Elaboration and Characterization of Pereskia aculeate Miller Extracts Obtained from Multiple Ultrasound-Assisted Extraction Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical Reagents and Bacterial Strains
2.2. Plant Sampling
2.3. Lyophilization
2.4. Extracts Preparation
2.5. Total Phenolic Compounds and Antioxidant Activity
2.6. Phenolic Compounds Identification and Quantification
2.7. Antibacterial Activity
2.8. Fourier-Transform Infrared (FTIR) Spectroscopy
2.9. Scanning Electron Microscopy (SEM)
2.10. Chemical Profile Determination by Paper Spray Mass Spectrometry (PS—MS)
2.11. Statistical Analysis
3. Results and Discussion
3.1. Total Phenolic Compounds and Antioxidant Activity
3.2. Identification and Quantification of Phenolic Compounds
3.3. Antibacterial Activity Evaluation
3.4. Fourier-Transform Infrared (FTIR) Spectroscopy
3.5. Scanning Electron Microscopy (SEM) Analysis
3.6. Chemical Profile by Paper Spray Mass Spectrometry (PS-MS)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Silva, D.O.; Seifert, M.; Nora, F.R.; Bobrowski, V.L.; Freitag, R.A.; Kucera, H.R.; Nora, L.; Gaikwad, N.W.; Al, S.E.T. Acute Toxicity and Cytotoxicity of Pereskia aculeata, a Highly Nutritious Cactaceae Plant. J. Med. Food 2017, 20, 403–409. [Google Scholar] [CrossRef] [PubMed]
- Soares, S.; Barbalho, S.M.; Guiguer, E.L.; Araújo, A.C.; Cincotto, P.; Farinazzi-machado, F.M.V.; Maria, L.; Lima, D.L.; Clivati, B.; Mendes, C.G. Effects of Pereskia aculeata Miller on the Biochemical Profiles and Body Composition of Wistar Rats. J. Biosci. Med. 2015, 3, 82–89. [Google Scholar]
- Agostini-Costa, T.D.S.; Wondraceck, D.C.; Rocha, W.D.S.; Silva, D.B.D. Carotenoids Profile and Total Polyphenols in Fruits of Pereskia aculeata Miller. Rev. Bras. Frutic. 2012, 34, 234–238. [Google Scholar] [CrossRef]
- Amado, A.; Alves, R.; Freitas, D.; Lanzi, G.; Henrique, P.; Evangelista, L.; Rita, M. Chemical Structure and Physical-Chemical Properties of Mucilage from the Leaves of Pereskia aculeata. Food Hydrocoll. 2017, 70, 20–28. [Google Scholar] [CrossRef]
- De Castro Campos Pinto, N.; Scio, E. The Biological Activities and Chemical Composition of Pereskia Species (Cactaceae)-A Review. Plant Foods Hum. Nutr. 2014, 69, 189–195. [Google Scholar] [CrossRef]
- Agostini-Costa, T.S.; Pêssoa, G.K.A.; Silva, D.B.; Gomes, I.S.; Silva, J.P. Carotenoid Composition of Berries and Leaves from a Cactaceae—Pereskia Sp. J. Funct. Foods 2014, 11, 178–184. [Google Scholar] [CrossRef]
- Souza, L.F.; Caputo, L.; De Barros, I.B.I.; Fratianni, F.; Nazzaro, F.; De Feo, V. Pereskia aculeata Muller (Cactaceae) Leaves: Chemical Composition and Biological Activities. Int. J. Mol. Sci. 2016, 17, 1478. [Google Scholar] [CrossRef]
- Cruz, T.M.; Santos, J.S.; do Carmo, M.A.V.; Hellström, J.; Pihlava, J.M.; Azevedo, L.; Granato, D.; Marques, M.B. Extraction Optimization of Bioactive Compounds from Ora-pro-Nobis (Pereskia aculeata Miller) Leaves and Their in Vitro Antioxidant and Antihemolytic Activities. Food Chem. 2021, 361, 130078. [Google Scholar] [CrossRef]
- Torres, T.M.S.; Álvarez-Rivera, G.; Mazzutti, S.; Sánchez-Martínez, J.D.; Cifuentes, A.; Ibáñez, E.; Ferreira, S.R.S. Neuroprotective Potential of Extracts from Leaves of Ora-pro-Nobis (Pereskia aculeata) Recovered by Clean Compressed Fluids. J. Supercrit. Fluids 2021, 179, 105390. [Google Scholar] [CrossRef]
- Massocatto, A.M.; de Souza Silva, N.F.; Kazama, C.C.; Dal Bem Pires, M.; Takemura, O.S.; Jacomassi, E.; Gois Ruiz, A.L.T.; Laverde, A. Biological Activity Survey of Pereskia aculeata Mill. and Pereskia grandifolia Haw. (Cactaceae). Pharm. Sci. 2022, 28, 156–165. [Google Scholar] [CrossRef]
- Pinto, N.D.C.C.; Duque, A.P.D.N.; Pacheco, N.R.; Mendes, R.D.F.; Motta, E.V.D.S.; Bellozi, P.M.Q.; Ribeiro, A.; Salvador, M.J.; Scio, E. Pereskia aculeata: A Plant Food with Antinociceptive Activity. Pharm. Biol. 2015, 53, 1780–1785. [Google Scholar] [CrossRef] [PubMed]
- Pinto, N.D.C.C.; Cassini-Vieira, P.; de Souza-Fagundes, E.M.; Barcelos, L.S.; Castañon, M.C.M.N.; Scio, E. Pereskia aculeata Miller Leaves Accelerate Excisional Wound Healing in Mice. J. Ethnopharmacol. 2016, 194, 131–136. [Google Scholar] [CrossRef] [PubMed]
- Martins, Z.E.; Pinho, O.; Ferreira, I.M.P.L.V.O. Food Industry By-Products Used as Functional Ingredients of Bakery Products. Trends Food Sci. Technol. 2017, 67, 106–128. [Google Scholar] [CrossRef]
- Wang, L.; Weller, C.L. Recent Advances in Extraction of Nutraceuticals from Plants. Trends Food Sci. Technol. 2006, 17, 300–312. [Google Scholar] [CrossRef]
- Chemat, F.; Rombaut, N.; Sicaire, A.G.; Meullemiestre, A.; Fabiano-Tixier, A.S.; Abert-Vian, M. Ultrasound Assisted Extraction of Food and Natural Products. Mechanisms, Techniques, Combinations, Protocols and Applications. A Review. Ultrason. Sonochem. 2017, 34, 540–560. [Google Scholar] [CrossRef]
- Natiéli, C.P.B.; Bromberger, S.M.; Barcelos, F.D.C.; Nichelle, L.B.; Barin, J.S.; Rosa, C.S.D.; Terra, N.N. Ultrasonic Assisted Extraction to Obtain Bioactive, Antioxidant and Antimicrobial Compounds from Marcela. Ciência Rural 2018, 48, 1–6. [Google Scholar]
- Yusoff, I.M.; Taher, Z.M.; Rahmat, Z.; Chua, L.S. A Review of Ultrasound-Assisted Extraction for Plant Bioactive Compounds: Phenolics, Flavonoids, Thymols, Saponins and Proteins. Food Res. Int. 2022, 157, 111268. [Google Scholar] [CrossRef]
- Heinrich, M. Ethnopharmacology in the 21st Century—Grand Challenges. Front. Pharmacol. 2010, 1, 1980–1982. [Google Scholar] [CrossRef]
- Garcia, J.A.A.; Corrêa, R.C.G.; Barros, L.; Pereira, C.; Abreu, R.M.V.; Alves, M.J.; Calhelha, R.C.; Bracht, A.; Peralta, R.M.; Ferreira, I.C.F.R. Phytochemical Profile and Biological Activities of “Ora-pro-Nobis” Leaves (Pereskia aculeata Miller), an Underexploited Superfood from the Brazilian Atlantic Forest. Food Chem. 2019, 294, 302–308. [Google Scholar] [CrossRef]
- Atanasov, A.G.; Waltenberger, B.; Pferschy-wenzig, E. Europe PMC Funders Group Discovery and Resupply of Pharmacologically Active Plant-Derived Natural Products: A Review. Biotechnol. Adv. 2016, 33, 1582–1614. [Google Scholar] [CrossRef]
- Gonçalves, G.A.; Corrêa, R.C.G.; Barros, L.; Dias, M.I.; Calhelha, R.C.; Correa, V.G.; Bracht, A.; Peralta, R.M.; Ferreira, I.C.F.R. Effects of in Vitro Gastrointestinal Digestion and Colonic Fermentation on a Rosemary (Rosmarinus officinalis L.) Extract Rich in Rosmarinic Acid. Food Chem. 2019, 271, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Sahan, Y.; Cansev, A.; Gulen, H. Effect of Processing Techniques on Antioxidative Enzyme Activities, Antioxidant Capacity, Phenolic Compounds, and Fatty Acids of Table Olives. Food Sci. Biotechnol. 2013, 22, 613–620. [Google Scholar] [CrossRef]
- Official Methods of Analysis of the Association of Official Analytical Chemists, 19th ed.; Horwitz, W. (Ed.) AOAC: Gaithersburg, MD, USA, 2012. [Google Scholar]
- Rufino, M.D.S.M.; Alves, R.E.; de Brito, E.S.; Pérez-Jiménez, J.; Saura-Calixto, F.; Mancini-Filho, J. Bioactive Compounds and Antioxidant Capacities of 18 Non-Traditional Tropical Fruits from Brazil. Food Chem. 2010, 121, 996–1002. [Google Scholar] [CrossRef]
- Eça, K.S.; Machado, M.T.C.; Hubinger, M.D.; Menegalli, F.C. Development of Active Films From Pectin and Fruit Extracts: Light Protection, Antioxidant Capacity, and Compounds Stability. J. Food Sci. 2015, 80, C2389–C2396. [Google Scholar] [CrossRef]
- Performance Standards for Antimicrobial Susceptibility Testing; Supplement. CLSI document M100-S25; CLSI: Wayne, PA, USA, 2017.
- Silva, M.R.; Freitas, L.G.; Souza, A.G.; Araújo, R.L.B.; Lacerda, I.C.A.; Pereira, H.V.; Augusti, R.; Melo, J.O.F. Antioxidant Activity and Metabolomic Analysis of Cagaitas (Eugenia dysenterica) Using Paper Spray Mass Spectrometry. J. Braz. Chem. Soc. 2019, 30, 1034–1044. [Google Scholar] [CrossRef]
- Sri Nurestri, A.; Norhanom, A.; Sim, K. Phenolic Content and Antioxidant Activity of Pereskia grandifolia Haw. (Cactaceae) Extracts. Pharmacogn. Mag. 2010, 6, 248. [Google Scholar] [CrossRef]
- Medina-torres, N.; Ayora-talavera, T.; Espinosa-andrews, H. Ultrasound Assisted Extraction for the Recovery of Phenolic Compounds from Vegetable Sources. Agronomy 2017, 7, 47. [Google Scholar] [CrossRef]
- Wang, J.; Jia, Z.; Zhang, Z.; Wang, Y.; Liu, X.; Wang, L.; Lin, R.; Schmidt, T.J. Analysis of Chemical Constituents of Melastoma dodecandrum Lour. By UPLC-ESI-Q-Exactive Focus-MS/MS. Molecules 2017, 22, 476. [Google Scholar] [CrossRef]
- Andrade, T.C.; De Freitas, P.H.S.; Ribeiro, J.M.; Pinto, P.F.; de Souza-Fagundes, E.M.; Scio, E.; Ribeiro, A. Avaliação Da Atividade Antioxidante e Imunomoduladora Dos Metabólitos Primários de Pereskia aculeata Miller. J. Biol. Pharm. Agric. Manag. 2021, 17, 358–376. [Google Scholar]
- Torres, T.M.S.; Guedes, J.A.C.; de Brito, E.S.; Mazzutti, S.; Ferreira, S.R.S. High-Pressure Biorefining of Ora-pro-Nobis (Pereskia aculeata). J. Supercrit. Fluids 2022, 181, 105514. [Google Scholar] [CrossRef]
- Mustafa, A.; Turner, C. Pressurized Liquid Extraction as a Green Approach in Food and Herbal Plants Extraction: A Review. Anal. Chim. Acta 2011, 703, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Balasubramaniam, V.G.; Sathvika, P.A.S.; Antony, U. Effect of Enzyme Pretreatment in the Ultrasound Assisted Extraction of Finger Millet Polyphenols. J. Food Sci. Technol. 2019, 56, 1583–1594. [Google Scholar] [CrossRef] [PubMed]
- Agostini-costa, T.S. Bioactive Compounds and Health Benefits of Pereskioideae and Cactoideae: A Review. Food Chem. 2020, 327, 126961. [Google Scholar] [CrossRef]
- Dos Reis, L.C.R.; Facco, E.M.P.; Salvador, M.; Flôres, S.H.; Rios, A.D.O. Characterization of Orange Passion Fruit Peel Flour and Its Use as an Ingredient in Bakery Products. J. Culin. Sci. Technol. 2020, 18, 214–230. [Google Scholar] [CrossRef]
- Hassanbaglou, B. Antioxidant Activity of Different Extracts from Leaves of Pereskia bleo (Cactaceae). J. Med. Plants Res. 2012, 6, 2932–2937. [Google Scholar] [CrossRef]
- Chirinos, R.; Pedreschi, R.; Rogez, H.; Larondelle, Y.; Campos, D. Phenolic Compound Contents and Antioxidant Activity in Plants with Nutritional and/or Medicinal Properties from the Peruvian Andean Region. Ind. Crops Prod. 2013, 47, 145–152. [Google Scholar] [CrossRef]
- Rabelo, S.V.; Da Costa, M.M.; Libório, R.C.; Almeida, J.R.G.D.S. Atividade Antioxidante e Antimicrobiana de Extratos de Atemoia (Annona cherimola Mill. × A. squamosa L.). Rev. Bras. Frutic. 2014, 36, 265–271. [Google Scholar] [CrossRef]
- Cerqueira, M.Â.P.R.; Souza, B.; Martins, J.T.; Teixeira, J.A.; Vicente, A.A. Functional Properties of Gleditsia Triacanthos Seeds Extracts and Their Incorporation into Galactomannan Films for Food Applications. In Total Food: Sustainability of the Agri-Food Chain; Royal Society of Chemistry: London, UK, 2010; pp. 238–243. ISBN 978-1-84755-750-6. [Google Scholar]
- Soni, H.; Malik, J.; Singhai, A.K.; Sharma, S. Antimicrobial and Antiinflammatory Activity of the Hydrogels Containing Rutin Delivery. Asian J. Chem. 2013, 25, 8371–8373. [Google Scholar] [CrossRef]
- Ribeiro, A.F.C.; Telles, T.C.; Ferraz, V.P.; Souza-Fagundes, E.M.; Cassali, G.D.; Carvalho, A.T.; Melo, M.M. Effect of Arrabidaea Chica Extracts on the Ehrlich Solid Tumor Development. Rev. Bras. Farmacogn. Braz. J. Pharmacogn. 2012, 22, 364–373. [Google Scholar] [CrossRef]
- Bazargani, M.M.; Rohloff, J. Antibiofilm Activity of Essential Oils and Plant Extracts against Staphylococcus aureus and Escherichia coli Biofilms. Food Control 2016, 61, 156–164. [Google Scholar] [CrossRef]
- Miranda, G.S.; Santana, G.S.; Machado, B.B.; Coelho, F.P.; Carvalho, C.A. Atividade Antibacteriana in Vitro de Quatro Espécies Vegetais Em Diferentes Graduações Alcoólicas. Rev. Bras. Plantas Med. 2013, 15, 104–111. [Google Scholar] [CrossRef]
- Muruzović, M.Ž.; Mladenović, K.G.; Stefanović, O.D.; Vasić, S.M.; Čomić, L.R. Extracts of Agrimonia eupatoria L. as Sources of Biologically Active Compounds and Evaluation of Their Antioxidant, Antimicrobial, and Antibiofilm Activities. J. Food Drug Anal. 2016, 24, 539–547. [Google Scholar] [CrossRef] [PubMed]
- Nostro, A.; Guerrini, A.; Marino, A.; Tacchini, M.; Di Giulio, M.; Grandini, A.; Akin, M.; Cellini, L.; Bisignano, G.; Sarac, H.T. In Vitro Activity of Plant Extracts against Biofilm-Producing Food-Related Bacteria. Int. J. Food Microbiol. 2016, 238, 33–39. [Google Scholar] [CrossRef] [PubMed]
- Silva, V.D.M.; Macedo, M.C.C.; dos Santos, A.N.; Silva, M.R.; Augusti, R.; Lacerda, I.C.A.; Melo, J.O.F.; Fante, C.A. Bioactive Activities and Chemical Profile Characterization Using Paper Spray Mass Spectrometry of Extracts of Eriobotrya japonica Lindl. Leaves. Rapid Commun. Mass Spectrom. 2020, 34, e8883. [Google Scholar] [CrossRef] [PubMed]
- Amaral, T.N.; Junque Ora, L.A.; Alves, C.C.D.; Dloveora, N.L.; Pradd, M.E.T.; Resende, J.V. De Extraction of Hydrocolloids from Pereskia aculeata Miller: Reuse of Process Residue as Activated Carbon for the Pigment-Removal Phase. Food Sci. Technol. 2018, 38, 77–85. [Google Scholar] [CrossRef]
- Reinas, A.E.; Hoscheid, J.; Outuki, P.M.; Cardoso, M.L.C. Preparation and Characterization of Microcapsules of Pterodon Pubescens Benth. By Using Natural Polymers. Braz. J. Pharm. Sci. 2014, 50, 919–930. [Google Scholar] [CrossRef]
- Oliveira, R.N.; Mancini, M.C.; de Oliveira, F.C.S.; Passos, T.M.; Quilty, B.; Thiré, R.M.d.S.M.; McGuinness, G.B. FTIR Analysis and Quantification of Phenols and Flavonoids of Five Commercially Available Plants Extracts Used in Wound Healing. Rev. Mater. 2016, 21, 767–779. [Google Scholar] [CrossRef]
- Oliveira, T.Í.S.; Rosa, M.F.; Cavalcante, F.L.; Pereira, P.H.F.; Moates, G.K.; Wellner, N.; Mazzetto, S.E.; Waldron, K.W.; Azeredo, H.M.C. Optimization of Pectin Extraction from Banana Peels with Citric Acid by Using Response Surface Methodology. Food Chem. 2016, 198, 113–118. [Google Scholar] [CrossRef]
- Pelissari, F.M.; Sobral, P.J.d.A.; Menegalli, F.C. Isolation and Characterization of Cellulose Nanofibers from Banana Peels. Cellulose 2014, 21, 417–432. [Google Scholar] [CrossRef]
- Ragupathi Raja Kannan, R.; Arumugam, R.; Anantharaman, P. Fourier Transform Infrared Spectroscopy Analysis of Seagrass Polyphenols. Curr. Bioact. Compd. 2011, 7, 118–125. [Google Scholar] [CrossRef]
- Silva, S.H.; Neves, I.C.O.; Oliveira, N.L.; de Oliveira, A.C.F.; Lago, A.M.T.; de Oliveira Giarola, T.M.; de Resende, J.V. Extraction Processes and Characterization of the Mucilage Obtained from Green Fruits of Pereskia aculeata Miller. Ind. Crops Prod. 2019, 140, 111716. [Google Scholar] [CrossRef]
- Saha, D.; Bhattacharya, S. Hydrocolloids as Thickening and Gelling Agents in Food: A Critical Review. J. Food Sci. Technol. 2010, 47, 587–597. [Google Scholar] [CrossRef] [PubMed]
- El-din, G.A.; Amer, A.A.; Malsh, G.; Hussein, M. Study on the Use of Banana Peels for Oil Spill Removal. Alex. Eng. J. 2018, 57, 2061–2068. [Google Scholar] [CrossRef]
- Lupoi, J.S.; Gjersing, E.; Davis, M.F. Evaluating Lignocellulosic Biomass, Its Derivatives, and Downstream Products with Raman Spectroscopy. Front. Bioeng. Biotechnol. 2015, 3, 50. [Google Scholar] [CrossRef] [PubMed]
- Martins, Q.; Felix Arinos, N.; Aguirre, C.; Brito de Faria, J. Pereskia aculeata Vibrational Model by Raman Characterization and DFT Method. Int. J. Innov. Educ. Res. 2021, 9, 485–505. [Google Scholar] [CrossRef]
- Conceição, M.C.; Junqueira, L.A.; Silva, K.C.G.; Prado, M.E.T.; de Resende, J.V. Thermal and Microstructural Stability of a Powdered Gum Derived from Pereskia aculeata Miller Leaves. Food Hydrocoll. 2014, 40, 104–114. [Google Scholar] [CrossRef]
- Alves, P.L.D.S.; Ascheri, J.L.R. Analise Por Imagem e Microscopia Electrônica Por Varredura Das Farinhas Extrudadas de Arroz e Maracujá. Hig. Aliment 2016, 30, 144–148. [Google Scholar]
- Liew, S.Q.; Ngoh, G.C.; Yusoff, R.; Teoh, W.H. Sequential Ultrasound-Microwave Assisted Acid Extraction (UMAE) of Pectin from Pomelo Peels. Int. J. Biol. Macromol. 2016, 93, 426–435. [Google Scholar] [CrossRef]
- Sato, R.; Cilli, L.P.D.L.; de Oliveira, B.E.; Maciel, V.B.V.; Venturini, A.C.; Yoshida, C.M.P. Nutritional Improvement of Pasta with Pereskia aculeata Miller: A Non-Conventional Edible Vegetable. Food Sci. Technol. 2019, 39, 28–34. [Google Scholar] [CrossRef]
- Squena, A.P.; dos Santos, V.L.P.; Franco, C.R.C.; Budel, J.M. Morpho-Anatomy Analysis of Aerial Vegetative Parts of Pereskia aculeata Mill. CactaceaE. Cad. Esc. Saúde 2012, 8, 189–207. [Google Scholar]
- Renault, F.; Sancey, B.; Badot, P.M.; Crini, G. Chitosan for Coagulation/Flocculation Processes—An Eco-Friendly Approach. Eur. Polym. J. 2009, 45, 1337–1348. [Google Scholar] [CrossRef]
- Wang, Q.; Ellis, P.R.; Ross-Murphy, S.B. Dissolution Kinetics of Guar Gum Powders. I. Methods for Commercial Polydisperse Samples. Carbohydr. Polym. 2002, 49, 131–137. [Google Scholar] [CrossRef]
- Monteiro, R.L.; Garcia, A.H.; Tribuzi, G.; Mattar Carciofi, B.A.; Laurindo, J.B. Microwave Vacuum Drying of Pereskia aculeata Miller Leaves: Powder Production and Characterization. J. Food Process Eng. 2021, 44, e13612. [Google Scholar] [CrossRef]
- Al Kadhi, O.; Melchini, A.; Mithen, R.; Saha, S. Development of a LC-MS/MS Method for the Simultaneous Detection of Tricarboxylic Acid Cycle Intermediates in a Range of Biological Matrices. J. Anal. Methods Chem. 2017, 2017, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Abu-reidah, I.M.; Ali-shtayeh, M.S.; Jamous, R.M.; Arráez-román, D.; Segura-carretero, A. HPLC—DAD—ESI-MS/MS Screening of Bioactive Components from Rhus coriaria L. (Sumac) Fruits. Food Chem. 2015, 166, 179–191. [Google Scholar] [CrossRef]
- Sun, J.; Liang, F.; Bin, Y.; Li, P.; Duan, C. Screening Non-Colored Phenolics in Red Wines Using Liquid Chromatography/Ultraviolet and Mass Spectrometry/Mass Spectrometry Libraries. Molecules 2007, 12, 679–693. [Google Scholar] [CrossRef]
- Aaby, K.; Ekeberg, D.; Skrede, G. Characterization of Phenolic Compounds in Strawberry (Fragaria × ananassa) Fruits by Different HPLC Detectors and Contribution of Individual Compounds to Total Antioxidant Capacity. J. Agric. Food Chem. 2007, 55, 4395–4406. [Google Scholar] [CrossRef]
- Kang, J.; Price, W.E.; Ashton, J.; Tapsell, L.C.; Johnson, S. Identification and Characterization of Phenolic Compounds in Hydromethanolic Extracts of Sorghum Wholegrains by LC-ESI-MSn. Food Chem. 2016, 211, 215–226. [Google Scholar] [CrossRef]
- Chen, B.; Long, P.; Sun, Y.; Meng, Q.; Liu, X.; Cui, H.; Lv, Q.; Zhang, L. The Chemical Profiling of Loquat Leaf Extract by HPLC-DAD-ESI-MS and Its Effects on Hyperlipidemia and Hyperglycemia in Rats Induced by a High-Fat and Fructose Diet. Food Funct. 2017, 8, 687–694. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, M.; Shi, T.; Guo, C.; Huang, Y.; Chen, Y.; Xie, M. Recovery of Dietary Fiber and Polyphenol from Grape Juice Pomace and Evaluation of Their Functional Properties and Polyphenol Compositions. Food Funct. 2017, 8, 341–351. [Google Scholar] [CrossRef]
- Simirgiotis, M.J.; Schmeda-Hirschmann, G.; Bórquez, J.; Kennelly, E.J. The Passiflora Tripartita (Banana Passion) Fruit: A Source of Bioactive Flavonoid C-Glycosides Isolated by HSCCC and Characterized by HPLC-DAD-ESI/MS/MS. Molecules 2013, 18, 1672–1692. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Gu, Z.; Liu, X.; Liu, J.; Ma, M.; Chen, B.; Wang, L. Rapid Analysis of Corni Fructus Using Paper Spray-Mass Spectrometry. Phytochem. Anal. 2017, 28, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.H.; Guo, H.; Xu, W.B.; Ge, J.; Li, X.; Alimu, M.; He, D.J. Rapid Identification of Flavonoid Constituents Directly from PTP1B Inhibitive Extract of Raspberry (Rubus idaeus L.) Leaves by HPLC-ESI-QTOF-MS-MS. J. Chromatogr. Sci. 2016, 54, 805–810. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Zhao, X.; Sun, C.; Li, X.; Chen, K. Phenolic Composition from Different Loquat (Eriobotrya japonica Lindl.) Cultivars Grown in China and Their Antioxidant Properties. Molecules 2015, 20, 542–555. [Google Scholar] [CrossRef]
- Souza, A.H.D.; Silva, B.M.; Silva, E.C.D.; Augusti, R.; Melo, J.O.F.; Carlos, L.D.A. Influence of Thermal Processing on the Characteristics and Chemical Profile of Orapro- Nobis by PS/MS Paper Spray. Res. Soc. Dev. 2021, 10, e12110212119. [Google Scholar] [CrossRef]
- Liskova, A.; Koklesova, L.; Samec, M.; Smejkal, K.; Samuel, S.M.; Varghese, E.; Abotaleb, M.; Biringer, K.; Kudela, E.; Danko, J.; et al. Flavonoids in Cancer Metastasis. Cancers 2020, 12, 1498. [Google Scholar] [CrossRef]
- Gobbo-Neto, L.; Lopes, N.P. Online Identification of Chlorogenic Acids, Sesquiterpene Lactones, and Flavonoids in the Brazilian Arnica Lychnophora Ericoides Mart. (Asteraceae) Leaves by HPLC-DAD-MS and HPLC-DAD-MS/MS and a Validated HPLC-DAD Method for Their Simultaneous Analysis. J. Agric. Food Chem. 2008, 56, 1193–1204. [Google Scholar] [CrossRef]
- Silva, V.; Arquelau, P.; Silva, M.; Augusti, R.; Melo, J.; Fante, C. Use of Paper Spray-Mass Spectrometry to Determine the Chemical Profile of Ripe Banana Peel Flour and Evaluation of Its Physicochemical and Antioxidant Properties. Quim. Nova 2020, 43, 579–585. [Google Scholar] [CrossRef]
- Jia, C.; Zhu, A.Y.; Zhang, J.; Yang, J.; Xu, C.; Mao, D. Identification of Glycoside Compounds from Tobacco by High Performance Liquid Chromatography/Electrospray Ionization Linear Ion-Trap Tandem Mass Spectrometry Coupled with Electrospray Ionization Orbitrap Mass Spectrometry. J. Braz. Chem. Soc. 2017, 28, 629–640. [Google Scholar] [CrossRef]
- Ren, Q.; Long, S.S. Chemical Identification and Quantification of HU-GU Capsule by UHPLC–Q-TOF-MS and HPLC-DAD. Rev. Bras. Farmacogn. 2017, 27, 557–563. [Google Scholar] [CrossRef]
- Cavaliere, C.; Foglia, P.; Pastorini, E.; Samperi, R.; Laganà, A. Identification and Mass Spectrometric Characterization of Glycosylated Flavonoids in Triticum Durum Plants by High-Performance Liquid Chromatography with Tandem Mass Spectrometry. Rapid Commun. Mass Spectrom. 2005, 19, 3143–3158. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.W.; Luo, J.G.; Wang, J.S.; Lu, Y.Y.; Kong, L.Y. LC-DAD-ESI-MS-MS for Characterization and Quantitative Analysis of Diterpenoids from Coleus forskohlii. Chromatographia 2009, 70, 1635–1643. [Google Scholar] [CrossRef]
- Xiong, S.; Li, J.; Mu, Y.; Zhu, X.; Wang, X.; Zhang, Z. The Effects of Gender and Multiple Oral Dosing on the Pharmacokinetics and Bioavailability of Morroniside in Beagle Dogs: A Pilot Study. Indian J. Pharm. Sci. 2017, 79, 303–306. [Google Scholar] [CrossRef]
- Singh, B.; Singh, N.; Thakur, S.; Kaur, A. Ultrasound Assisted Extraction of Polyphenols and Their Distribution in Whole Mung Bean, Hull and Cotyledon. J. Food Sci. Technol. 2016, 54, 921–932. [Google Scholar] [CrossRef]
Method | EO10 * | EO20 * | EO30 * | EO40 * |
---|---|---|---|---|
TPC mg EAG.g−1 of extract | 2.35 ± 0.03 ab | 2.14 ± 0.04 bc | 2.07 ± 0.07 c | 2.60 ± 0.06 a |
AAT by ABTS *+ (μM de TE.g−1 of extract) | 10.24 ± 0.40 a | 9.00 ± 0.08 b | 6.38 ± 0.17 c | 7.14 ± 0.17 c |
AAT by FRAP (μM ferrous sulp.g−1 of extract) | 30.00 ± 0.27 ab | 24.34 ± 0.87 c | 32.13 ± 0.60 a | 27.37 ± 0.83 bc |
AAT by DPPH (μM of TE.g−1 of extract) | 24.48 ± 0.15 b | 28.22 ± 0.99 b | 70.20 ± 1.05 a | 61.20 ± 1.12 a |
Compound | EO10 * | EO20 * | EO30 * | EO40 * |
---|---|---|---|---|
Chlorogenic acid | 350.93 ± 0.01 d | 524.54 ± 0.00 a | 459.38 ±1.00 b | 364.48 ±0.03 c |
Gallic acid | 0.49 ± 0.17 d | 0.31± 0.09 c | 12.01 ± 0.20 b | 14.66 ± 0.11 a |
Caffeic acid | ND | ND | 29.03 ± 0.04 b | 31.23 ± 0.02 a |
Ellagic acid | 1.00 ± 0.25 d | 1.35 ± 0.02 c | 6.32 ± 0.00 b | 10.01 ± 0.01 a |
Quercetin | 0.05 ± 0.03 d | 0.10 ± 0.05 a | 0.08 ±0.01 c | 0.09 ± 0.08 b |
Catechin | ND | ND | ND | ND |
Staphylococcus aureus (ATCC 29213) | MRSA (ATCC 43300) | Escherichia coli (ATCC 35218) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
EO10 | EO20 | EO30 | EO40 | EO10 | EO20 | EO30 | EO40 | EO10 | EO20 | EO30 | EO40 |
6.25 | 1.56 | 3.13 | 6.25 | 25 | 12.5 | 50 | NA | NA | NA | NA | NA |
Compound | m/z | MS/MS | Reference |
---|---|---|---|
Organic acids | |||
Fumaric acid | 115 | 71 | (Al Kadhi et al. [67]) |
Mallic acid | 133 | 115 | (Abu-Reidah et al. [68]; Silva et al. [27]) |
Cumaric acid | 163 | 119 | (Abu-Reidah et al. [68]; Sun et al. [69]) |
Ferulic acid | 193 | 149 | (Wang et al. [30]) |
Fertaric acid | 325 | 163,193 | (Aaby et al. [70]; Abu-Reidah et al. [68]) |
Fatty acids | |||
Stearic acid | 283 | 237 | (Wang et al. [30]) |
Ricinoleic acid | 297 | 183 | (Wang et al. [30]) |
Eicosanoic acid | 311 | 293 | (Wang et al. [30]) |
Trihydroxy-octadecadienoic acid | 327 | 291,309 | (Kang et al. [71]) |
Phenolic acids | |||
Caffeic acid | 179 | 135 | (Kang et al. [71]) |
Quinic acid | 191 | 127,173 | (Abu-Reidah et al. [68]; Chen et al. [72]) |
5-feruloylquinic acid | 367 | 175 | (Zhang et al. [73]) |
Apigenin-6-C-glucoside | 431 | 431 | (Kang et al. [71]) |
Eriodictiol 6,8 di-C-glucoside flavonoid | 611 | 491,593 | (Simirgiotis et al. [74]) |
Sugars | |||
Hexose | 215 | 179 | (Guo et al. [75]; Silva et al. [27]) |
Saccharide | 371 | 113,121,231,249 | (Kang et al. [71]) |
Flavonoids | |||
Kaempferol–xylose | 417 | 152,285 | (Chen et al. [72]) |
Quercetin-3-rhamnoside | 447 | 447,300 | (Zhang et al. [73]) |
Verbonol | 453 | 435 | (Abu-Reidah et al. [68]) |
Quercetin-3-O-glucoside | 463 | 300,301,343 | (Li et al. [76]; Zhang et al. [77]) |
Taxifolin hexoside | 465 | 303,447 | (Kang et al. [71]) |
Dimethyl Ellagic acid hexoside | 491 | 454 | (Silva et al. [27]) |
Caffeoyl derivative hexose | 499 | 337 | (Kang et al. [71]) |
Kaempferol-3-O-rutinoside | 593 | 285,447 | (Silva et al. [27]; Wang et al. [30]) |
Rutin | 609 | 255,271,301,463 | (Chen et al. [72]; Silva et al. [27]; Wang et al. [30]) |
Naringin | 579 | 271,459 | (Sun et al. [69]) |
Isorhamnetin-3-O-rutinoside | 623 | 315 | (Souza et al. [78]) |
Vicenin II derivative | 629 | 593 | (Simirgiotis et al. [74]) |
Terpenes | |||
Sorhamnetin-7-O-glucopyranoside | 477 | 243,343 | (Wang et al. [30]) |
Metil corosolate | 485 | 423,467 | (Chen et al. [72]) |
Others | |||
Spinochrome A | 265 | 235 | (Abu-Reidah et al. [56]) |
Plastoquinone 3 | 339 | 135,163,203 | (Souza et al. [78]) |
Vaccihein A | 377 | 289,347,361 | (Souza et al. [78]) |
Compounds | m/z | MS/MS | Reference |
---|---|---|---|
Flavonoids | |||
3-O-methylquercetin | 317 | 121,193,245,274 | (Gobbo-Neto and Lopes [80]; Silva et al. [81]) |
6,8-di-C-β-glicopiranosil cristine | 579 | 495,507,543,561 | (Gobbo-Neto and Lopes [80]) |
Lucenine-2 (6,8-di-C-β-glucopiranosilluteoline | 611 | 527,593 | (Gobbo-Neto and Lopes [80]) |
Rutin | 633 | 331, 487,615 | (Jia et al. [82]) |
Tricin di-O,O-hexosídeo | 655 | 493 | (Silva et al. [81]) |
Sagittatoside A | 677 | 531 | (Ren and Long [83]) |
3-Hidroxicariine-O-glucose-rhamnose | 693 | 547 | (Ren and Long [83]) |
lolidide-β-D-glucopyranoside | 711 | 549,651,693 | (Jia et al. [82]) |
Chrysoeriol O,O-malonyl hexoside | 797 | 711 | (Cavaliere et al. [84]) |
Phytosterols | |||
Sitosterol | 397 | 247 | (Wang et al. [30]) |
Terpenes | |||
Deacetylforskolin | 369 | 235,431 | (Abu-Reidah et al. [68]; Zhang et al. [85]) |
Vomifoliol β-D- | 409 | 353,391,394 | (Jia et al. [71]) |
Dihidroisovaltrato | 425 | 365 | (Abu-Reidah et al. [68]) |
Ononin | 431 | 269,431 | (Ren and Long [83]) |
Sugars | |||
Sacarose | 365 | 185 | (Guo et al. [75]) |
Morroniside | 429 | 267 | (Guo et al. [75]; Xiong et al. [86]) |
Phenolic Acids | |||
Licanic acid | 293 | 257,275 | (Wang et al. [30]) |
Fatty Acids | |||
Magnoflorine | 342 | 282,342 | (Ren and Long [83]) |
Others | |||
L arginine | 175 | 129 | (Silva et al. [27]) |
Diallyl phthalate | 247 | 187 | (Ren and Long [83]) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macedo, M.C.C.; Silva, V.D.M.; Serafim, M.S.M.; da Veiga Correia, V.T.; Pereira, D.T.V.; Amante, P.R.; da Silva, A.S.J.; de Oliveira Prata Mendonça, H.; Augusti, R.; de Paula, A.C.C.F.F.; et al. Elaboration and Characterization of Pereskia aculeate Miller Extracts Obtained from Multiple Ultrasound-Assisted Extraction Conditions. Metabolites 2023, 13, 691. https://doi.org/10.3390/metabo13060691
Macedo MCC, Silva VDM, Serafim MSM, da Veiga Correia VT, Pereira DTV, Amante PR, da Silva ASJ, de Oliveira Prata Mendonça H, Augusti R, de Paula ACCFF, et al. Elaboration and Characterization of Pereskia aculeate Miller Extracts Obtained from Multiple Ultrasound-Assisted Extraction Conditions. Metabolites. 2023; 13(6):691. https://doi.org/10.3390/metabo13060691
Chicago/Turabian StyleMacedo, Maria Clara Coutinho, Viviane Dias Medeiros Silva, Mateus Sá Magalhães Serafim, Vinícius Tadeu da Veiga Correia, Débora Tamires Vitor Pereira, Patrícia Regina Amante, Antônio Soares Júnior da Silva, Henrique de Oliveira Prata Mendonça, Rodinei Augusti, Ana Cardoso Clemente Filha Ferreira de Paula, and et al. 2023. "Elaboration and Characterization of Pereskia aculeate Miller Extracts Obtained from Multiple Ultrasound-Assisted Extraction Conditions" Metabolites 13, no. 6: 691. https://doi.org/10.3390/metabo13060691
APA StyleMacedo, M. C. C., Silva, V. D. M., Serafim, M. S. M., da Veiga Correia, V. T., Pereira, D. T. V., Amante, P. R., da Silva, A. S. J., de Oliveira Prata Mendonça, H., Augusti, R., de Paula, A. C. C. F. F., Melo, J. O. F., Pires, C. V., & Fante, C. A. (2023). Elaboration and Characterization of Pereskia aculeate Miller Extracts Obtained from Multiple Ultrasound-Assisted Extraction Conditions. Metabolites, 13(6), 691. https://doi.org/10.3390/metabo13060691