Improved Carrier-Based Modulation for the Single-Phase T-Type qZ Source Inverter
Abstract
:1. Introduction
- A new modulation strategy applied to the single-phase quasi-Z source three-level T-Type VSI is presented, allowing for an important improvement in the output current and voltage THD when compared with the existent modulation strategies;
- The introduction of a strategy to minimize the number of switching states during transitions without affecting the output voltage distortion, while decreasing switching losses;
- The new modulation strategy also reduces the ripple within the converter input current when compared with the existent modulation strategies;
2. T-Type Single-Phase Quasi-Z Inverter
3. Proposed Improved Sinusoidal Pulse-Width Modulation Strategy
4. Comparative Study
5. Simulation Results
6. Experimental Results
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
VSI | Voltage Source Inverters |
qZS | Quasi-Z Source |
DC | Direct Current |
AC | Alternating Current |
SBC | Simple boost Control |
MBS | Maximum Boost Control |
MCBC | Maximum Constant Boost Control |
NPC | Neutral Point Clamped |
UST | Upper Shoot-Through |
LST | Lower Shoot-Through |
SVM | Space Vector Modulation |
EMI | Electromagnetic Interference |
PV | Photovoltaic Panels |
DS | Duty Cycle |
SPWM | Sinusoidal Pulse With Modulation |
PWM | Pulse With Modulation |
RMS | Root Mean Square |
THD | Total Harmonic Distortion |
Vi | Input Voltage |
Vo | Output Voltage |
VL | Inductor Voltage |
VC | Capacitor Voltage |
Io | Output Current |
IL | Inductor Current |
IC | Capacitor Current |
Si | Semiconductor Switch |
f | Switching Frequency |
IU | Upper Current |
IL | Lower Current |
References
- Jamal, I.; Elmorshedy, M.F.; Dabour, S.M.; Rashad, E.M.; Xu, W.; Almakhles, D.J. A Comprehensive Review of Grid-Connected PV Systems Based on Impedance Source Inverter. IEEE Access 2022, 10, 89101–89123. [Google Scholar] [CrossRef]
- Yadav, A.; Chandra, S.; Bajaj, M.; Sharma, N.K.; Ahmed, E.M.; Kamel, S. A Topological Advancement Review of Magnetically Coupled Impedance Source Network Configurations. Sustainability 2022, 14, 3123. [Google Scholar] [CrossRef]
- Husev, O.; Shults, T.; Vinnikov, D.; Roncero-Clemente, C.; Romero-Cadaval, E.; Chub, A. Comprehensive Comparative Analysis of Impedance-Source Networks for DC and AC Application. Electronics 2019, 8, 405. [Google Scholar] [CrossRef]
- Siwakoti, Y.P.; Peng, F.Z.; Blaabjerg, F.; Loh, P.C.; Town, G.E. Impedance-Source Networks for Electric Power Conversion Part I: A Topological Review. IEEE Trans. Power Electron. 2015, 30, 699–716. [Google Scholar] [CrossRef]
- Ellabban, O.; Abu-Rub, H. Z-Source Inverter: Topology Improvements Review. IEEE Ind. Electron. Mag. 2016, 10, 6–24. [Google Scholar] [CrossRef]
- Reddiprasad, R.; Debashisha, J. A Correlative Investigation of Impedance Source Networks: A Comprehensive Review. IETE Tech. Rev. 2022, 39, 506–539. [Google Scholar] [CrossRef]
- Subhani, N.; Kannan, R.; Mahmud, A.; Blaabjerg, F. Z-source inverter topologies with switched Z-impedance networks: A review. IET Power Electron. 2021, 14, 727–750. [Google Scholar] [CrossRef]
- Chub, A.; Vinnikov, D.; Blaabjerg, F.; Peng, F.Z. A Review of Galvanically Isolated Impedance-Source DC–DC Converters. IEEE Trans. Power Electron. 2016, 31, 2808–2828. [Google Scholar] [CrossRef]
- Anderson, J.; Peng, F.Z. Four quasi-Z-Source inverters. In Proceedings of the 2008 IEEE Power Electronics Specialists Conference, Rhodes, Greece, 15–19 June 2008; pp. 2743–2749. [Google Scholar] [CrossRef]
- Dabour, S.M.; El-hendawy, N.; Aboushady, A.A.; Farrag, M.E.; Rashad, E.M. A Comprehensive Review on Common-Mode Voltage of Three-Phase Quasi-Z Source Inverters for Photovoltaic Applications. Energies 2023, 16, 269. [Google Scholar] [CrossRef]
- Ahangarkolaei, J.M.; Izadi, M.; Nouri, T. Applying a Sliding Mode Controller to Maximum Power Point Tracking in a Quasi Z-Source Inverter Based on the Power Curve of a Photovoltaic Cell. Electronics 2022, 11, 2164. [Google Scholar] [CrossRef]
- Grgić, I.; Vukadinović, D.; Bašić, M.; Bubalo, M. Photovoltaic System with a Battery-Assisted Quasi-Z-Source Inverter: Improved Control System Design Based on a Novel Small-Signal Model. Energies 2022, 15, 850. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Li, X.; Yuan, H.; Xue, Y. Model Predictive Control-Based Dual-Mode Operation of an Energy-Stored Quasi-Z-Source Photovoltaic Power System. IEEE Trans. Ind. Electron. 2023, 70, 9169–9180. [Google Scholar] [CrossRef]
- Hu, S.; Liang, Z.; Zhou, J.; Yu, X. Optimal Energy Efficiency Tracking in the Energy-Stored Quasi-Z-Source Inverter. Energies 2020, 13, 5902. [Google Scholar] [CrossRef]
- Pires, V.F.; Foito, D.; Cordeiro, A. Three-phase qZ-source inverter with fault tolerant capability. IET Power Electron. 2017, 10, 1852–1858. [Google Scholar] [CrossRef]
- Sharma, V.; Hossain, M.J.; Mukhopadhyay, S. Fault-Tolerant Operation of Bidirectional ZSI-Fed Induction Motor Drive for Vehicular Applications. Energies 2022, 15, 6976. [Google Scholar] [CrossRef]
- Sonandkar, S.; Selvaraj, R.; Chelliah, T.R. Fault Tolerant Capability of Battery Assisted Quasi-Z-Source Inverter Fed Five Phase PMSM Drive for Marine Propulsion Applications. In Proceedings of the IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), Jaipur, India, 16–19 December 2020; pp. 1–6. [Google Scholar] [CrossRef]
- Siwakoti, Y.P.; Peng, F.Z.; Blaabjerg, F.; Loh, P.C.; Town, G.E.; Yang, S. Impedance-Source Networks for Electric Power Conversion Part II: Review of Control and Modulation Techniques. IEEE Trans. Power Electron. 2015, 30, 1887–1906. [Google Scholar] [CrossRef]
- Panfilov, D.; Husev, O.; Blaabjerg, F.; Zakis, J.; Khandakji, K. Comparison of three-phase three-level voltage source inverter with intermediate dc–dc boost converter and quasi-Z-source inverter. IET Power Electron. 2016, 9, 1238–1248. [Google Scholar] [CrossRef]
- Annam, S.K.; Pongiannan, R.K.; Yadaiah, N. A Hysteresis Space Vector PWM for PV Tied Z-Source NPC-MLI with DC-Link Neutral Point Balancing. IEEE Access 2021, 9, 54420–54434. [Google Scholar] [CrossRef]
- Fernão Pires, V.; Cordeiro, A.; Foito, D.; Martins, J.F. Quasi-Z-Source Inverter With a T-Type Converter in Normal and Failure Mode. IEEE Trans. Power Electron. 2016, 31, 7462–7470. [Google Scholar] [CrossRef]
- Do, D.-T.; Nguyen, M.-K. Three-Level Quasi-Switched Boost T-Type Inverter: Analysis, PWM Control, and Verification. IEEE Trans. Ind. Electron. 2018, 65, 8320–8329. [Google Scholar] [CrossRef]
- Gutiérrez-Escalona, J.; Roncero-Clemente, C.; Husev, O.; Barrero-González, F.; Llor, A.M.; Pires, V.F. Three-Level T-Type qZ Source Inverter as Grid-Following Unit for Distributed Energy Resources. IEEE J. Emerg. Sel. Top. Power Electron. 2022, 10, 7772–7785. [Google Scholar] [CrossRef]
- Xie, L.; Yao, J. Common-Mode Voltage Reduction and Neutral Point Voltage Balance Modulation Technology of Quasi-Z-Source T-Type Three-Level Inverter. Electronics 2023, 11, 2203. [Google Scholar] [CrossRef]
- Gorgani, G.; Elbuluk, M.; Sozer, Y.; Rub, H.A. Quasi-Z-source-based multilevel inverter for single phase PV applications. In Proceedings of the 2016 IEEE Energy Conversion Congress and Exposition (ECCE), Milwaukee, WI, USA, 18–22 September 2016; pp. 1–7. [Google Scholar] [CrossRef]
- Trabelsi, M.; Abu-Rub, H.; Ge, B. 1-MW quasi-Z-source based multilevel PV energy conversion system. In Proceedings of the 2016 IEEE International Conference on Industrial Technology (ICIT), Taipei, Taiwan, 14–17 March 2016; pp. 224–229. [Google Scholar] [CrossRef]
- Liu, Y.; Abu-Rub, H.; Ge, B. Z-Source\/Quasi-Z-Source Inverters: Derived Networks, Modulations, Controls, and Emerging Applications to Photovoltaic Conversion. IEEE Ind. Electron. Mag. 2014, 8, 32–44. [Google Scholar] [CrossRef]
- Guo, F.; Fu, L.; Lin, C.-H.; Li, C.; Choi, W.; Wang, J. Development of an 85-kW Bidirectional Quasi-Z-Source Inverter With DC-Link Feed-Forward Compensation for Electric Vehicle Applications. IEEE Trans. Power Electron. 2013, 28, 5477–5488. [Google Scholar] [CrossRef]
- Mohammadi, M.; Moghani, J.S.; Milimonfared, J. A Novel Dual Switching Frequency Modulation for Z-Source and Quasi-Z-Source Inverters. IEEE Trans. Ind. Electron. 2018, 65, 5167–5176. [Google Scholar] [CrossRef]
- Loh, P.C.; Gao, F.; Blaabjerg, F.; Lim, S.W. Operational Analysis and Modulation Control of Three-Level Z-Source Inverters with Enhanced Output Waveform Quality. IEEE Trans. Power Electron. 2009, 24, 1767–1775. [Google Scholar] [CrossRef]
- Liu, Y.; Ge, B.; Abu-Rub, H.; Peng, F.Z. Overview of Space Vector Modulations for Three-Phase Z-Source/Quasi-Z-Source Inverters. IEEE Trans. Power Electron. 2014, 29, 2098–2108. [Google Scholar] [CrossRef]
- Li, X.; Qin, C.; Chu, Z. Novel Space Vector Modulation Method for the Quasi-Z-Source Asymmetrical Three-Level Inverter. IEEE Trans. Circuits Syst. II Express Briefs 2024, 71, 281–285. [Google Scholar] [CrossRef]
- Loh, P.C.; Gao, F.; Blaabjerg, F.; Feng, S.Y.C.; Soon, K.N.J. Pulsewidth-Modulated Z-Source Neutral-Point-Clamped Inverter. IEEE Trans. Ind. Appl. 2007, 43, 1295–1308. [Google Scholar] [CrossRef]
- Effah, F.B.; Wheeler, P.W.; Watson, A.J.; Clare, J.C. Quasi Z-source NPC inverter for PV application. In Proceedings of the IEEE PES PowerAfrica, Accra, Ghana, 27–30 June 2017; pp. 153–158. [Google Scholar] [CrossRef]
- Xing, X.; Zhang, C.; Chen, A.; He, J.; Wang, W.; Du, C. Space-Vector-Modulated Method for Boosting and Neutral Voltage Balancing in Z-Source Three-Level T-Type Inverter. IEEE Trans. Ind. Appl. 2016, 52, 1621–1631. [Google Scholar] [CrossRef]
- Barrero-González, F.; Roncero-Clemente, C.; Milanés-Montero, M.I.; González-Romera, E.; Romero-Cadaval, E.; Husev, O.; Pires, V.F. Improvements on the Carrier-Based Control Method for a Three-Level T-Type, Quasi-Impedance-Source Inverter. Electronics 2019, 8, 677. [Google Scholar] [CrossRef]
- Bayhan, S.; Trabelsi, M.; Ellabban, O.; Abu-Rub, H.; Balog, R.S. A five-level neutral-point-clamped/H-Bridge quasi-impedance source inverter for grid connected PV system. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, Italy, 23–26 October 2016; pp. 2502–2507. [Google Scholar] [CrossRef]
- Liu, P.; Xu, J.; Yang, Y.; Wang, H.; Blaabjerg, F. Impact of Modulation Strategies on the Reliability and Harmonics of Impedance-Source Inverters. IEEE J. Emerg. Sel. Top. Power Electron. 2020, 8, 3968–3981. [Google Scholar] [CrossRef]
- Hu, K.; Liu, Z.; Yang, Y.; Iannuzzo, F.; Blaabjerg, F. Ensuring a Reliable Operation of Two-Level IGBT-Based Power Converters: A Review of Monitoring and Fault-Tolerant Approaches. IEEE Access 2020, 8, 89988–90022. [Google Scholar] [CrossRef]
- Wu, R.; Wen, J.L.; Han, J.; Chen, Z.; Wei, Q.; Jia, N.; Wang, C. A Power Loss Calculation Method of IGBT Three-Phase SPWM Converter. In Proceedings of the 2012 Second International Conference on Intelligent System Design and Engineering Application, Sanya, China, 6–7 January 2012; pp. 1180–1183. [Google Scholar] [CrossRef]
Voltage Level | State of the Switches | Voltage Level with UTS or LTS ON | Switches Changing State with UTS or LTS ON | |||||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | S4 | S5 | S6 | |||
+2 V | 1 | 0 | 0 | 1 | 0 | 0 | +VPN/2 | S5 |
1 | 0 | 0 | 1 | 0 | 0 | +VPN/2 | S6 | |
+V | 1 | 0 | 0 | 0 | 0 | 1 | +VPN/2 | S4, S5, S6 |
0 | 0 | 0 | 1 | 1 | 0 | +VPN/2 | S1 | |
0 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | S2, S4, S5, S6 |
0 | 1 | 0 | 1 | 0 | 0 | 0 | S1, S3, S5, S6 | |
0 | 0 | 0 | 0 | 1 | 1 | 0 | S1, S2, S3, S4 | |
−V | 0 | 0 | 1 | 0 | 1 | 0 | −VPN/2 | S2 |
0 | 1 | 0 | 0 | 0 | 1 | −VPN/2 | S3, S5, S6 | |
−2 V | 0 | 1 | 1 | 0 | 0 | 0 | −VPN/2 | S6 |
0 | 1 | 1 | 0 | 0 | 0 | −VPN/2 | S5 |
Topologies | [31] | [32] | [33] | [34] | [Proposed] | |
---|---|---|---|---|---|---|
Items | ||||||
Application to the single-phase inverter | No | No | No | No | Yes | |
Application to the three-phase inverter | Yes | Yes | Yes | Yes | Yes | |
Improvement of switches transitions | No | No | No | No | Yes | |
Base modulation strategy | SVPWM | SVPWM | SVPWM | SBPWM | SBPWM | |
Reducing the ripple of the converter input current | NA | NA | NA | NA | Yes |
Parameter | Value |
---|---|
Input DC voltage | 200 V |
Capacitors C1 and C4 | 400 µF |
Capacitors C2 and C3 | 1000 µF |
Inductors L1, L2, L3 and L4 | 200 µH |
Inductor Load Lo | 10 mH |
Resistor Load Ro | 50 Ω |
Switching frequency | 5 kHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernão Pires, V.; Cordeiro, A.; Foito, D.; Roncero-Clemente, C.; Romero-Cadaval, E.; Silva, J.F. Improved Carrier-Based Modulation for the Single-Phase T-Type qZ Source Inverter. Electronics 2024, 13, 1113. https://doi.org/10.3390/electronics13061113
Fernão Pires V, Cordeiro A, Foito D, Roncero-Clemente C, Romero-Cadaval E, Silva JF. Improved Carrier-Based Modulation for the Single-Phase T-Type qZ Source Inverter. Electronics. 2024; 13(6):1113. https://doi.org/10.3390/electronics13061113
Chicago/Turabian StyleFernão Pires, Vitor, Armando Cordeiro, Daniel Foito, Carlos Roncero-Clemente, Enrique Romero-Cadaval, and José Fernando Silva. 2024. "Improved Carrier-Based Modulation for the Single-Phase T-Type qZ Source Inverter" Electronics 13, no. 6: 1113. https://doi.org/10.3390/electronics13061113
APA StyleFernão Pires, V., Cordeiro, A., Foito, D., Roncero-Clemente, C., Romero-Cadaval, E., & Silva, J. F. (2024). Improved Carrier-Based Modulation for the Single-Phase T-Type qZ Source Inverter. Electronics, 13(6), 1113. https://doi.org/10.3390/electronics13061113