto, CA, USA, 2023; Volume 1, pp. 28–30. [Google Scholar]
- Al Zayer, M.; MacNeilage, P.; Folmer, E. Virtual Locomotion: A Survey. IEEE Trans. Vis. Comput. Graph. 2020, 26, 2315–2334. [Google Scholar] [CrossRef] [PubMed]
- Montano Murillo, R.A.; Gatti, E.; Oliver Segovia, M.; Obrist, M.; Molina Masso, J.P.; Martinez Plasencia, D. NaviFields: Relevance fields for adaptive VR navigation. In Proceedings of the 30th Annual ACM Symposium on User Interface Software and Technology, Québec City, QC, Canada, 22–25 October 2017; pp. 747–758. [Google Scholar]
- Alghofaili, R.; Sawahata, Y.; Huang, H.; Wang, H.C.; Shiratori, T.; Yu, L.F. Lost in style: Gaze-driven adaptive aid for vr navigation. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK, 4–9 May 2019; pp. 1–12. [Google Scholar]
- Hanson, A.J.; Wernert, E.A. Constrained 3D navigation with 2D controllers. In Proceedings of the Visualization’97 (Cat. No. 97CB36155), Phoenix, AZ, USA, 24–24 October 1997; pp. 175–182. [Google Scholar]
- Bedwell, W.L.; Pavlas, D.; Heyne, K.; Lazzara, E.H.; Salas, E. Toward a taxonomy linking game attributes to learning: An empirical study. Simul. Gaming 2012, 43, 729–760. [Google Scholar] [CrossRef]
- Li, X.; Zheng, C.; Pan, Z.; Huang, Z.; Niu, Y.; Wang, P.; Geng, W. Comparative Study on 2D and 3D User Interface for Eliminating Cognitive Loads in Augmented Reality Repetitive Tasks. Int. J. Hum.–Comput. Interact. 2023, 1–17. [Google Scholar] [CrossRef]
- Sun, J.; Stuerzlinger, W.; Riecke, B.E. Comparing input methods and cursors for 3D positioning with head-mounted displays. In Proceedings of the 15th ACM Symposium on Applied Perception, SAP ’18, Vancouver, BC, Canada, 10–11 August 2018. [Google Scholar] [CrossRef]
Menu | Select or logically browse through a list of options or commands. |
Typing | Add, edit or delete texts for textural interaction. |
Point | Point at on-screen (2D) or virtual (3D) elements through ray or virtual hand. Discussed in 3D. |
Surface | Manipulate virtual objects in a 2D context like (axis-aligned) dragging or rotating (additional touches for 3D). Discussed in 2D |
Grasp | Manipulate virtual objects in a 3D context. |
Indirect | Manipulate virtual objects indirectly through handles and mappings. |
Navigation | Control the virtual cameras. |
Hierarchical Nature | Structural Layout |
---|---|
Temporary Option Menus | List, Rings, Matrix, Geometric structure |
Single Menus | List, Rings, Matrix, Geometric structure, Free layout |
Menu Systems | List, Rings, Geometric structure |
Menu Hierarchies | List, Rings, Geometric structure, Free layout |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yeo, A.; Kwok, B.W.J.; Joshna, A.; Chen, K.; Lee, J.S.A. Entering the Next Dimension: A Review of 3D User Interfaces for Virtual Reality. Electronics 2024, 13, 600. https://doi.org/10.3390/electronics13030600
Yeo A, Kwok BWJ, Joshna A, Chen K, Lee JSA. Entering the Next Dimension: A Review of 3D User Interfaces for Virtual Reality. Electronics. 2024; 13(3):600. https://doi.org/10.3390/electronics13030600
Chicago/Turabian StyleYeo, Adriel, Benjamin W. J. Kwok, Angelene Joshna, Kan Chen, and Jeannie S. A. Lee. 2024. "Entering the Next Dimension: A Review of 3D User Interfaces for Virtual Reality" Electronics 13, no. 3: 600. https://doi.org/10.3390/electronics13030600
APA StyleYeo, A., Kwok, B. W. J., Joshna, A., Chen, K., & Lee, J. S. A. (2024). Entering the Next Dimension: A Review of 3D User Interfaces for Virtual Reality. Electronics, 13(3), 600. https://doi.org/10.3390/electronics13030600