Effects of Different Physical Training Protocols on Metabolic Syndrome Indicators and the Activity of Butyrylcholinesterase in Adolescents: A Randomized Clinical Trial
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design, Research Location, and Participants
2.2. Procedures, Parameters, and Indicators for Analysis
2.3. Intervention Protocols
- Control Group (CG): 11 females with an average age of 15.2 ± 1.3 years and 9 males with an average age of 16.4 ± 1.3 years.
- Aerobic Training Group (ATG): 10 females with an average age of 15.4 ± 1.1 years and 10 males with an average age of 16.7 ± 1.1 years.
- Strength Training Group (STG): 10 females with an average age of 17.0 ± 1.3 years and 10 males with an average age of 16.9 ± 0.2 years.
- Competitive Training Group (CTG): 11 females with an average age of 16.0 ± 1.15 years and 9 males with an average age of 17.4 ± 1.5 years.
2.4. Statistical Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bovolini, A.; Garcia, J.; Andrade, M.A.; Duarte, J.A. Metabolic syndrome pathophysiology and predisposing factors. Int. J. Sports Med. 2021, 42, 199–214. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The global epidemic of the metabolic syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- De Boer, M.D. Assessing and managing the metabolic syndrome in children and adolescents. Nutrients 2019, 11, 1788. [Google Scholar] [CrossRef] [PubMed]
- Rosini, N.; Moura, S.A.Z.O.; Rosini, R.D.; Machado, M.J.; Silva, E.L. Metabolic syndrome and importance of associated variables in children and adolescents in Guabiruba-SC, Brazil. Arq. Bras. Cardiol. 2015, 105, 37–44. [Google Scholar] [CrossRef]
- Weihe, P.; Weihrauch-Blüher, S. Metabolic syndrome in children and adolescents: Diagnostic criteria, therapeutic options and perspectives. Curr. Obes. Rep. 2019, 8, 472–479. [Google Scholar] [CrossRef] [PubMed]
- Mancini, M.C. Metabolic syndrome in children and adolescents—Criteria for diagnosis. Diabetol. Metab. Syndr. 2009, 1, 20. [Google Scholar] [CrossRef] [PubMed]
- Rossi, J.L.S.; Barbalho, S.M.; Araujo, R.R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes Metab. Res. Rev. 2022, 38, e3502. [Google Scholar] [CrossRef] [PubMed]
- De Bona, K.S.; Bonfanti, G.; Bitencourt, P.E.; Cargnelutti, L.O.; da Silva, P.S.; De Lucca, L.; Pimentel, V.C.; Tatsch, E.; Gonçalves, T.L.; Premaor, M.; et al. Butyrylcholinesterase and γ-glutamyltransferase activities and oxidative stress markers are altered in metabolic syndrome, but are not affected by body mass index. Inflammation 2013, 36, 1539–1547. [Google Scholar] [CrossRef] [PubMed]
- Chu, M.I.; Fontaine, P.; Kutty, K.M.; Murphy, D.; Redheendran, R. Cholinesterase in serum and low density lipoprotein of hyperlipidemic patients. Clin. Chim. Acta 1978, 85, 55–59. [Google Scholar] [CrossRef]
- Randell, E.W.; Mathews, M.S.; Zhang, H.; Seraj, J.S.; Sun, G. Relationship between serum butyrylcholinesterase and the metabolic syndrome. Clin. Biochem. 2005, 38, 799–805. [Google Scholar] [CrossRef]
- Lima, J.K.; Leite, N.; Turek, L.V.; Souza, R.L.R.; da Silva Timossi, L.; Osiecki, A.C.V.; Furtado-Alle, L. 1914G variant of BCHE gene associated with enzyme activity, obesity and triglyceride levels. Gene 2013, 532, 24–26. [Google Scholar] [CrossRef]
- Turecký, L.; Kupčová, V.; Urfinová, M.; Repiský, M.; Uhlíková, E. Serum butyrylcholinesterase/HDL-cholesterol ratio and atherogenic index of plasma in patients with fatty liver disease. Vnitr. Lek. 2021, 67, 4–8. [Google Scholar] [CrossRef]
- Vallianou, N.G.; Evangelopoulos, A.A.; Bountziouka, V.; Bonou, M.S.; Katsagoni, C.; Vogiatzakis, E.D. Association of butyrylcholinesterase with cardiometabolic risk factors among apparently healthy adults. J. Cardiovasc. Med. 2014, 15, 377–383. [Google Scholar] [CrossRef]
- Kálmán, J.; Juhász, A.; Rakonczay, Z.; Ábrahám, G.; Zana, M.; Boda, K.; Farkas, T.; Penke, B.; Janka, Z. Increased serum butyrylcholinesterase activity in type IIb hyperlipidaemic patients. Life Sci. 2004, 75, 1195–1204. [Google Scholar] [CrossRef]
- Milano, G.E.; Leite, N.; Chaves, T.J.; Milano, G.E.; Souza, R.L.R.; Alle, L.F. Butyrylcholinesterase activity and cardiovascular risk factors in obese adolescents submitted to an exercise program. Arq. Bras. Endocrinol. Metabol. 2013, 57, 533–537. [Google Scholar] [CrossRef]
- Tangvarasittichai, S.; Pongthaisongm, S.; Meemark, S.; Tangvarasittichai, O. Abdominal obesity associated with elevated serum butyrylcholinesterase activity, insulin resistance and reduced high density lipoprotein-cholesterol levels. Indian J. Clin. Biochem. 2015, 30, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Tataka, Y.; Sakazaki, M.; Kamemoto, K.; Nagayama, C.; Yoshikawa, Y.; Yamada, Y.; Miyashita, M. Acute effects of exercise intensity on butyrylcholinesterase and ghrelin in young men: A randomized controlled study. J. Exerc. Sci. Fit. 2024, 22, 39–50. [Google Scholar] [CrossRef]
- Silva, I.M.; Leite, N.; Boberg, D.; Chaves, T.J.; Eisfeld, G.M.; Eisfeld, G.M.; Bono, G.F.; Souza, R.L.; Furtado-Alle, L. Effects of physical exercise on butyrylcholinesterase in obese adolescents. Genet. Mol. Biol. 2012, 35, 741–742. [Google Scholar] [CrossRef] [PubMed]
- Mann, S.; Beedie, C.; Jimenez, A. Differential effects of aerobic exercise, resistance training and combined exercise modalities on cholesterol and the lipid profile: Review, synthesis and recommendations. Sports Med. 2014, 44, 211–221. [Google Scholar] [CrossRef] [PubMed]
- IBGE—Brazilian Institute of Geography and Statistics: Demographic Census 2022: Alfenas, MG. Rio de Janeiro, IBGE. 2022. Available online: https://censo2022.ibge.gov.br/panorama/ (accessed on 20 April 2024).
- Tanner, J.M. Growth at Adolescence, 2nd ed.; Blackwell Scientific Publications: Oxford, UK, 1962. [Google Scholar]
- Dietz, A.A.; Rubinstein, H.M.; Lubrano, T.E.; Hodges, L.K. Improved method for the differentiation of cholinesterase variants. Am. J. Hum. Genet. 1972, 24, 58–64. [Google Scholar]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Feather-Stone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Mendes, B.W.A.; de Lima, R.A.; Costa, S.A.C.; da Silva, G.R.; Terra, G.D.S.V.; Neiva, C.M.; Rosa, B.B. Strength and competitor training in adolescents with overweight integration of the Generation Health Project. Rev. da Univ. Vale do Rio Verde 2018, 16, 1–10. [Google Scholar]
- Santana, M.G.; Tufik, S.; Passos, G.S.; Santee, D.M.; Denadai, B.S.; Mello, M.T. Comparison between different methods of analysis of slow component of oxygen uptake: A view in severe exercise domain. Rev. Bras. de Med. do Esporte 2007, 13, 241–244. [Google Scholar] [CrossRef]
- Jonas, S.; Phillips, E. The exercise prescription. In ACSM’s Exercise Is Medicine: A Clinician’s Guide to Exercise Prescription, 1st ed.; Wolters Kluwer Health/Lippincott Williams & Wilkins: Philadelphia, PA, USA, 2009; pp. 1–259. [Google Scholar]
- Watts, K.; Beye, P.; Siafarikas, A.; Davis, E.A.; Jones, T.W.; O’Driscoll, G.; Green, D.J. Exercise training normalizes vascular dysfunction and improves central adiposity in obese adolescents. J. Am. Coll. Cardiol. 2004, 43, 1823–1827. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Ma, Y.; Liu, Y.; Zhao, Z.; Zhen, S.; Yang, X.; Xu, Z.; Wen, D. Plasma cholinesterase is associated with Chinese adolescent overweight or obesity and metabolic syndrome prediction. Diabetes Metab. Syndr. Obes. 2019, 12, 685–702. [Google Scholar] [CrossRef]
- Furtado-Alle, L.; Andrade, F.A.; Nunes, K.; Mikami, L.R.; Souza, R.L.R.; Chautard-Freire-Maia, E.A. Association of variants of the -116 site of the butyrylcholinesterase BCHE gene to enzyme activity and body mass index. Chem. Biol. Interact. 2008, 175, 115–118. [Google Scholar] [CrossRef] [PubMed]
- Boberg, D.R.; Furtado-Alle, L.; Souza, R.L.; Chautard-Freire-Maia, E.A. Molecular forms of butyrylcholinesterase and obesity. Genet. Mol. Biol. 2010, 33, 452–454. [Google Scholar] [CrossRef] [PubMed]
- Dorling, J.L.; Clayton, D.J.; Jones, J.; Carter, W.G.; Thackray, A.E.; King, J.A.; Pucci, A.; Batterham, R.L.; Stensel, D.J. A randomized crossover trial assessing the effects of acute exercise on appetite, circulating ghrelin concentrations, and butyrylcholinesterase activity in normal-weight males with variants of the obesity-linked FTO rs9939609 polymorphism. Am. J. Clin. Nutr. 2019, 110, 1055–1066. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Tataka, Y.; Kamemoto, K.; Wen, H.; Yamanaka, K.; Nagayama, C.; Miyashita, M. Does butyrylcholinesterase mediate exercise-induced and meal-induced suppression in acylated ghrelin? Endocr. J. 2022, 69, 1395–1405. [Google Scholar] [CrossRef]
- Javaherian, M.; Dabbaghipour, N.; Mohammadpour, Z.; Moghadam, B.A. The role of the characteristics of exercise-based cardiac rehabilitation program in the improvement of lipid profile level: A systematic review and meta-analysis. ARYA Atheroscler. 2020, 16, 192–207. [Google Scholar] [CrossRef]
- Chen, T.; Lin, J.; Lin, Y.; Xu, L.; Lu, D.; Li, F.; Hou, L.; Yu, C.C.W. Effects of aerobic exercise and resistance exercise on physical indexes and cardiovascular risk factors in obese and overweight school-age children: A systematic review and meta-analysis. PLoS ONE 2021, 16, e0257150. [Google Scholar] [CrossRef] [PubMed]
- Shaw, I.; Shaw, B.S.; Krasilshchikov, O. Comparison of aerobic and combined aerobic and resistance training on low-density lipoprotein cholesterol concentrations in men. Cardiovasc. J. Afr. 2009, 20, 290–295. Available online: https://hdl.handle.net/10520/EJC23288 (accessed on 10 January 2024). [PubMed]
- García-Hermoso, A.; Ramírez-Vélez, R.; Ramírez-Campillo, R.; Peterson, M.D.; Martínez-Vizcaíno, V. Concurrent aerobic plus resistance exercise versus aerobic exercise alone to improve health outcomes in paediatric obesity: A systematic review and meta-analysis. Br. J. Sports Med. 2018, 52, 161–166. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, A.; Moheb-Mohammadi, F.; Navabi, Z.S.; Dehghani, M.; Heydari, H.; Sajjadi, F.; Khodarahmi, S. The effects of aerobic training, resistance training, combined training, and healthy eating recommendations on lipid profile and body mass index in overweight and obese children and adolescents: A randomized clinical trial. ARYA Atheroscler. 2020, 16, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Iraji, H.; Minasian, V.; Kelishadi, R. Changes in liver enzymes and metabolic profile in adolescents with fatty liver following exercise interventions. Pediatr. Gastroenterol. Hepatol. Nutr. 2021, 24, 54–64. [Google Scholar] [CrossRef] [PubMed]
- Alpsoy, Ş. Exercise and hypertension. Adv. Exp. Med. Biol. 2020, 1228, 153–167. [Google Scholar] [CrossRef] [PubMed]
- Busnatu, S.S.; Serbanoiu, L.I.; Lacraru, A.E.; Andrei, C.L.; Jercalau, C.E.; Stoian, M.; Stoian, A. Effects of exercise in improving cardiometabolic risk factors in overweight children: A systematic review and meta-analysis. Healthcare 2022, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Cao, Y.; Zhu, L.; Liu, J. Effects of aerobic exercise on obese children with metabolic syndrome: A systematic review and meta-analysis. J. Pediatr. Endocrinol. Metab. 2021, 34, 1069–1079. [Google Scholar] [CrossRef] [PubMed]
- Ketelhut, S.; Ketelhut, S.R.; Ketelhut, K. School-based exercise intervention improves blood pressure and parameters of arterial stiffness in children: A randomized controlled trial. Pediatr. Exerc. Sci. 2020, 33, 1–7. [Google Scholar] [CrossRef]
- Guillem, C.M.; Loaiza-Betancur, A.F.; Rebullido, T.R.; Faigenbaum, A.D.; Chulvi-Medrano, I. The effects of resistance training on blood pressure in preadolescents and adolescents: A systematic review and meta-analysis. Int. J. Environ. Res. Public Health 2020, 17, 7900. [Google Scholar] [CrossRef]
Variables | CG | ATG | STG | CTG | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pre | Post | p | Pre | Post | p | Pre | Post | p | Pre | Post | p | |
BChE (KU/L) | 3.97 ± 1.51 | 4.35 ± 1.45 | <0.01 | 4.00 ± 1.44 | 2.96 ± 1.09 | <0.01 | 4.30 ± 1.10 | 4.22 ± 1.40 | 0.85 | 3.67 ± 0.96 | 4.38 ± 1.05 | 0.03 |
TC (mg/dL) | 156.8 ± 30.0 | 156.8 ± 29.9 | 1.00 | 158.8 ± 29.0 | 135.4 ± 22.3 | <0.01 | 144.9 ± 18.5 | 149.4 ± 16.8 | 0.40 | 148.2 ± 24.2 | 138.2 ± 12.7 | 0.11 |
LDL (mg/dL) | 109.8 ± 33.4 | 112.2 ± 33.0 | 0.02 | 112.7 ± 32.9 | 95.5 ± 29.38 | <0.01 | 101.5 ± 12.7 | 90.9 ± 10.1 | <0.01 | 95.6 ± 13.7 | 80.9 ± 11.7 | <0.01 |
HDL (mg/dL) | 37.8 ± 5.6 | 37.5 ± 4.8 | 0.56 | 38.0 ± 5.4 | 48.9 ± 7.3 | <0.01 | 36.0 ± 5.2 | 47.5 ± 6.4 | <0.01 | 36.7 ± 4.2 | 46.6 ± 6.9 | <0.01 |
TG (mg/dL) | 111.8 ± 42.9 | 113.9 ± 41.3 | 0.26 | 115.7 ± 42.3 | 96.5 ± 29.7 | 0.04 | 115.4 ± 25.5 | 95.0 ± 23.7 | <0.01 | 108.1 ± 43.9 | 98.8 ± 33.7 | 0.03 |
Glycemia (mg/dL) | 91.1 ± 13.6 | 91.6 ± 9.8 | 0.91 | 92.8 ± 14.0 | 86.5 ± 11.4 | <0.01 | 109.6 ± 40.9 | 95.0 ± 24.7 | <0.01 | 98.5 ± 11.1 | 88.5 ± 13.8 | <0.01 |
WC (cm) | 94.2 ± 7.9 | 92.5 ± 9.2 | 0.11 | 94.0 ± 7.5 | 92.8 ± 8.8 | 0.20 | 96.7 ± 8.2 | 94.5 ± 9.1 | <0.01 | 93.5 ± 11.1 | 91.6 ± 10.4 | <0.01 |
DBP (mmHg) | 95.2 ± 4.3 | 92.2 ± 3.0 | 0.38 | 95.5 ± 4.2 | 84.7 ± 8.8 | <0.01 | 92.5 ± 5.7 | 83.5 ± 8.2 | <0.01 | 94.0 ± 5.5 | 89.2 ± 6.1 | <0.01 |
SBP (mmHg) | 135.2 ± 4.6 | 134.1 ± 4.6 | 0.02 | 135.2 ± 4.7 | 123.7 ± 9.9 | <0.01 | 135.7 ± 5.1 | 119.5 ± 8.0 | <0.01 | 134 ± 4.7 | 126.7 ± 9.0 | <0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
da Silva, G.R.; Terra, G.D.S.V.; de Oliveira, D.M.; Fernandes, E.V.; Zechin, E.J.; Soares, A.R.; Pessoa-Filho, D.M.; Neiva, C.M. Effects of Different Physical Training Protocols on Metabolic Syndrome Indicators and the Activity of Butyrylcholinesterase in Adolescents: A Randomized Clinical Trial. Metabolites 2024, 14, 422. https://doi.org/10.3390/metabo14080422
da Silva GR, Terra GDSV, de Oliveira DM, Fernandes EV, Zechin EJ, Soares AR, Pessoa-Filho DM, Neiva CM. Effects of Different Physical Training Protocols on Metabolic Syndrome Indicators and the Activity of Butyrylcholinesterase in Adolescents: A Randomized Clinical Trial. Metabolites. 2024; 14(8):422. https://doi.org/10.3390/metabo14080422
Chicago/Turabian Styleda Silva, Giuliano Roberto, Gerusa Dias Siqueira Vilela Terra, David Michel de Oliveira, Eduardo Vignoto Fernandes, Emerson José Zechin, Arthur Rizzi Soares, Dalton Muller Pessoa-Filho, and Cassiano Merussi Neiva. 2024. "Effects of Different Physical Training Protocols on Metabolic Syndrome Indicators and the Activity of Butyrylcholinesterase in Adolescents: A Randomized Clinical Trial" Metabolites 14, no. 8: 422. https://doi.org/10.3390/metabo14080422
APA Styleda Silva, G. R., Terra, G. D. S. V., de Oliveira, D. M., Fernandes, E. V., Zechin, E. J., Soares, A. R., Pessoa-Filho, D. M., & Neiva, C. M. (2024). Effects of Different Physical Training Protocols on Metabolic Syndrome Indicators and the Activity of Butyrylcholinesterase in Adolescents: A Randomized Clinical Trial. Metabolites, 14(8), 422. https://doi.org/10.3390/metabo14080422