Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases
Abstract
:1. Introduction
2. Microbial Population and Obesity
- −
- The production of metabolites (the fermentation of complex carbohydrates leads to the production of short-chain fatty acids /SCFA/ and other lipogenic precursors that are necessary in many cellular processes and metabolic pathways, in the improvement of intestinal barrier function and regulation of the immune system and inflammatory reactions) [14];
- −
- The metabolic organ (with enzymatic properties that improve or replace our own, such as the ability to degrade the resistant dietary or host-derived glycans that pass through the distal intestine, can control the bile acid metabolism and contribute to the induction/protection against metabolic endotoxemia) [15];
- −
- The vitamin production (microbiota synthetizes the essential vitamins B12 and K that humans cannot produce, their dysregulation leads to metabolic pathologies, such as obesity and diabetes mellitus 2) [16];
- −
- The influence on the epithelial homeostasis (microbiota suppors the epithelial integrity by influencing the epithelial cell turnover and modulating the mucus properties) [17];
- −
- The development of the immune system (defense of the intestinal mucosa and the systemic immune system are modulated by microbiota, which leads to greater protection against infections and inflammatory diseases) [17];
- −
- The impact on pathogen colonization (microbiota compete with pathogens for the attachement sites and nutrients, and produces the antimicrobials) [18].
Short-Chain Fatty Acids
3. Synbiotics, Type of Synbiotics, Synbiotic Action
- (1)
- synergistic synbiotics—synbiotics in which the substrate is proposed to be used selectively by the co-administered microorganism(s).
- (2)
- complementary synbiotics—synbiotics composed of a probiotic in combination with a prebiotic, that is intended for targeting the autochthonous microorganisms [49].
- (1)
- The effects through the improved viability of probiotic microorganisms.
- (2)
- The effects by providing specific actions on health.
Synbiotic Functional Foods for Targeting Obesity
4. Conclusions
Funding
Conflicts of Interest
References
- Simonnet, A.; Chetboun, M.; Poissy, J.; Raverdy, V.; Noulette, J.; Duhamel, A.; Labreuche, J.; Mathieu, D.; Pattou, F.; Jourdain, M.; et al. High prevalence of obesity in severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obesity 2020, 28, 1195–1199. [Google Scholar] [CrossRef] [PubMed]
- Bray, G.A.; Kim, K.K.; Wilding, J. on behalf of the World Obesity Federation: Obesity: A chronic relapsing progressive disease process. A position statement of the World Obesity Federation. Obes. Rev. 2017, 18, 715–723. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obesity and Overweight. Available online: https://www.who.int/en/news-room/fact-sheets/detail/obesity-and-overweight (accessed on 7 November 2019).
- Isolauri, E. Microbiota and Obesity. In Intestinal Microbiome: Functional Aspects in Health and Disease; Nestle Nutrition Institute Workshop Series; Karger Publishers: Basel, Switzerland, 2017; Volume 18, pp. 95–106. ISSN 1664-2147. [Google Scholar]
- OECD/European Observatory on Health Systems and Policies. Slovensko: Zdravotný Profil Krajiny 2019; State of Health in the EU, OECD Publishing: Paris, France; European Observatory on Health Systems and Policies: Brusel, Belgium, 2019; 24p. [Google Scholar] [CrossRef]
- Ley, R.E.; Turnbaugh, P.J.; Klein, S.; Gordon, J.I. Microbial ecology: Human gut microbes associated with obesity. Nature 2006, 444, 1022–1023. [Google Scholar] [CrossRef] [PubMed]
- Turnbaugh, P.J.; Ley, R.E.; Mahowald, M.A.; Magrini, V.; Mardis, E.R.; Gordon, J.I. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 2006, 444, 1027–1031. [Google Scholar] [CrossRef]
- Kobyliak, N.; Conte, C.; Cammarota, G.; Haley, A.P.; Styriak, I.; Gaspar, L.; Kruzliak, P. Probiotics in prevention and treatment of obesity: A critical view. Nutrit. Metab. 2016, 13, 14. [Google Scholar] [CrossRef] [Green Version]
- Al-Assal, K.; Martinez, A.C.; Torrinhas, R.S.; Cardinelli, C.; Waitzberg, D. Gut microbiota and obesity. Clin. Nutr. Exp. 2018, 20, 60–64. [Google Scholar] [CrossRef] [Green Version]
- Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.L. The Human Microbiome Project. Nature 2007, 449, 804–810. [Google Scholar] [CrossRef]
- Nash, A.K.; Auchtung, T.A.; Wong, M.C.; Smith, D.P.; Gesell, J.R.; Ross, M.C.; Stewart, C.J.; Metcalf, G.A.; Muzny, D.M.; Gibbs, R.A.; et al. The gut mycobiome of the Human Microbiome Project healthy cohort. Microbiome 2017, 5, 153. [Google Scholar] [CrossRef]
- Abenavoli, L.; Scarpellini, E.; Colica, C.; Buccuto, L.; Salehi, B.; Sharifi-Rad, J.; Aiello, V.; Romano, B.; DeLorenzo, A.; Izzo, A.A.; et al. Gut microbiota and obesity: A role for probiotics. Nutrients 2019, 11, 2690. [Google Scholar] [CrossRef] [Green Version]
- Gao, R.; Zhu, C.; Li, H.; Yin, M.; Pan, C.; Huang, L.; Kong, C.; Wang, X.; Zhang, Y.; Qu, S.; et al. Dysbiosis signatures of gut microbiota along the sequence from healthy, young patients to those with overweight and obesity. Obesity 2018, 26, 351–361. [Google Scholar] [CrossRef]
- Hijová, E.; Chmelárová, A. Short chain fatty acids and colonic health. Bratisl. Med. J. 2007, 108, 354–358. [Google Scholar]
- Cunnigham, A.L.; Stephens, J.W.; Harris, D.A. A review on gut microbiota: A central factor in the pathophysiology of obesity. Lipids Health Dis. 2021, 20, 65. [Google Scholar] [CrossRef] [PubMed]
- Voland, L.; Le Roy, T.; Debédat, J.; Clément, K. Gut microbiome and vitamin status in persons with obesity: A key interplay. Obes. Rev. 2022, 23, e13377. [Google Scholar] [CrossRef] [PubMed]
- Riedel, S.; Pheiffer, C.; Johnson, R.; Louw, J.; Muller, C.J.F. Intestinal barrier Function and immune homeostasis are missing links in obesity and type 2 diabetes development. Front. Endocrinol. 2022, 12, 833544. [Google Scholar] [CrossRef] [PubMed]
- Brusaferro, A.; Cozzali, R.; Orabona, C.; Biscarini, A.; Farinelli, E.; Cavalli, E.; Grohmann, U.; Principi, N.; Esposito, S. Is it time to use probiotics to prevent or treat obesity? Nutrients 2018, 10, 1613. [Google Scholar] [CrossRef] [Green Version]
- Bäckhed, F.; Ding, H.; Wang, T.; Hooper, L.V.; Koh, G.Y.; Nagy, A.; Semenkovich, C.F.; Gordon, J.I. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl. Acad. Sci. USA 2004, 101, 15718. [Google Scholar] [CrossRef] [Green Version]
- Ridaura, V.K.; Faith, J.J.; Rey, F.E.; Cheng, J.; Duncan, A.E.; Kau, A.L.; Griffin, N.W.; Lombard, V.; Henrissat, B.; Bain, J.R.; et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science 2013, 341, 1241214. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Choi, H.N.; Yim, J.E. Effect of diet on the gut microbiota associated with obesity. J. Obes. Metab. Syndr. 2019, 28, 216–224. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.; Sun, T.; He, Y.; Gou, W.; Zuo, L.; Fu, Y.; Miao, Z.; Shuai, M.; Xu, F.; Xiao, C.; et al. Dietary fruit and vegeteble intake, gut microbiota, and type 2 diabetes: Results from two large human cohort studies. BMC Medicine 2020, 18, 371. [Google Scholar] [CrossRef]
- Vallianou, N.; Stratigou, T.; Christodoulatos, G.S.; Dalamaga, M. Understanding the role of the gut microbiome and microbial metabolites in obesity and obesity-associated metabolic disorders: Current evidence and perspectives. Curr. Obes. Rep. 2019, 8, 317–332. [Google Scholar] [CrossRef]
- Yang, J.; Li, Y.; Wen, Z.; Liu, W.; Meng, L.; Huang, H. Oscillospira-a candidate for the next-generation probiotics. Gut Microbes 2021, 13, e1987783. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.K.; Chang, H.W.; Yan, D.; Lee, K.M.; Ucmak, D.; Wong, K.; Abrouk, M.; Farahnik, B.; Nakamura, M.; Zhu, T.H.; et al. Influence of diet on the gut microbiome and implications for human health. J. Transl. Med. 2017, 15, 73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dao, M.C.; Everard, A.; Aron-Wisnewsky, J.; Sokolovska, N.; Prifti, E.; Verger, E.O.; Kayser, B.D.; Levenez, F.; Chilloux, J.; Hoyles, L.; et al. Akkermansia municiphila and improved metabolic health during a dietary intervention in obesity: Relationship with gut microbiome richness and ecology. Gut 2016, 65, 426–436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hibberd, A.A.; Yde, C.C.; Ziegler, M.L.; Honoré, A.H.; Saarinen, M.T.; Lahtinen, S.; Stahl, B.; Jensen, H.M.; Stenman, L.K. Probiotic or synbiotic alters the gut microbiota and metabolism in a randomised controlled trial of weight management in overweight adults. Benef. Microbes 2019, 10, 121–135. [Google Scholar] [CrossRef]
- Hippe, B.; Remely, M.; Aumueller, E.; Pointner, A.; Magnet, U.; Haslberger, A.G. Faecalibacterium prausnitzii phylotypes in type two diabetic, obese, and lean control subjects. Benef. Microbes 2016, 7, 511–517. [Google Scholar] [CrossRef] [PubMed]
- Remely, M.; Tesar, I.; Hippe, B.; Gnauer, S.; Rust, P.; Haslberger, A.G. Gut microbiota composition correlates with changes in body fat content due to weigh loss. Benef. Microbes 2015, 6, 431–439. [Google Scholar] [CrossRef]
- Alemán, J.O.; Bokulich, N.A.; Swann, J.R.; Walker, J.M.; De Rosa, J.C.; Battaglia, T.; Costtabile, A.; Pechlivanis, A.; Liang, Y.; Bresow, J.L.; et al. Fecal microbiota and bile acid interactions with systemic and adipose tissue metabolism in diet-induced weight loos of obese postmenopausal women. J. Transl. Med. 2018, 16, 244. [Google Scholar] [CrossRef]
- Zhao, Y.; Chen, F.; Wu, W.; Sun, M.; Bilotta, A.J.; Yao, S.; Xiao, Y.; Huang, X.; Eaves-Pyles, T.D.; Golovko, G.; et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3. Mucosal Immunol. 2018, 11, 752–762. [Google Scholar] [CrossRef] [Green Version]
- Moran-Ramos, S.; López-Contreras, B.E.; Canizales-Quinteros, S. Gut microbiota in obesity and metabolic abnormalities: A matter of composition or functionality? Arch. Med. Res. 2017, 48, 735–753. [Google Scholar] [CrossRef]
- Hijová, E. Gut bacterial metabolites of indigestible polysaccharides in intestinal fermentation as mediators of public health. Bratisl. Med. J. 2019, 120, 807–812. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; Gurav, A.; Sivaprakasam, S.; Brady, E.; Padia, R.; Shi, H.; Thangaraju, M.; Prasad, P.D.; Manicassamy, S.; Munn, D.H.; et al. Activation of Gpr109a, receptor for niacin and the commensal metabolite butyrate, suppresses colonic inflammation and carcinogenesis. Immunity 2014, 40, 128–139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, W.; Ao, H.; Peng, C. Gut microbiota, short-chain fatty acids, and herbal medicines. Front. Pharmacol. 2018, 9, 1354. [Google Scholar] [CrossRef] [PubMed]
- Coppola, S.; Avagliano, C.; Calignano, A.; Canani, R.B. The protective role of butyrate against obesity and obesity-related diseases. Molecules 2021, 26, 682. [Google Scholar] [CrossRef] [PubMed]
- Chambers, E.S.; Viardot, A.; Psichas, A.; Morrison, D.J.; Murphy, K.G.; Zac-Varghese, S.E.K.; MacDougall, K.; Preston, T.; Tedford, C.; Finlayson, G.S.; et al. Effects of targeted delivery of propionate to the human colon on appetite regulation, body weight maintenance and adiposity in overweight adults. Gut 2015, 64, 1744–1754. [Google Scholar] [CrossRef] [Green Version]
- Blaak, E.E.; Canfora, E.E.; Theis, S.; Frost, G.; Groen, A.K.; Mithieux, G.; Nauta, A.; Scott, K.; Stahl, B.; van Harseelaar, J.; et al. Short chain fatty acids in human gut and metabolic health. Benef. Microbes 2020, 11, 411–455. [Google Scholar] [CrossRef]
- Stanislawski, M.A.; Dabelea, D.; Wagner, B.D.; Iszatt, N.; Dahi, C.; Sontag, M.K.; Knight, R.; Lozupone, C.A.; Eggesbe, M. Gut microbiota in the first 2 years of life and the association with body mass index at age 12 in a Norwegian birth cohort. mBio 2018, 9, e01751-18. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Yang, J.; Qiu, X.; Wen, Q.; Liu, M.; Zhou, D.; Chen, Q. Probiotics, pre-biotics and synbiotics in the treatment of pre-diabetes: A systematic review of randomized controlled trials. Front. Public Health 2021, 9, 645035. [Google Scholar] [CrossRef]
- Amar, J.; Chabo, C.; Waget, A.; Klopp, P.; Vachoux, C.; Bermúdez-Humarán, L.G.; Smirnova, N.; Bergé, M.; Sulpice, T.; Lahtinen, S.; et al. Intestinal mucosal adherence and translocation of commensal bacteria at the early onset of type 2 diabetes: Molecular mechanisms and probiotic treatment. EMBO Mol. Med. 2011, 3, 559–572. [Google Scholar] [CrossRef]
- Chopyk, D.M.; Grakoui, A. Contribution of the intestinal microbiome and gut barrier to hepatic disorders. Gastroenterology 2020, 159, 549–563. [Google Scholar] [CrossRef]
- Everard, A.; Cani, P.D. Diabetes, obesity and gut microbiota. Best Pract. Res. Clin. Gastroenterol. 2013, 27, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Muccioli, G.G.; Naslain, D.; Bäckhed, F.; Reigstad, C.S.; Lambert, D.M.; Delzenne, N.M.; Cani, P.D. The endocannabinoid system links gut microbiota to adipogenesis. Mol. Syst. Biol. 2010, 6, 392. [Google Scholar] [CrossRef] [PubMed]
- Gibson, G.R.; Roberfroid, M.B. Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. J. Nutr. 1995, 125, 1401–1412. [Google Scholar] [CrossRef] [PubMed]
- Cencic, A.; Chingwaru, W. The role of functional foods, nutraceuticals, and food supplements in intestinal health. Nutrients 2010, 2, 611–625. [Google Scholar] [CrossRef] [PubMed]
- Bengmark, S. Bioecological control of the gastrointestinal tract: The role of flora and supplemented probiotics and synbiotics. Gastroenterol. Clin. North Am. 2005, 34, 413–436. [Google Scholar] [CrossRef]
- Panesar, P.S.; Kaur, G.; Panesar, R.; Bera, M.B. Synbiotics: Potential Dietary Supplements in Functional Foods; IFIS: Berkshire, UK, 2009. [Google Scholar] [CrossRef]
- Swanson, K.S.; Gibson, G.R.; Hutkins, R.; Reimer, R.A.; Reid, G.; Verbeke, K.; Scott, K.P.; Holscher, H.D.; Azad, M.B.; Delzenne, N.M.; et al. The international scientific association for probiotics and prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 687–701. [Google Scholar] [CrossRef]
- Scavuzzi, B.M.; Henrique, F.C.; Miglioranza, L.H.S.; Simão, A.N.C.; Dichi, I. Impact of prebiotics, probiotics and synbiotics on components of the metabolic syndrome. Ann. Nutr. Disord. Ther. 2014, 1, 1009. [Google Scholar]
- Gourbeyre, P.; Denery, S.; Bodinier, M. Probiotics, prebiotics, and synbiotics: Impact on the gut immune system and allergic reactions. J. Leukoc. Biol. 2011, 89, 685–695. [Google Scholar] [CrossRef]
- Olveira, G.; González-Molero, I. An update on probiotics, prebiotics and symbiotics in clinical nutrition. Endocrinol. Nutr. 2016, 63, 482–494. [Google Scholar] [CrossRef]
- Sáez-Lara, M.J.; Robles-Sanchez, C.; Ruiz-Ojeda, F.J.; Plaza-Diaz, J.; Gil, A. Effects of probiotics and synbiotics on obesity, insulin resistance syndrome, type 2 diabetes and non-alcoholic fatty liver disease: A review of human clinical trails. Int. J. Mol. Sci. 2016, 17, 928. [Google Scholar] [CrossRef] [Green Version]
- Sekhon, B.S.; Jairath, S. Prebiotics, probiotics and synbiotics: An overview. J. Pharm. Educ. Res. 2010, 1, 13–36. [Google Scholar]
- Manigandan, T.; Mangaiyarkarasi, S.P.; Hemaltha, R.; Hemaltha, V.T.; Murali, N.P. Probiotics, prebiotics and synbiotics—A review. Biomed. Pharmacol. J. 2012, 5, 295–304. [Google Scholar] [CrossRef]
- Rafter, J.; Bennett, M.; Caderni, G.; Clune, I.; Hughes, R.; Karlsson, P.C.; Klinder, A.; O’Riordan, M.; O’Sullivan, G.; Pool-Zobel, B.; et al. Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am. J. Clin. Nutr. 2007, 85, 488–496. [Google Scholar] [CrossRef] [PubMed]
- Danq, D.; Zhou, W.; Lun, Z.J.; Mu, X.; Wanq, D.X.; Wu, H. Meta-analysis of probiotics and/or prebiotics for the prevention of eczema. J. Int. Med. Res. 2013, 41, 1426–1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Markowiak, P.; Śliźewska, K. Effects of Probiotics, Prebiotics on Human Health. Nutrients 2017, 9, 1021. [Google Scholar] [CrossRef]
- Pandey, K.R.; Naik, S.R.; Babu, V.V. Probiotics, prebiotics and synbiotics—A review. J. Food Sci. Technol. 2015, 52, 7577–7587. [Google Scholar] [CrossRef]
- Safavi, M.; Farajian, S.; Kelishadi, R.; Mirlohi, M.; Hashemipour, M. The effects of synbiotic supplementation on some cardio metabolic risk factors in overweight and obese children: A randomized triple-masked controlled trial. Int. J. Food Sci. Nutr. 2013, 64, 687–693. [Google Scholar] [CrossRef]
- Ipar, N.; Aydogdu, S.D.; Yildirim, G.K.; Inal, M.; Gies, I.; Vandenplas, Y.; Dinleyici, E.C. Effects of symbiotic on anthropometry, lipid profile and oxidative stress in obese children. Benef. Microbes 2015, 6, 775–781. [Google Scholar] [CrossRef]
- Stenman, L.K.; Lehtinen, M.J.; Meland, N.; Christensen, J.E.; Yeung, N.; Saarinen, M.T.; Courtney, M.; Burcelin, R.; Lähdeaho, M.L.; Linros, J.; et al. Probiotic with or without fiber controls body fat mass, associated with serum zonulin, in overweight and obese adults-randomized controlled trial. EBioMedicine 2016, 13, 190–200. [Google Scholar] [CrossRef] [Green Version]
- Sanchez, M.; Darimont, C.; Drapeau, V.; Emady-Azar, S.; Lepage, M.; Rezzonico, E.; Ngom-Bru, C.; Berger, B.; Philippe, L.; Ammon-Zuffrey, C.; et al. Effect of Lactobacillus rhamnosus CGMCC1.3724 supplementation on weight loss and maintenance in obese men and women. Br. J. Nutr. 2014, 111, 1507–1519. [Google Scholar] [CrossRef] [Green Version]
- Hadi, A.; Sepandi, M.; Marx, W.; Moradi, S.; Parastouei, K. Clinical and psychological responses to synbiotic supplementation in obese or overweight adults: A randomized clinical trial. Complement Ther. Med. 2019, 47, 102216. [Google Scholar] [CrossRef]
- Parastouei, K.; Saedipoor, S.; Sepandi, M.; Abbaszadeh, S.; Taghdir, M. Effects of synbiotic supplementation on the components of metabolic syndrome in military personnel: A double-blind randomised controlled trial. BMJ Mil. Health 2020. [Google Scholar] [CrossRef] [PubMed]
- Sergeev, I.N.; Aljutaily, T.; Walton, G.; Huarte, E. Effects of synbiotic supplement on human gut microbiota, body composition and weight loss in obesity. Nutrients 2020, 12, 222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anggeraini, A.S.; Massi, M.N.; Hamid, F.; Ahmad, A.; As'ad, S.; Bukhari, A. Effects of synbiotic supplement on body weight and fasting blood glucose levels in obesity: A randomized placebo-controlled trial. Ann. Med. Surg. 2021, 68, 102548. [Google Scholar] [CrossRef] [PubMed]
- Rabiei, S.; Hedayati, M.; Rashidkhani, B.; Saadat, N.; Shakerhossini, R. The effects of synbiotic supplementation on body mass index, metabolic and inflammatory biomarkers, and appetite in patients with metabolic syndrome: A triple-blind randomized controlled trial. J. Diet. Suppl. 2019, 16, 294–306. [Google Scholar] [CrossRef]
- Angelino, D.; Martina, A.; Rosi, A.; Veronesi, L.; Antonini, M.; Mennella, I.; Vitaglione, P.; Grioni, S.; Brighenti, F.; Zavaroni, I.; et al. Glucose- and lipid-related biomarkers are affected in healthy obese or hyperglycemic adults consuming a whole-grain pasta enriched in prebiotics and probiotics: A 12-week randomized controlled trial. J. Nutr. 2019, 149, 1714–1723. [Google Scholar] [CrossRef]
- Eslamparast, T.; Zaman, F.; Hekmatdoost, A.; Sharafkhah, M.; Eghtesad, S.; Malekzadeh, R.; Poustchi, H. Effects of synbiotic supplementation on insulin resistance in subjects with the metabolic syndrome: A randomised, double-blind, placebo-controlled pilot study. Br. J. Nutr. 2014, 112, 438–445. [Google Scholar] [CrossRef]
- Asemi, Z.; Zohreh, Z.; Shakeri, H.; Sabihi, S.S.; Esmaillzadeh, A. Effect of multispecies probiotic supplements on metabolic profiles, hs-CRP, and oxidative stress in patients with type 2 diabetes. Ann. Nutr. Metab. 2013, 63, 1–9. [Google Scholar] [CrossRef]
- Asemi, Z.; Khorrami-Rad, A.; Alizadeh, S.A.; Shakeri, H.; Esmaillzadeh, A. Effects of synbiotic food consumption on metabolic status of diabetic patients: A double- blind randomized cross- over controlled clinical trial. Clin. Nutr. 2014, 33, 198–203. [Google Scholar] [CrossRef]
- Tajabadi-Ebrahimi, M.; Bahmani, F.; Shakeri, H.; Hadaegh, H.; Hijijafari, M.; Abedi, F.; Asemi, Z. Effects of daily consumption of synbiotic bread on insulin metabolism and serum high-sensitivity C-reactive protein among diabetic patients: A double-blind, randomized, controlled clinical trial. Ann. Nutr. Metab. 2014, 65, 34–41. [Google Scholar] [CrossRef]
- Tajabadi-Ebrahimi, M.; Sharifi, N.; Farrokhian, A.; Raygan, F.; Karamali, F.; Razzaghi, R.; Taheri, S.; Asemi, Z. A randomized controlled clinical trial investigating the effect of synbiotic administration on markers of insulin metabolism and lipid profiles in overweight type 2 diabetic patients with coronary heart disease. Exp. Clin. Endocrinol. Diabetes 2017, 125, 21–27. [Google Scholar] [CrossRef]
- Moroti, C.; Souza Magri, L.F.; Rezende-Costa, M.; Cavallini, D.; Sivieri, K. Effect of the consumption of a new symbiotic shake on glycemia and cholesterol levels in elderly people with type 2 diabetes mellitus. Lipids Health Dis. 2012, 11, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Soleimani, A.; Motamedzadeh, A.; Mojarrad, M.Z.; Bahmani, F.; Aminari, E.; Ostadmohammadi, V.; Tajabadi-Ebrahimi, M.; Asemi, Z. The effects of synbiotic supplementation on metabolic status in diabetic patients undergoing hemodialysis: A randomized, double-blind, placebo-controlled trial. Probiotics Antimicrob. Proteins 2019, 11, 1248–1256. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri, A.; Zarrati, M.; Shidfar, F.; Heydari, I.; Shoormasti, R.S.; Eslami, O. Effect of synbiotic bread containing lactic acid on glycemic indicators, biomarkers of antioxidant status and inflammation in patients with type 2 diabetes: A randomized controlled trial. Diabetol. Metab. Syndr. 2019, 11, 103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirmiranpour, H.; Huseini, H.F.; Derakhshanian, H.; Khodaii, Z.; Tavakoli-Far, B. Effects of probiotic, cinnamon, and synbiotic supplementation on glycemic control and antioxidant status in people with type 2 diabetes; a randomized, double-blind, placebo-controlled study. J. Diabet. Met. Disor. 2020, 19, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Shakeri, H.; Hadaegh, H.; Abedi, F.; Tajabadi-Ebrahimi, M.; Mazroii, N.; Ghandi, Y.; Asemi, Z. Consumption of synbiotic bread decreases triacylglycerol and VLDL levels while increasing HDL levels in serum from patients with type-2 diabetes. Lipids 2014, 49, 695–701. [Google Scholar] [CrossRef]
- Rabiei, S.; Shakerhosseini, R.; Saadat, N. The effects of symbiotic therapy on anthropometric measures, body composition and blood pressure in patient with metabolic syndrome: A triple blind RCT. Med. J. Islamic Republic Iran 2015, 29, 213. [Google Scholar]
- Kassaian, N.; Feizi, A.; Aminorroaya, A.; Amini, M. Probiotic and synbiotic supplementation could improve metabolic syndrome in prediabetic adults: A randomized controlled trial. Diabetes Metab. Syndr. 2019, 13, 2991–2996. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.G.; Fogacci, F.; Bove, M.; Giovannini, M.; Borghi, C. Impact of a short-term synbiotic supplementation on metabolic syndrome and systemic inflammation in elderly patients: A randomized placebo-controlled clinical trial. Eur. J. Nutr. 2021, 60, 655–663. [Google Scholar] [CrossRef]
- Kassaian, N.; Feizi, A.; Aminorroaya, A.; Jafari, P.; Ebrahimi, M.T.; Amini, M. The effects of probiotic and synbiotic supplementation on glucose and insulin metabolism in adults with prediabetes: A double-blind randomized clinical trial. Acta Diabetol. 2018, 55, 1019–1028. [Google Scholar] [CrossRef]
- Kassaian, N.; Feizi, A.; Aminorroaya, A.; Ebrahimi, M.T.; Norouzi, A.; Amini, M. Effects of probiotics and synbiotic on lipid profiles in adults at risk of type 2 diabetes: A double-blind randomized controlled clinical trial. Funct. Foods Health Dis. 2019, 9, 494–507. [Google Scholar] [CrossRef]
- Kassaian, N.; Feizi, A.; Rostami, S.; Aminorroaya, A.; Yaran, M.; Amini, M. The effects of 6 mo supplementation with probiotics and synbiotics on gut microbiota in the adults with prediabetes: A double blind randomized clinical trial. Nutrition 2020, 79–80, 110854. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Sánchez, M.A.; Herisson, F.M.; Cluzel, G.L.; Caplice, N.M. Metabolic syndrome and synbiotic targeting of the gut microbiome. Curr. Opin. Food Sci. 2021, 40, 60–69. [Google Scholar] [CrossRef]
- Ferrarese, R.; Ceresola, E.R.; Preti, A.; Canducci, F. Probiotics, prebiotics and synbiotics for weight loss and metabolic syndrome in the new era. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 7588–7605. [Google Scholar] [CrossRef] [PubMed]
- Xavier-Santos, D.; Bedani, R.; Lima, E.D.; Saad, S.M.I. Impact of probiotics and prebiotics targeting metabolic syndrome. J. Funct. Foods 2020, 64, 103666. [Google Scholar] [CrossRef]
- Liong, M.T.; Dunshea, F.R.; Shah, N.P. Effects of synbiotic containing Lactobacillus acidophilus ATCC 4962 on plasma lipid profiles and morphology of erythrocytes in hypercholesterolemic pigs on high- and low-fat diets. Br. J. Nutr. 2007, 98, 736–744. [Google Scholar] [CrossRef] [Green Version]
- Haghighat, N.; Mohammadshahi, M.; Shayanpour, S.; Haghighizadeh, M.H. Effect of synbiotic and probiotic supplementation on serum levels of endothelial cell adhesion molecules in hemodialysis patients: A randomized control study. Probiotic Antimicro. Proteins 2019, 11, 1210–1218. [Google Scholar] [CrossRef]
- Olas, B. Probiotics, Prebiotics and Synbiotics—A Promising Strategy in prevention and Treatment of Cardiovascular Diseases? Int. J. Mol. Sci. 2020, 21, 9737. [Google Scholar] [CrossRef]
- Green, M.; Arora, K.; Prakash, S. Microbial medicine: Prebiotic and probiotic functional foods to target obesity and metabolic syndrome. Int. J. Mol. Sci. 2020, 21, 2890. [Google Scholar] [CrossRef]
- Cerdó, T.; Garcia-Santos, J.A.; Bermúdez, M.G.; Campoy, C. The role of probiotics and prebiotics in the prevention and treatment of obesity. Nutrients 2019, 11, 635. [Google Scholar] [CrossRef] [Green Version]
- Kvakova, M.; Bertkova, I.; Stofilova, J.; Savidge, T.C. Co-Encapsulated synbiotics and Immobilized Probiotics in Human Health and Gut Microbiota Modulation. Foods 2021, 10, 1297. [Google Scholar] [CrossRef]
Domain | Phylum | Class | Order | Family | Genus |
---|---|---|---|---|---|
Bacteria | Bacteridetes | Bacteroidia | Bacteroidales | Bacteroidacee | Bacteroides |
Prevotellacee | Prevotella | ||||
Xylanibacter | |||||
Rikenellacee | Rikenella | ||||
Firmicutes | Clostridia | Clostridiales | Clostridiacee | Clostridium | |
Ruminococcae | Faecalibacterium | ||||
Ruminococcus | |||||
Peptostreptococcae | Peptostreptococcus | ||||
Fusibacter | |||||
Eubacteriacee | Eubacterium | ||||
Veillonellacee | Veillonella | ||||
Lachnospiraceae | Roseburia | ||||
Bacilli | Bacillales | Bacillaceae | Bacillus | ||
Lysteriaceae | Lysteria | ||||
Staphylococcaceae | Staphylococcus | ||||
Pasteuriaceae | Pasteuria | ||||
Lactobacillales | Lactobacillaceae | Lactobacillus | |||
Enterococcaceae | Enterococcus | ||||
Streptococcaceae | Streptococcus | ||||
Actinobacteria | Actinobacteria | Bifidobacteriales | Bifidobacteriaceae | Bifidobacterium | |
Gardnerella | |||||
Actinomycetales | Actinomycetaceae | Actinomyces | |||
Proteobacteria | Deltaproteobacteria | Desulfobacteriales | Desulfobulbaceae | Desulfovibrio | |
Gammaproteobacteria | Enterobacteriales | Enterobacteriaceae | Escherichia | ||
Enterobacter | |||||
Klebsiela | |||||
Proteus | |||||
Epsilonproteobacteria | Campylobacteriales | Campylobacteriaceae | Campylobacter | ||
Helycobacteriaceae | Helycobacter | ||||
Fusobacteria | Fusobacteria | Fusobacteriales | Fusobacteriaceae | Fusobacterium | |
Verrucomicrobia | Verrucomicrobiae | Verrucomicrobiales | Verrucomicrobiaceae | Verrucomicrobium | |
Synergistetes | Synergistia | Synergistales | Synergistaceae | Synergistes | |
Spirochaetes | Spirochaetes | Spirochaetales | Spirochaetaceae | Spirochaeta | |
Treponema | |||||
Cyanobacteria | Cyanobacteria |
References | Subjects | Synbiotic Composition | Duration of Administration | Major Outcome |
---|---|---|---|---|
[27] | 134 overweight or obese participants | B. animalis + Litesse Ultra polydextrose | 6 months | Decreased weight, decreased plasma bile acids, altered of the gut microbiota increased Akkermansia, Christensenellaceae, Methanobrevibacter, improved intestinal barrier function and markers associated with obesity |
[62] | 225 obese volunteers | B. animalis + Litesse Ultra polydextrose | 6 months | Reduced waist circumference and food intake |
[63] | 153 obese women and men | L. rhamnosus CGMCC1.3724 + oligofructose and inulin | 24 weeks | Lose weight and fat mass, reduced leptin level, increased of Lachnospiraceae in faeces |
[60] | 70 children and adolescents with elevate BMI | L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum, L. bulgaricus + FOS | 8 weeks | Decreased in BMI Z-score and waist circumference, increased waist-to-hip ratio, significant decreased TAG and LDL-C |
[61] | 77 children and adolescent with primary obesity | L. acidophilus, L. rhamnosus, B. bifidum, B. longum, E. faecium + FOS | 4 weeks | Significant reduction of weight and BMI, decreased TC, LDL-C, and total oxidative stress serum levels |
[70] | 38 subjects with overweight or obesity or metabolic syndrome | L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum, L. bulgaricus + FOS | 28 weeks | Significantly improved the levels of fasting blood sugar and insulin resistance |
[71] | 54 patients with T2D | L. acidophilus, L. casei, L. rhamnosus, L. bulgaricus, B. breve, B. longum, S. + FOS | 8 weeks | Decreased FPG, increased HOMA-IR, elevated GSH in plasma, reduced serum hs-CRP |
[72] | 62 patients with T2D | L. sporogenes + inulin | 6 weeks | Significantly decreased insulin level, HOMA-IR, hs-CRP, increased levels of lipid profile (TC, LDL-C, TAG, HDL-C), increased plasma total GSH and uric acid levels |
[73] | 81 patients with T2D | L. sporogenes + inulin | 8 weeks | Significantly reduced insulin level, HOMA-IR, and homeostasis model assessment b cell function (HOMA-B) |
[74] | 60 overweight T2D patients with CHD | L. acidophilus, L. casei, B. bifidum + inulin | 12 weeks | Significantly decreased fasting plasma glucose, serum insulin concentration, HOMA-B, increased QUICKI, changed HDL-C level |
[79] | 78 patients with T2D | L. sporogenes + inulin | 8 weeks | Decreased lipid profile (TAG, TC/HDL-C) and significant elevated HDL-C level |
[75] | 30 patients with T2D | L. acidophilus, B. bifidum + oligofructose | 2 weeks | Elevated HDL-C level, reduced fasting glycaemia, reduction of TC, TAG |
[80] | 40 subjects with metabolic syndrome | L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum, L. bulgaricus + FOS | 12 weeks | Synbiotics had synergistic effects on improving systolic blood pressure and anthropometric measurements |
[68] | 46 subjects with metabolic syndrome | L. casei, L. rhamnosus, S. thermophilus, B. breve, L. acidophilus, B. longum, L. bulgaricus + FOS | 12 weeks | Decreased body weight, BMI, FBS, HOMA-IR, increased GLP-1, PYY |
[77] | 120 patients with T2D | Bacillus coagulant, lactic acid + β–glucan, inulin | 12 weeks | Decreased HbA1c, increased SOD |
[78] | 115 patients with T2D | L. acidophilus + cinnamon | 12 weeks | Decreased FPG, HbA1c and advanced glycation end products |
[83] | 120 prediabetic patients | L. acidophilus, B. bifidum, B. lactis, B. longum, + inulin | 24 weeks | Decreased FIL, HOMA-IR, HbA1c, FPG, increased QUICKI |
[81] | 120 prediabetic patients | L. acidophilus, B. bifidum, B. lactis, B. longum, + inulin | 24 weeks | Decreased metabolic syndrome prevalence, obesity, hyperglycemia, hypertension, HDL-C |
[84] | 120 prediabetic patients | L. acidophilus, B. bifidum, B. lactis, B. longum, + inulin | 24 weeks | Decreased TAG, |
[85] | 120 prediabetic patients | L. acidophilus, B. bifidum, B. lactis, B. longum, + inulin | 24 weeks | Synbiotic had no significant effect on the changes in bacteria, in probiotic group was increased ratio Bacteroides fragilis to Escherichia coli, decreased Firmicutes to Bacteroidetes ratio |
[76] | 60 diabetic patients undergoing hemodialysis | B. bifidum, L. acidophilus, L. casei + inulin | 12 weeks | Decreased FPG, FIL, HOMA-IR, HbA1c, increased QUICKI, reduced hs-CRP, MDA, increased TAC, GSH |
[64] | 60 overweight or obese adults | L. acidophilus, L. casei, B. bifidum + inulin | 8 weeks | Reduced body weight, TC, TAG, LDL-C, stress anxiety |
[65] | 60 military personnel with metabolic syndrome | L. casei, L. acidophilus, L. rhamnosus, L. bulgaricus, B. breve, B. longum, S. thermophiles + FOS | 8 weeks | Decreased BMI, FPG, TAG |
[66] | 20 healthy overweight volunteers | L. acidophilus, B. lactis, B. longum UABl-14, B. bifidum + trans-galactooligosaccharide mixture | 3 months | Decreased body mass, BMI, waist circumference, body fat mass, HbA1c, changed of intestinal microbiota-increased Bifidobacterium, Lactobacillus, Ruminococcus, Verrucomicrobiae |
[82] | 60 elderly patients with metabolic syndrome | L. plantarum, L. acidophilus, L. reuteri + inulin, FOS | 60 days | Improvement in visceral adiposity, decreased waist circumference, TC, HDL, TAG, hs-CRP, TNF-α, decrease metabolic syndrome prevalence and MAP |
[69] | 41 healthy sedentary overweight and obese volunteers | Bacillus coagulant + β-glucans | 12 weeks | Decreased hs-CRP, LDL/HDL, resistin, lower Bifidobacterium spp., increased Faecalibacterium prausnitzii |
[67] | 40 subjects with obesity | L. plantarum, S. thermophilus, B. bifidum + FOS | 8 weeks | Significantly decreased FBG, body weight and BMI was not reduced |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hijová, E. Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases. Metabolites 2022, 12, 313. https://doi.org/10.3390/metabo12040313
Hijová E. Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases. Metabolites. 2022; 12(4):313. https://doi.org/10.3390/metabo12040313
Chicago/Turabian StyleHijová, Emília. 2022. "Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases" Metabolites 12, no. 4: 313. https://doi.org/10.3390/metabo12040313
APA StyleHijová, E. (2022). Synbiotic Supplements in the Prevention of Obesity and Obesity-Related Diseases. Metabolites, 12(4), 313. https://doi.org/10.3390/metabo12040313