Relationship between Cardiometabolic Factors and the Response of Blood Pressure to a One-Year Primary Care Lifestyle Intervention in Metabolic Syndrome Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Experimental Design
2.3. Metabolic Measurements
2.4. Anthropometric Measurements
2.5. Maximal Oxygen Uptake Assessment
2.6. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leung, A.A.; Bushnik, T.; Hennessy, D.; McAlister, F.A.; Manuel, D.G. Risk factors for hypertension in Canada. Health Rep. 2019, 30, 3–13. [Google Scholar]
- Poirier, P.; Lemieux, I.; Mauriège, P.; Dewailly, E.; Blanchet, C.; Bergeron, J.; Després, J.-P. Impact of Waist Circumference on the Relationship between Blood Pressure and Insulin: The quebec Health Survey. Hypertension 2005, 45, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Chuang, S.-Y.; Chou, P.; Hsu, P.-F.; Cheng, H.-M.; Tsai, S.-T.; Lin, I.-F.; Chen, C.-H. Presence and Progression of Abdominal Obesity Are Predictors of Future High Blood Pressure and Hypertension. Am. J. Hypertens. 2006, 19, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Rankinen, T.; Church, T.S.; Rice, T.; Bouchard, C.; Blair, S.N. Cardiorespiratory Fitness, BMI, and Risk of Hypertension: The HYPGENE Study. Med. Sci. Sports Exerc. 2007, 39, 1687–1692. [Google Scholar] [CrossRef]
- Park, S.H.; Kim, S.-G. Comparison of Hypertension Prediction Analysis Using Waist Measurement and Body Mass Index by Age Group. Osong Public Health Res. Perspect. 2018, 9, 45–49. [Google Scholar] [CrossRef]
- Juraschek, S.P.; Blaha, M.J.; Whelton, S.P.; Blumental, R.; Jones, S.R.; Keteyian, S.J.; Schairer, J.; Brawner, C.A.; Al-Mallah, M.H. Physical Fitness and Hypertension in a Population at Risk for Cardiovascular Disease: The Henry Ford Exercise Testing (FIT) Project. J. Am. Heart Assoc. 2014, 3, e001268. [Google Scholar] [CrossRef]
- Rhéaume, C.; Arsenault, B.J.; Bélanger, S.; Pérusse, L.; Tremblay, A.; Bouchard, C.; Poirier, P.; Després, J.-P. Low Cardiorespiratory Fitness Levels and Elevated Blood Pressure: What is the Contribution of Visceral Adiposity? Hypertension 2009, 54, 91–97. [Google Scholar] [CrossRef]
- Rhéaume, C.; Arsenault, B.J.; Dumas, M.-P.; Pérusse, L.; Tremblay, A.; Bouchard, C.; Poirier, P.; Després, J.-P. Contributions of Cardiorespiratory Fitness and Visceral Adiposity to Six-Year Changes in Cardiometabolic Risk Markers in Apparently Healthy Men and Women. J. Clin. Endocrinol. Metab. 2011, 96, 1462–1468. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.; Neeland, I.J.; Yamashita, S.; Shai, I.; Seidell, J.; Magni, P.; Santos, R.D.; Arsenault, B.; Cuevas, A.; Hu, F.B.; et al. Waist circumference as a vital sign in clnical pratice: A Concensus Statement from the IAS and ICCR Working Group on Visceral Adiposity. Endocrinology 2020, 16, 177–189. [Google Scholar] [CrossRef]
- Gaesser, G.A.; Angadi, S.S.; Sawyer, B.J. Exercise and Diet, Independent of Weight Loss, Imporve Cardiometabolic Risk Profile in Overweight and Obese Individuals. Physiciand Sportsmed. 2015, 39, 87–97. [Google Scholar] [CrossRef]
- Diaz, R.G.; Esparza-Romero, J.; Moya-Camarena, S.; Robles-Sardin, A.; Valencia, M.E. Lifestyle Intervention in Primary Care Settings Improves Obesity Parameters among Mexican Youth. Am. Diet. Assoc. 2010, 110, 285–290. [Google Scholar] [CrossRef] [PubMed]
- Gilis-Januszewka, A.; Lindström, J.; Tuomilehto, J.; Piwonska-Solska, B.; Topor-Madry, R.; Szybinski, Z.; Peltonen, M.; Schwarz, P.E.H.; Windak, A.; Hubalewska-Dydejczyk, A. Sustained diabetes risk reduction after real life and primary health care setting implementation of the diabetes in Europe prevention using lifestyle, physical activity and nutritional intervention (DE-PLAN) project. BMC Public Health 2017, 17, 198. [Google Scholar] [CrossRef]
- Costa, B.; Barrio, F.; Cabré, J.-J.; Pinol, J.-L.; Cos, X.; Solé, C.; Bolibar, B.; Basora, J.; Castell, C.; Solà-Morales, O.; et al. Delaying progression to type 2 diabetes among high-risk Spanish individuals is feasible in real-life primary healthcare settings using intensive lifestyle intervention. Diabetologia 2012, 55, 1319–1328. [Google Scholar] [CrossRef]
- Lönnberg, L.; Ekblom-Bak, E.; Damberg, M. Improved unhealthy lifestyle habits in patients with high cardiovascular risk: Result from a structured lifestyle programme in primary care. Upsala J. Med. Sci. 2019, 124, 94–104. [Google Scholar] [CrossRef] [PubMed]
- Anderson, T.J.; Mancini, G.B.J.; Genest, J.; Grégoire, J.; Lonn, E.M.; Hegele, R.A. The New Dyslipidemia Guidelines: What Is the Debate? Can. J. Cardiol. 2015, 31, 605–612. [Google Scholar] [CrossRef]
- Moyer, V.A. Behavioral Conseling Interventions to Promote a Healthful Diet and Physical Activity fro Cardiovascular Disease Prevention in Adults: U.S. Preventive Services Task Force Recommendation Statement. Ann. Intern. Med. 2012, 157, 367–372. [Google Scholar] [CrossRef]
- Nakao, Y.M.; Miyamoto, Y.; Ueshima, K.; Nakao, K.; Nakai, M.; Nishimura, K.; Yasuno, S.; Hosoda, K.; Ogawa, Y.; Itoh, H.; et al. Effectiveness of nationwide screening and lifestyle intervention for abdominal obesity and cardiometabolic risks in Japan: The metabolic syndrome and comprehensive lifestyle intervention study on nationwide database in Japan (MetS ACTION-J study). PLoS ONE 2018, 13, e0190962. [Google Scholar] [CrossRef]
- Gomez-Huelgas, R.; Jansen-Chaparro, S.; Baca-Osorio, A.J.; Mancera-Romero, J.; Tinahones, F.J.; Bernal-Lopez, M.R. Effects of a long term lifestyle intervention program with Mediterranean diet and exercise for the management of patient with metabolic syndrome in primary care settings. Eur. J. Interval Med. 2015, 26, 317–323. [Google Scholar] [CrossRef]
- Jeejeebhoy, K.; Dhaliwal, R.; Heyland, D.K.; Leung, R.; Day, A.G.; Brauer, P.; Royall, D.; Tremblay, A.; Mutch, D.M.; Pliamm, L.; et al. Family physician-led, team-based, lifestyle intervention in patients with metabolic syndrome: Results of a multicentre feasibility project. CMAJ Open 2017, 5, E229–E236. [Google Scholar] [CrossRef]
- Tremblay, A.; Bélanger, M.-P.; Dhaliwal, R.; Brauer, P.; Royall, D.; Mutch, D.M.; Rhéaume, C. Impact of a multidisciplinary intervention on physical fitness, physical activity habits and the association between aerobic fitness and components of metabolic syndrome in adults diagnosed with metabolic syndrome. Arch. Public Health 2020, 78, 22. [Google Scholar] [CrossRef]
- Seward, S.; Ramos, J.S.; Drummond, C.; Dalleck, A.; Byrd, B.; Kehmeier, M.; Dalleck, L.C. Inter-individual Variability in Metabolic Syndrome Severity Score and VO2max Changes Following Personalized, Community-Based Exercise Programming. Int. J. Environ. Res. Public Health 2019, 16, 4855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seligman, B.G.S.; Polanczyk, C.A.; Santos, A.S.B.; Foppa, M.; Junges, M.; Bonzanini, L.; Nicolaidis, G.; Camey, S.; Lopes, A.L.; Sehl, P.; et al. Intensive practical lifestyle intervention improves endothelial function in metabolic syndrome independent of weight loss: A randomized controlled trial. Metab. Clin. Exp. 2011, 60, 1736–1740. [Google Scholar] [CrossRef] [PubMed]
- Mascaro, C.M.; Bouzas, C.; Montemayor, S.; Casares, M.; Llompart, I.; Ugarriza, L.; Borras, P.-A.; Martinez, J.A.; Tur, J.A. Effect of a Six-Month Lifestyle Intervention on the Physical Activity and Fitness Status of Adults with NAFLD and Metabolic Syndrome. Nutrients 2022, 14, 1813. [Google Scholar] [CrossRef]
- Klein, D.; Jeejeebhoy, K.; Tremblay, A.; Kallio, M.; Rhéaume, C.; Humphries, S.; Royall, D.; Brauer, P.; Heyland, D.K.; Dhaliwal, R.; et al. The CHANGE program: Exercise intervention in primary care. Can. Fam. Physician—Le Médecin Fam. Can. 2017, 63, 546–552. [Google Scholar]
- Royall, D.; Brauer, P.; Bjorklund, L.; Tremblay, A.; Jeejeebhoy, K.; Heyland, D.K.; Dhaliwal, R.; Klein, D.; Mutch, D.M. Development of a Dietary Management Care Map for Metablic Syndrome. Can. J. Diet. Pract. Res. 2014, 75, 132–139. [Google Scholar] [CrossRef] [PubMed]
- Brauer, P.; Royall, D.; Li, A.; Rodriguez, A.; Green, J.; Macklin, S.; Craig, A.; Pasanen, J.; Brunelle, L.; Maitland, S.; et al. Nutrient intake and dietary quality changes within a personalized lifestyle intervention program for metabolic syndrome in primary care. Appl. Physiol. Nutr. Metab. 2019, 44, 1297–1304. [Google Scholar] [CrossRef]
- Canadian Society for Exercise Physiology. Canadian Society for Exercise Physiology—Physical Activity Training for Health; Canadian Society for Exercise Physiology: Ottawa, ON, Canada, 2013; p. 210. [Google Scholar]
- Dalzill, C.; Nigam, A.; Juneau, M.; Guilbeault, V.; Latour, E.; Mauriège, P.; Gayda, M. Intensive Lifestyle Intervention Improves Cardiometabolic and Exercise Parameters in Metabolically Healthy Obese and Metabolically Unhealthy Obese Individuals. Can. J. Cardiol. 2014, 30, 434–440. [Google Scholar] [CrossRef]
- Khatlani, K.; Njike, V.; Costales, V.C. Effect of Lifestyle Intervention on Cardiometabolic Risk Factors in Overweight and Obese Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Metab. Syndr. Relat. Disord. 2019, 17, 473–485. [Google Scholar] [CrossRef]
- Zhang, X.; Deblin, H.M.; Smith, B.; Imperatore, G.; Thomas, W.; Lobelo, F.; Ali, M.K.; Norris, K.; Gruss, S.; Bardenheier, B.; et al. Effect of lifestyle interventions on cardiovascular risk factors among adults without impaired glucose tolerance or diabetes: A systematic review and meta-analysis. PLoS ONE 2017, 12, e0176436. [Google Scholar] [CrossRef]
- Rippe, J.M. Lifestyle Strategies for Risk Factor Reduction, Prevention, and Treatment of Cardiovascular Disease. Am. J. Lifestyle Med. 2019, 13, 204–212. [Google Scholar] [CrossRef]
- Höchsmann, C.; Dorling, J.L.; Martin, C.K.; Newton, R.L., Jr.; Myers, C.A.; Denstel, K.D.; Mire, E.F.; Johnson, W.D.; Zhang, D.; Arnorld, C.L.; et al. Effects of a 2-Year Primary Care Lifestyle Intervention on Cardiometabolic Risk Factors. Circulation 2021, 143, 1202–1214. [Google Scholar] [CrossRef]
- Rabi, D.M.; McBrien, K.A.; Sapir-Pichhadze, R.; Nakhla, M.; Ahmed, S.B.; Dumanski, S.M.; Butalias, S.; Leung, A.A.; Harris, K.C.; Cloutier, L.; et al. Hypertension Canada’s 2020 Comprehensive Guidelines fo the Prevention Diagnosis, Risk Assessment, and Treatment of Hypertension in Adults and Children. Can. J. Cardiol. 2020, 36, 596–624. [Google Scholar] [CrossRef] [PubMed]
- Unger, T.; Borghi, C.; Charchar, F.; Khan, N.A.; Poulter, N.R.; Prabhakaran, D.; Ramirez, A.; Schlaich, M.; Stergiou, G.S.; Tomaszewski, M.; et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020, 75, 1334–1357. [Google Scholar] [CrossRef] [PubMed]
- Hunter, J.R.; Gordon, B.A.; Bird, S.R.; Benson, A.C. Exercise Supervision Is Important for Cardiometabolic Health Improvements: A 16-Week Randomized Controlled Trial. J. Strength Cond. Res. 2020, 34, 866–877. [Google Scholar] [CrossRef] [PubMed]
- Stefanov, T.; Vekova, A.; Bonova, I.; Tzetkov, S.; Kurktschiev, D.; Blüher, M.; Temelkova-Kurktchiev, T. Effect of supervised vs non-supervised combined aerobic and resistance exercise programme on cardiometabolic risk factors. Cent. Eur. J. Public Health 2013, 21, 8–16. [Google Scholar] [CrossRef] [PubMed]
- Vidoni, M.L.; Lee, M.; Mitchell-Bennett, L.; Reininger, B.M. Home Visit Intervention Promotes Lifestyle Changes: Results of an RCT in Mexican Americans. Am. J. Prev. Med. 2019, 57, 611–620. [Google Scholar] [CrossRef]
- Corres, O.; Martinez Aguirre-Betolaza, A.; Fryer, S.M.; Gorostegi-Anduaga, I.; Arratibel-Imaz, I.; Aispuru, G.R.; Maldonado-Martin, S. Long-Term Effects in the EXERDIET-HTA Study: Supervised Exercise Training vs. Physical Activity Advice. Res. Q. Exerc. Sport 2019, 91, 209–218. [Google Scholar] [CrossRef]
- Abate, N.; Burns, D.; Peshock, R.M.; Garg, A.; Grundy, S.M. Estimation of adipose tissue mass by magnetic resonance imaging: Validation against dissection in human cadavers. J. Lipid Res. 1994, 35, 1490–1496. [Google Scholar] [CrossRef]
- Hsieh, C.-J.; Wang, P.-W.; Chen, T.-Y. The relationship between regional abdominal fat distribution and both insulin resistance and subclinical chronic inflammation in non-diabetic adults. Diabetol. Metab. Syndr. 2014, 6, 49. [Google Scholar] [CrossRef]
- Marin, P.; Andersson, B.; Ottoson, M.; Olbe, L.; Chowdhury, B.; Kvist, H.; Holm, G.; Sjöström, L.; Björntorp, P. The Morphology and Metabolism of Intraabdominal Adipose Tissue in Men. Metabolism 1992, 41, 1242–1248. [Google Scholar] [CrossRef]
- Nyangasa, M.A.; Buck, C.; Kelm, S.; Sheikh, M.A.; Brackmann, K.L.; Hebestreit, A. Association between cardiometabolic risk factors and body mass indez, waist circumferences and body fat in a Zanzibari cross-sectional study. BMJ Open 2019, 9, e025397. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, P.; Lemieux, I.; Alméras, N.; Bergeron, J.; Côté, M.; Tremblay, A.; Lamarche, B.; Després, J.-P. The hypertriglyceridemic waist phenotype versus the National Cholesterol Education Program—Adult Treatment Panel III and International Diabeted Federation clinical criteria to identify high-risk men with an altered cardiometabolic risk profile. Metabolism 2009, 58, 1123–1130. [Google Scholar] [CrossRef] [PubMed]
- Blackburn, P.; Lemieux, I.; Lamarche, B.; Bergeron, J.; Perron, P.; Tremblay, G.; Gaudet, D.; Després, J.-P. Hypertriglyceridemic waist: A simple clinical phenotype associated with coronary artery disease in women. Metabolism 2012, 61, 56–64. [Google Scholar] [CrossRef] [PubMed]
- Chandra, A.; Neeland, I.J.; Berry, J.D.; Ayers, C.R.; Rohatgi, A.; Das, S.R.; Khera, A.; McGuire, D.K.; de Lemos, J.A.; Turer, A.T. The Relationship of Body Mass and Fat Distribution with Incident Hypertension. J. Am. Coll. Cardiol. 2014, 64, 997–1002. [Google Scholar] [CrossRef] [PubMed]
- Mathieu, P.; Poirier, P.; Pibarot, P.; Lemieux, I.; Després, J.-P. The Link Among Inflammation, Hypertension. and Cardiovascular Disease. Hypertension 2009, 53, 577–584. [Google Scholar] [CrossRef]
- Bouchard, C.; Blair, S.N.; Church, T.S.; Earnest, C.P.; Hagberg, J.M.; Häkkinen, K.; Jenkins, N.T.; Karavirta, L.; Kraus, W.E.; Leon, A.S.; et al. Adverse Metabolic Response to Regular Exercise: Is It a Rare or Common Occurrence? PLoS ONE 2012, 7, e37887. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, C.; Ramirez-Campillo, R.; Lucia, A.; Ramirez-Vélez, R.; Izquierdo, M. Conccurrent exercise training on hyperglycemia and comorbidities associated: Non-responders using clinical cutoff points. Scand. J. Med. Sci. Sports 2019, 29, 952–967. [Google Scholar] [CrossRef]
- Lowry, D.E.; Fenwick, P.H.; Roke, K.; Jeejeebhoy, K.; Dhaliwal, R.; Brauer, P.; Royall, D.; Tremblay, A.; Klein, D.; Mutch, D.M. Variants in APOA5 and ADIPOQ Moderate Improvements in Metabolic Syndrome during a One-Year Lifestyle Intervention. Lifestyle Genom. 2018, 11, 80–89. [Google Scholar] [CrossRef]
- Lowry, D.E.; Feng, Z.; Jeejeebhoy, K.; Dhaliwal, R.; Brauer, P.; Royall, D.; Tremblay, A.; Klein, D.; Mutch, D.M. Prediction modelling of 1-year outcomes to a personalized lifestyle intervention for Canadians with metabolic syndrome. Appl. Physiol. Nutr. Metab. 2020, 45, 621–627. [Google Scholar] [CrossRef]
- Collins, F.S.; Varmus, H. A New Intiative on Precision Medicine. N. Engl. J. Med. 2015, 372, 793–795. [Google Scholar] [CrossRef]
- Ziegelstein, R.C. Personomics. JAMA Intern. Med. 2015, 175, 888–889. [Google Scholar] [CrossRef] [PubMed]
- Onder, G.; Bernabei, R.; Vetrano, D.L.; Palmer, K. Facing multimorbidity in the precision medicine era. Mech. Ageing Dev. 2020, 190, 111287. [Google Scholar] [CrossRef] [PubMed]
- Mastrangelo, A.; Barbas, C. Chronic diseases and lifestyle biomarkers identification by metabolomics. In Matabolomics: From Fundamentals to Clinical Applications; Springer: Berlin/Heidelberg, Germany, 2017; pp. 235–263. [Google Scholar]
- Kelly, R.S.; Kelly, M.P.; Kelly, P. Metabolomics, physical activity, exercise and health: A review of the current evidence. BBA-Mol. Basis Dis. 2020, 1866, 165936. [Google Scholar] [CrossRef] [PubMed]
- Shi, M.; He, J.; Li, C.; Lu, X.; He, W.J.; Cao, J.; Chen, J.; Chen, J.-C.; Bazzano, L.A.; Li, J.-X.; et al. Metabolomics study of blood pressure salt-sentivity and hypertension. Nutr. Metab. Cardiovasc. Dis. 2022, 32, 1681–1692. [Google Scholar] [CrossRef] [PubMed]
- Yashpal, S.; Liese, A.D.; Boucher, B.A.; Wagenknecht, L.E.; Haffner, S.M.; Johnson, L.W.; Bazinet, R.P.; Rewers, M.; Rotter, J.I.; Watkins, S.M.; et al. Metabolomic profiling of the Diatery Approaches to Stop Hypertension diet provides novel insight for the nutritional epidemiology of type 2 diabetes mellitus. Br. J. Nutr. 2022, 128, 487–497. [Google Scholar] [CrossRef]
- Onuh, J.O.; Aliani, M. Metabolomics profiling in hypertension and blood pressure regulation: A review. Clin. Hypertens. 2020, 26, 23. [Google Scholar] [CrossRef]
Variable | Baseline (T0) | 12 Months (T12) | % Change | p Value |
---|---|---|---|---|
Age | 60.1 ± 9.3 | |||
Height (m) | 1.68 ± 0.1 | |||
Body weight (kg) | 88.0 ± 13.8 | 85.4 ± 13.7 | −3.0 | NS |
Body mass index (kg/m2) | 31.2 ± 3.4 | 30.3 ± 3.5 | −2.9 | 0.0687 |
Waist circumference (cm) | 105.9 ± 9.8 | 101.6 ± 10.5 | −4.1 | 0.0040 |
Systolic blood pressure (mm Hg) | 133.7 ± 13.0 | 129.1 ± 12.7 | −3.4 | 0.0099 |
Diastolic blood pressure (mm Hg) | 80.0 ± 13.0 | 76.8 ± 8.1 | −4.0 | 0.0056 |
Total cholesterol (mmol/L) | 4.83 ± 1.40 | 4.62 ± 1.28 | −4.3 | NS |
HDL-cholesterol (mmol/L) | 1.20 ± 0.27 | 1.24 ± 0.28 | 3.3 | NS |
LDL-cholesterol (mmol/L) | 2.69 ± 1.13 | 2.58 ± 1.06 | −4.1 | NS |
Plasma triglycerides (mmol/L) | 2.07 ± 1.00 | 1.82 ± 0.71 | −12.1 | 0.0380 |
Fasting plasma glucose (mmol/L) | 6.32 ± 1.26 | 6.25 ± 1.19 | −1.1 | NS |
VO2max (mLO2/kg/min) | 33.1 ± 6.4 | 35.7 ± 6.44 | 7.9 | 0.0033 |
Variable | Systolic Blood Pressure | Diastolic Blood Pressure |
---|---|---|
Bodyweight | <0.0001 | 0.0760 |
Bodymassindex | <0.0001 | 0.0775 |
Waistcircumference | <0.0001 | 0.0004 |
Totalcholesterol | NS | NS |
HDL-cholesterol | NS | NS |
LDL-cholesterol | NS | NS |
Plasmatriglycerides | NS | 0.0984 |
Fastingplasmaglucose | 0.0061 | NS |
VO2max | 0.0475 | NS |
Variable | Baseline (T0) | End of Intervention (T12) | Variations between T0 and T12 | ||||||
---|---|---|---|---|---|---|---|---|---|
AR | OP | p Value | AR | OP | p Value | AR | OP | p Value | |
(n = 12) | (n = 89) | (n = 12) | (n = 89) | (n = 12) | (n = 89) | ||||
Body weight (kg) | 93.4 ± 16.7 | 87.4 ± 13.4 | NS | 92.2 ± 15.6 | 84.5 ± 13.3 | 0.0668 | −1.1 ± 3.1 | −2.9 ± 4.3 | NS |
Body mass index (kg/m2) | 32.6 ± 4.4 | 31.1 ± 3.3 | NS | 32.2 ± 4.1 | 30.0 ± 3.4 | 0.0468 | −0.4 ± 1.1 | −1.0 ± 1.5 | NS |
Waist circumference (cm) | 107.0 ± 11.0 | 105.7 ± 9.7 | NS | 106.7 ± 11.6 | 100.9 ± 10.2 | 0.0758 | −0.4 ± 3.5 | −4.7 ± 4.9 | 0.0038 |
Systolic blood pressure (mm Hg) | 125.9 ± 14.4 | 135.0 ± 12.5 | 0.0222 | 133.0 ± 14.9 | 128.7 ± 12.3 | NS | 7.1 ± 3.9 | −6.3 ± 9.7 | <0.0001 |
Diastolic blood pressure (mm Hg) | 75.9 ± 9.99 | 80.6 ± 8.7 | 0.0860 | 81.2 ± 8.5 | 76.2 ± 7.9 | 0.0467 | 5.3 ± 5.2 | −4.4 ± 6.3 | <0.0001 |
Total cholesterol (mmol/L) | 4.55 ± 1.50 | 4.88 ± 1.38 | NS | 4.04 ± 1.6 | 4.71 ± 1.2 | 0.0891 | −0.51 ± 0.89 | −0.17 ± 0.63 | NS |
LDL-cholesterol (mmol/L) | 2.26 ± 1.23 | 2.76 ± 1.11 | NS | 2.17 ± 1.19 | 2.65 ± 1.02 | NS | −0.09 ± 0.55 | −0.11 ± 0.56 | NS |
HDL-cholesterol (mmol/L) | 1.21 ± 0.25 | 1.20 ± 0.28 | NS | 1.20 ± 0.24 | 1.24 ± 0.29 | NS | −0.01 ± 0.13 | 0.04 ± 0.18 | NS |
Plasma triglycerides (mmol/L) | 2.36 ± 1.46 | 2.10 ± 1.00 | NS | 1.92 ± 0.73 | 1.87 ± 0.89 | NS | −0.45 ± 1.00 | −0.22 ± 0.69 | NS |
Fasting plasma glucose (mmol/L) | 6.34 ± 1.30 | 6.27 ± 1.39 | NS | 6.28 ± 1.14 | 6.19 ± 1.32 | NS | −0.06 ± 0.47 | −0.08 ± 0.96 | NS |
VO2max (mLO2/kg/min) | 33.7 ± 4.5 | 33.1 ± 6.6 | NS | 36.8 ± 64.4 | 35.7 ± 6.7 | NS | 3.2 ± 2.6 | 2.6 ± 2.5 | NS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin-Couture, E.; Filion, M.-J.; Boukari, R.; Jeejeebhoy, K.; Dhaliwal, R.; Brauer, P.; Royall, D.; Mutch, D.M.; Klein, D.; Tremblay, A.; et al. Relationship between Cardiometabolic Factors and the Response of Blood Pressure to a One-Year Primary Care Lifestyle Intervention in Metabolic Syndrome Patients. Metabolites 2022, 12, 861. https://doi.org/10.3390/metabo12090861
Marin-Couture E, Filion M-J, Boukari R, Jeejeebhoy K, Dhaliwal R, Brauer P, Royall D, Mutch DM, Klein D, Tremblay A, et al. Relationship between Cardiometabolic Factors and the Response of Blood Pressure to a One-Year Primary Care Lifestyle Intervention in Metabolic Syndrome Patients. Metabolites. 2022; 12(9):861. https://doi.org/10.3390/metabo12090861
Chicago/Turabian StyleMarin-Couture, Elisa, Marie-Josée Filion, Ryma Boukari, Khursheed Jeejeebhoy, Rupinder Dhaliwal, Paula Brauer, Dawna Royall, David M. Mutch, Doug Klein, Angelo Tremblay, and et al. 2022. "Relationship between Cardiometabolic Factors and the Response of Blood Pressure to a One-Year Primary Care Lifestyle Intervention in Metabolic Syndrome Patients" Metabolites 12, no. 9: 861. https://doi.org/10.3390/metabo12090861
APA StyleMarin-Couture, E., Filion, M. -J., Boukari, R., Jeejeebhoy, K., Dhaliwal, R., Brauer, P., Royall, D., Mutch, D. M., Klein, D., Tremblay, A., & Rhéaume, C. (2022). Relationship between Cardiometabolic Factors and the Response of Blood Pressure to a One-Year Primary Care Lifestyle Intervention in Metabolic Syndrome Patients. Metabolites, 12(9), 861. https://doi.org/10.3390/metabo12090861