Alcohol Exposure May Increase Prenatal Choline Needs Through Redirection of Choline into Lipid Synthesis Rather than Methyl Donation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Diet
2.2. Metabolomics and Data Analysis
3. Results
3.1. Alcohol Alters the Abundance of Choline-Related Metabolites in the Maternal–Fetal Dyad
3.1.1. Choline
3.1.2. CDP–Choline Pathway
3.1.3. PEMT Pathway
3.1.4. Methyl Donor Pathway
3.1.5. Other Metabolites
3.2. Plasma Choline-Related Metabolites Correlate with Pregnancy and Fetal Outcomes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
5MeTHF | 5-Methyltetrahydrofolate |
AI | Adequate intake |
ALC | Alcohol-exposed |
ARND | Alcohol-related neurodevelopment disorder |
AUC | Ares under the curve |
CDH | Choline dehydrogenase |
CDP | Cytidine diphosphate |
Cho | Choline-treated |
CK | Choline kinase |
CON | Control |
DNA | Deoxyribonucleic acid |
E | Embryonic day |
FASD | Fetal Alcohol Spectrum Disorder |
FC | Fold change |
FDR | False discovery rate |
g | Gram |
kg | Kilogram |
mg | Milligram |
NAD | Nicotinamide adenine dinucleotide |
ND | Not detected |
PAE | Prenatal alcohol exposure |
PEMT | Phosphatidylethanolamine methyltransferase |
RNA | Ribonucleic acid |
SAH | S-adenosylhomocysteine |
SAM | S-adenosylmethionine |
THF | Tetrahydrofolate |
TMAO | Trimethylamine N-oxide |
UPLC-MS | Ultra-high-performance liquid chromatography-mass spectrometry |
VLDL | Very low-density lipoprotein |
References
- Arcangeli, T.; Thilaganathan, B.; Hooper, R.; Khan, K.S.; Bhide, A. Neurodevelopmental Delay in Small Babies at Term: A Systematic Review. Ultrasound Obstet. Gynecol. 2012, 40, 267–275. [Google Scholar] [CrossRef] [PubMed]
- Hasken, J.M.; Marais, A.-S.; de Vries, M.; Joubert, B.; Cloete, M.; Botha, I.; Symington, S.R.; Kalberg, W.O.; Buckley, D.; Robinson, L.K.; et al. Gestational Age and Birth Growth Parameters as Early Predictors of Fetal Alcohol Spectrum Disorders. Alcohol. Clin. Exp. Res. 2021, 45, 1624–1638. [Google Scholar] [CrossRef] [PubMed]
- Hoyme, H.E.; Kalberg, W.O.; Elliott, A.J.; Blankenship, J.; Buckley, D.; Marais, A.-S.; Manning, M.A.; Robinson, L.K.; Adam, M.P.; Abdul-Rahman, O.; et al. Updated Clinical Guidelines for Diagnosing Fetal Alcohol Spectrum Disorders. Pediatrics 2016, 138, e20154256. [Google Scholar] [CrossRef] [PubMed]
- Weider, S.; Lærum, A.M.W.; Evensen, K.A.I.; Reitan, S.K.; Lydersen, S.; Brubakk, A.M.; Skranes, J.; Indredavik, M.S. Neurocognitive Function and Associations with Mental Health in Adults Born Preterm with Very Low Birthweight or Small for Gestational Age at Term. Front. Psychol. 2023, 13, 1078232. [Google Scholar] [CrossRef]
- May, P.A.; Chambers, C.D.; Kalberg, W.O.; Zellner, J.; Feldman, H.; Buckley, D.; Kopald, D.; Hasken, J.M.; Xu, R.; Honerkamp-Smith, G.; et al. Prevalence of Fetal Alcohol Spectrum Disorders in 4 US Communities. JAMA 2018, 319, 474–483. [Google Scholar] [CrossRef]
- Gosdin, L.K. Alcohol Consumption and Binge Drinking During Pregnancy Among Adults Aged 18–49 Years—United States, 2018–2020. MMWR Morb. Mortal. Wkly. Rep. 2022, 71, 10–13. [Google Scholar] [CrossRef]
- Thomas, J.D.; Abou, E.J.; Dominguez, H.D. Prenatal Choline Supplementation Mitigates the Adverse Effects of Prenatal Alcohol Exposure on Development in Rats. Neurotoxicol Teratol. 2009, 31, 303–311. [Google Scholar] [CrossRef]
- Waddell, J.; Mooney, S.M. Choline and Working Memory Training Improve Cognitive Deficits Caused by Prenatal Exposure to Ethanol. Nutrients 2017, 9, 1080. [Google Scholar] [CrossRef]
- Akison, L.K.; Kuo, J.; Reid, N.; Boyd, R.N.; Moritz, K.M. Effect of Choline Supplementation on Neurological, Cognitive, and Behavioral Outcomes in Offspring Arising from Alcohol Exposure During Development: A Quantitative Systematic Review of Clinical and Preclinical Studies. Alcohol. Clin. Exp. Res. 2018, 42, 1591–1611. [Google Scholar] [CrossRef]
- Kable, J.A.; Coles, C.D.; Keen, C.L.; Uriu-Adams, J.Y.; Jones, K.L.; Yevtushok, L.; Kulikovsky, Y.; Wertelecki, W.; Pedersen, T.L.; Chambers, C.D. The Impact of Micronutrient Supplementation in Alcohol-Exposed Pregnancies on Information Processing Skills in Ukrainian Infants. Alcohol 2015, 49, 647–656. [Google Scholar] [CrossRef]
- Warton, F.L.; Molteno, C.D.; Warton, C.M.; Wintermark, P.; Lindinger, N.M.; Dodge, N.C.; Zöllei, L.; van der Kouwe, A.J.; Carter, R.C.; Jacobson, J.L.; et al. Maternal Choline Supplementation Mitigates Alcohol Exposure Effects on Neonatal Brain Volumes. Alcohol. Clin. Exp. Res. 2021, 45, 1762–1774. [Google Scholar] [CrossRef] [PubMed]
- Jacobson, S.W.; Carter, R.C.; Molteno, C.D.; Stanton, M.E.; Herbert, J.; Lindinger, N.M.; Lewis, C.E.; Dodge, N.C.; Hoyme, H.E.; Zeisel, S.H.; et al. Efficacy of Maternal Choline Supplementation During Pregnancy in Mitigating Adverse Effects of Prenatal Alcohol Exposure on Growth and Cognitive Function: A Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Alcohol. Clin. Exp. Res. 2018, 42, 1327–1341. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, J.R.; Fuglestad, A.J.; Eckerle, J.K.; Fink, B.A.; Hoecker, H.L.; Boys, C.J.; Radke, J.P.; Kroupina, M.G.; Miller, N.C.; Brearley, A.M.; et al. Choline Supplementation in Children with Fetal Alcohol Spectrum Disorders: A Randomized, Double-Blind, Placebo-Controlled Trial. Am. J. Clin. Nutr. 2015, 102, 1113–1125. [Google Scholar] [CrossRef] [PubMed]
- Wozniak, J.R.; Fink, B.A.; Fuglestad, A.J.; Eckerle, J.K.; Boys, C.J.; Sandness, K.E.; Radke, J.P.; Miller, N.C.; Lindgren, C.; Brearley, A.M.; et al. Four-Year Follow-up of a Randomized Controlled Trial of Choline for Neurodevelopment in Fetal Alcohol Spectrum Disorder. J. Neurodev. Disord. 2020, 12, 9. [Google Scholar] [CrossRef]
- Gimbel, B.A.; Anthony, M.E.; Ernst, A.M.; Roediger, D.J.; de Water, E.; Eckerle, J.K.; Boys, C.J.; Radke, J.P.; Mueller, B.A.; Fuglestad, A.J.; et al. Long-Term Follow-up of a Randomized Controlled Trial of Choline for Neurodevelopment in Fetal Alcohol Spectrum Disorder: Corpus Callosum White Matter Microstructure and Neurocognitive Outcomes. J. Neurodev. Disord. 2022, 14, 59. [Google Scholar] [CrossRef]
- Xu, F.; Thomas, J.D.; Goldowitz, D.; Hamre, K.M. The Ameliorative Effects of Choline on Ethanol-Induced Cell Death in the Neural Tube of Susceptible BXD Strains of Mice. Front. Neurosci. 2023, 17, 1203597. [Google Scholar] [CrossRef]
- Tang, N.; Bamford, P.; Jones, J.; He, M.; Kane, M.A.; Mooney, S.M.; Bearer, C.F. Choline partially prevents the impact of ethanol on the lipid raft dependent functions of L1 cell adhesion molecule. Alcohol. Clin. Exp. Res. 2014, 38, 2722–2730. [Google Scholar] [CrossRef]
- Balaraman, S.; Idrus, N.M.; Miranda, R.C.; Thomas, J.D. Postnatal Choline Supplementation Selectively Attenuates Hippocampal microRNA Alterations Associated with Developmental Alcohol Exposure. Alcohol 2017, 60, 159–167. [Google Scholar] [CrossRef]
- Otero, N.K.H.; Thomas, J.D.; Saski, C.A.; Xia, X.; Kelly, S.J. Choline supplementation and DNA methylation in the hippocampus and prefrontal cortex of rats exposed to alcohol during development. Alcohol. Clin. Exp. Res. 2012, 36, 1701–1709. [Google Scholar] [CrossRef]
- Bekdash, R.A.; Zhang, C.; Sarkar, D.K. Gestational Choline Supplementation Normalized Fetal Alcohol-Induced Alterations in Histone Modifications, DNA Methylation and POMC Gene Expression in β-Endorphin-Producing POMC Neurons of the Hypothalamus. Alcohol. Clin. Exp. Res. 2013, 37, 1133–1142. [Google Scholar] [CrossRef]
- Bottom, R.T.; Abbott, C.W.; Huffman, K.J. Rescue of Ethanol-Induced FASD-like Phenotypes via Prenatal Co-Administration of Choline. Neuropharmacology 2020, 168, 107990. [Google Scholar] [CrossRef] [PubMed]
- Bestry, M.; Larcombe, A.N.; Kresoje, N.; Chivers, E.K.; Bakker, C.; Fitzpatrick, J.P.; Elliott, E.J.; Craig, J.M.; Muggli, E.; Halliday, J.; et al. Early Moderate Prenatal Alcohol Exposure and Maternal Diet Impact Offspring DNA Methylation Across Species. eLife 2024, 12, RP92135. [Google Scholar] [CrossRef] [PubMed]
- Wallace, T.C.; Blusztajn, J.K.; Caudill, M.A.; Klatt, K.C.; Zeisel, S.H. Choline: The Neurocognitive Essential Nutrient of Interest to Obstetricians and Gynecologists. J. Diet. Suppl. 2020, 17, 733–752. [Google Scholar] [CrossRef] [PubMed]
- Obeid, R.; Derbyshire, E.; Schön, C. Association between Maternal Choline, Fetal Brain Development, and Child Neurocognition: Systematic Review and Meta-Analysis of Human Studies. Adv. Nutr. 2022, 13, 2445–2457. [Google Scholar] [CrossRef]
- Zeisel, S.H. Choline: Critical Role During Fetal Development and Dietary Requirements in Adults. Annu. Rev. Nutr. 2006, 26, 229–250. [Google Scholar] [CrossRef]
- Derbyshire, E.; Obeid, R. Choline, Neurological Development and Brain Function: A Systematic Review Focusing on the First 1000 Days. Nutrients 2020, 12, 1731. [Google Scholar] [CrossRef]
- Obeid, R.; Schön, C.; Derbyshire, E.; Jiang, X.; Mellott, T.J.; Blusztajn, J.K.; Zeisel, S.H. A Narrative Review on Maternal Choline Intake and Liver Function of the Fetus and the Infant; Implications for Research, Policy, and Practice. Nutrients 2024, 16, 260. [Google Scholar] [CrossRef]
- Wallace, T.C.; Fulgoni, V.L. Usual Choline Intakes Are Associated with Egg and Protein Food Consumption in the United States. Nutrients 2017, 9, 839. [Google Scholar] [CrossRef]
- Institute of Medicine (US); Food and Nutrition Board; Standing Committee on the Scientific Evaluation of Dietary Reference Intakes NAD Its Panel on Folate, Other B Vitamins, and Choline; Subcommittee on Upper Reference Levels of Nutrients Choline. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academies Press: Washington, DC, USA, 1998. [Google Scholar]
- Cole, L.K.; Vance, J.E.; Vance, D.E. Phosphatidylcholine Biosynthesis and Lipoprotein Metabolism. Biochim. Biophys. Acta (BBA)—Mol. Cell Biol. Lipids 2012, 1821, 754–761. [Google Scholar] [CrossRef]
- Zeisel, S.H.; Mar, M.-H.; Zhou, Z.; Da Costa, K.-A. Pregnancy and Lactation Are Associated with Diminished Concentrations of Choline and Its Metabolites in Rat Liver. J. Nutr. 1995, 125, 3049–3054. [Google Scholar] [CrossRef]
- Dymek, A.; Oleksy, Ł.; Stolarczyk, A.; Bartosiewicz, A. Choline—An Underappreciated Component of a Mother-to-Be’s Diet. Nutrients 2024, 16, 1767. [Google Scholar] [CrossRef] [PubMed]
- Kwan, S.T.; King, J.H.; Yan, J.; Jiang, X.; Wei, E.; Fomin, V.G.; Roberson, M.S.; Caudill, M.A. Maternal Choline Supplementation during Murine Pregnancy Modulates Placental Markers of Inflammation, Apoptosis and Vascularization in a Fetal Sex-Dependent Manner. Placenta 2017, 53, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Garner, S.C.; Mar, M.H.; Zeisel, S.H. Choline Distribution and Metabolism in Pregnant Rats and Fetuses Are Influenced by the Choline Content of the Maternal Diet. J. Nutr. 1995, 125, 2851–2858. [Google Scholar] [CrossRef]
- Yan, J.; Jiang, X.; West, A.A.; Perry, C.A.; Malysheva, O.V.; Brenna, J.T.; Stabler, S.P.; Allen, R.H.; Gregory, J.F.; Caudill, M.A. Pregnancy Alters Choline Dynamics: Results of a Randomized Trial Using Stable Isotope Methodology in Pregnant and Nonpregnant Women. Am. J. Clin. Nutr. 2013, 98, 1459–1467. [Google Scholar] [CrossRef]
- Taesuwan, S.; McDougall, M.Q.; Malysheva, O.V.; Bender, E.; Nevins, J.E.H.; Devapatla, S.; Vidavalur, R.; Caudill, M.A.; Klatt, K.C. Choline Metabolome Response to Prenatal Choline Supplementation across Pregnancy: A Randomized Controlled Trial. FASEB J. 2021, 35, e22063. [Google Scholar] [CrossRef]
- Kwan, S.T.; Ricketts, D.K.; Presswood, B.H.; Smith, S.M.; Mooney, S.M. Prenatal Choline Supplementation during Mouse Pregnancy Has Differential Effects in Alcohol-Exposed Fetal Organs. Alcohol. Clin. Exp. Res. 2021, 45, 2471–2484. [Google Scholar] [CrossRef]
- Smith, S.M.; Pjetri, E.; Friday, W.B.; Presswood, B.H.; Ricketts, D.K.; Walter, K.R.; Mooney, S.M. Aging-Related Behavioral, Adiposity, and Glucose Impairments and Their Association Following Prenatal Alcohol Exposure in the C57BL/6J Mouse. Nutrients 2022, 14, 1438. [Google Scholar] [CrossRef]
- Reeves, P.G.; Nielsen, F.H.; Fahey, G.C. AIN-93 Purified Diets for Laboratory Rodents: Final Report of the American Institute of Nutrition Ad Hoc Writing Committee on the Reformulation of the AIN-76A Rodent Diet. J. Nutr. 1993, 123, 1939–1951. [Google Scholar] [CrossRef]
- Virdee, M.S.; Saini, N.; Kay, C.D.; Neilson, A.P.; Kwan, S.T.C.; Helfrich, K.K.; Mooney, S.M.; Smith, S.M. An Enriched Biosignature of Gut Microbiota-Dependent Metabolites Characterizes Maternal Plasma in a Mouse Model of Fetal Alcohol Spectrum Disorder. Sci. Rep. 2021, 11, 248. [Google Scholar] [CrossRef]
- Zeisel, S.H.; Corbin, K.D. Choline. In Present Knowledge in Nutrition; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2012; pp. 405–418. ISBN 978-1-119-94604-5. [Google Scholar]
- Sullivan, G.M.; Feinn, R. Using Effect Size—Or Why the P Value Is Not Enough. J. Grad. Med. Educ. 2012, 4, 279–282. [Google Scholar] [CrossRef]
- Bernhard, W.; Böckmann, K.A.; Minarski, M.; Wiechers, C.; Busch, A.; Bach, D.; Poets, C.F.; Franz, A.R. Evidence and Perspectives for Choline Supplementation during Parenteral Nutrition—A Narrative Review. Nutrients 2024, 16, 1873. [Google Scholar] [CrossRef] [PubMed]
- Choline. In Handbook of Vitamins; Rucker, R.B., Zempleni, J., Suttie, J.W., McCormick, D.B., Eds.; CRC Press: Boca Raton, FL, USA, 2012; pp. 459–487. ISBN 978-0-429-18905-0. [Google Scholar]
- Anguera, M.C.; Field, M.S.; Perry, C.; Ghandour, H.; Chiang, E.-P.; Selhub, J.; Shane, B.; Stover, P.J. Regulation of Folate-Mediated One-Carbon Metabolism by 10-Formyltetrahydrofolate Dehydrogenase. J. Biol. Chem. 2006, 281, 18335–18342. [Google Scholar] [CrossRef]
- Ducker, G.S.; Rabinowitz, J.D. One-Carbon Metabolism in Health and Disease. Cell Metab. 2017, 25, 27–42. [Google Scholar] [CrossRef]
- Ducker, G.S.; Chen, L.; Morscher, R.J.; Ghergurovich, J.M.; Esposito, M.; Teng, X.; Kang, Y.; Rabinowitz, J.D. Reversal of Cytosolic One-Carbon Flux Compensates for Loss of the Mitochondrial Folate Pathway. Cell Metab. 2016, 24, 640–641. [Google Scholar] [CrossRef]
- Huebner, S.M.; Blohowiak, S.E.; Kling, P.J.; Smith, S.M. Prenatal Alcohol Exposure Alters Fetal Iron Distribution and Elevates Hepatic Hepcidin in a Rat Model of Fetal Alcohol Spectrum Disorders123. J. Nutr. 2016, 146, 1180–1188. [Google Scholar] [CrossRef]
- Carter, R.C.; Georgieff, M.K.; Ennis, K.M.; Dodge, N.C.; Wainwright, H.; Meintjes, E.M.; Duggan, C.P.; Molteno, C.D.; Jacobson, J.L.; Jacobson, S.W. Prenatal Alcohol-Related Alterations in Maternal, Placental, Neonatal, and Infant Iron Homeostasis. Am. J. Clin. Nutr. 2021, 114, 1107–1122. [Google Scholar] [CrossRef]
- Seitz, H.K.; Moreira, B.; Neuman, M.G. Pathogenesis of Alcoholic Fatty Liver a Narrative Review. Life 2023, 13, 1662. [Google Scholar] [CrossRef]
- Ferdouse, A.; Clugston, R.D. Pathogenesis of Alcohol-Associated Fatty Liver: Lessons from Transgenic Mice. Front. Physiol. 2022, 13, 940974. [Google Scholar] [CrossRef]
- Välimäki, M.; Halmesmäki, E.; Keso, L.; Ylikorkala, O.; Ylikahri, R. Serum Lipids and Lipoproteins in Alcoholic Women during Pregnancy. Metabolism 1990, 39, 486–493. [Google Scholar] [CrossRef]
- Naik, V.D.; Ramadoss, J. Untargeted and Targeted Blood Lipidomic Signature Profile of Gestational Alcohol Exposure. Nutrients 2023, 15, 1411. [Google Scholar] [CrossRef]
- Arumugam, M.K.; Paal, M.C.; Donohue, T.M.; Ganesan, M.; Osna, N.A.; Kharbanda, K.K. Beneficial Effects of Betaine: A Comprehensive Review. Biology 2021, 10, 456. [Google Scholar] [CrossRef] [PubMed]
- Sánchez, V.; Baumann, A.; Kromm, F.; Yergaliyev, T.; Brandt, A.; Scholda, J.; Kopp, F.; Camarinha-Silva, A.; Bergheim, I. Oral Supplementation of Choline Attenuates the Development of Alcohol-Related Liver Disease (ALD). Mol. Med. 2024, 30, 181. [Google Scholar] [CrossRef] [PubMed]
- Esfandiari, F.; You, M.; Villanueva, J.A.; Wong, D.H.; French, S.W.; Halsted, C.H. S-Adenosylmethionine Attenuates Hepatic Lipid Synthesis in Micropigs Fed Ethanol with a Folate-Deficient Diet. Alcohol. Clin. Exp. Res. 2007, 31, 1231–1239. [Google Scholar] [CrossRef] [PubMed]
- Lacal, J.C.; Zimmerman, T.; Campos, J.M. Choline Kinase: An Unexpected Journey for a Precision Medicine Strategy in Human Diseases. Pharmaceutics 2021, 13, 788. [Google Scholar] [CrossRef]
- Saini, N.; Mooney, S.M.; Smith, S.M. Alcohol Blunts Pregnancy-Mediated Insulin Resistance and Reduces Fetal Brain Glucose despite Elevated Fetal Gluconeogenesis, and These Changes Associate with Fetal Weight Outcomes. FASEB J. 2023, 37, e23172. [Google Scholar] [CrossRef]
- Hasken, J.M.; de Vries, M.M.; Marais, A.-S.; May, P.A.; Parry, C.D.H.; Seedat, S.; Mooney, S.M.; Smith, S.M. Untargeted Metabolome Analysis of Alcohol-Exposed Pregnancies Reveals Metabolite Differences That Are Associated with Infant Birth Outcomes. Nutrients 2022, 14, 5367. [Google Scholar] [CrossRef]
- Saini, N.; Virdee, M.; Helfrich, K.; Kwan, S.T.C.; Mooney, S.; Smith, M.S. Untargeted Metabolome Analysis Reveals Reductions in Maternal Hepatic Glucose and Amino Acid Content That Correlate with Fetal Organ Weights in a Mouse Model of Fetal Alcohol Spectrum Disorders. Nutrients 2022, 14, 1096. [Google Scholar] [CrossRef]
- National Research Council (US) Subcommittee on Laboratory Animal Nutrition Nutrient Requirements of Laboratory Animals: Fourth Revised Edition, 1995; National Academies Press (US): Washington, DC, USA, 1995; ISBN 978-0-309-05126-2.
- Flentke, G.R.; Wilkie, T.E.; Baulch, J.; Huang, Y.; Smith, S.M. Alcohol Exposure Suppresses Ribosome Biogenesis and Causes Nucleolar Stress in Cranial Neural Crest Cells. PLoS ONE 2024, 19, e0304557. [Google Scholar] [CrossRef]
- Siegenthaler, J.A.; Miller, M.W. Ethanol Disrupts Cell Cycle Regulation in Developing Rat Cortex Interaction with Transforming Growth Factor Β1. J. Neurochem. 2005, 95, 902–912. [Google Scholar] [CrossRef]
- Adams, J.W.; Negraes, P.D.; Truong, J.; Tran, T.; Szeto, R.A.; Guerra, B.S.; Herai, R.H.; Teodorof-Diedrich, C.; Spector, S.A.; Del Campo, M.; et al. Impact of Alcohol Exposure on Neural Development and Network Formation in Human Cortical Organoids. Mol. Psychiatry 2023, 28, 1571–1584. [Google Scholar] [CrossRef]
- Hoek, J.B.; Cahill, A.; Pastorino, J.G. Alcohol and Mitochondria: A Dysfunctional Relationship. Gastroenterology 2002, 122, 2049–2063. [Google Scholar] [CrossRef]
- Jarmasz, J.S.; Stirton, H.; Basalah, D.; Davie, J.R.; Clarren, S.K.; Astley, S.J.; Del Bigio, M.R. Global DNA Methylation and Histone Posttranslational Modifications in Human and Nonhuman Primate Brain in Association with Prenatal Alcohol Exposure. Alcohol. Clin. Exp. Res. 2019, 43, 1145–1162. [Google Scholar] [CrossRef]
Metabolites | Maternal Plasma | Maternal Liver | Placenta | Fetal Brain |
---|---|---|---|---|
Choline | 0.9712 | 1.2533 (S) | 1.0104 | 0.9710 |
CDP—Choline Pathway | ||||
Phosphocholine | 0.7948 (S) | 1.2171 (S) | 1.1312 (L) | 1.0485 |
CDP—Choline | ND | 1.0719 | 1.0790 | 1.2289 (L) |
Phosphatidylcholines | 1.1942 # (L) | 1.0807 | 1.1382 * | 1.0215 |
Ceramides | 1.3921 * | 1.4301 (L) | 1.0957 | 0.9624 |
Sphingomyelins | 1.2803 * | 1.1231 (M) | 1.1143 # (L) | 1.0447 |
Diacylglycerols | 1.0200 | 1.0426 | 1.0770 | 1.0810 |
PEMT Pathway | ||||
CDP—Ethanolamine | ND | 0.9994 | 1.2870 (L) | 1.0831 |
Phosphatidylethanolamines | 0.9738 | 1.2921 (L) | 1.0941 # (L) | 1.0174 |
SAM | ND | 0.7289 # (L) | 1.0374 | 1.0412 |
SAH | 1.0902 | 0.9832 | 1.1854 (L) | 0.9381 |
SAM/SAH Ratio | ND | 0.7244 (L) | 0.8476 (L) | 1.1175 (M) |
Methyl Donor Pathway | ||||
Betaine | 1.0415 | 1.0347 | 0.9805 | 1.0139 |
Dimethylglycine | 0.9698 | 0.7121 # (L) | 0.9282 | 0.7921 (L) |
Sarcosine | ND | 0.8742 (S) | ND | 1.0518 |
Methionine | 0.8574 (M) | 0.8760 (S) | 0.8720 (S) | 0.8954 (S) |
Cysteine | 1.1189 (M) | 0.9693 | 1.0701 | 1.3784 (L) |
Other Metabolites | ||||
Serine | 0.7908 (M) | 0.8944 (S) | 0.7655 (L) | 0.7988 # (L) |
Glycine | 0.9550 | 1.1310 (S) | 0.9433 | 0.9305 |
Serine/Glycine Ratio | 0.7733 (M) | 0.8288 (M) | 0.8132 # (L) | 0.8578 # (L) |
TMAO | 0.4071 (L) | 0.3612 (L) | 0.5548 (L) | 0.7854 (L) |
Metabolites | Maternal Plasma | Maternal Liver | Placenta | Fetal Brain |
---|---|---|---|---|
Choline | 1.0248 | 1.1008 (S) | 1.0250 | 0.9404 |
CDP—Choline Pathway | ||||
Phosphocholine | 0.7661 (M) | 1.4036 (L) | 0.9298 | 0.9274 |
CDP–Choline | ND | 1.2820 (M) | 0.8747 (M) | 0.6625 (L) |
Phosphatidylcholines | 0.9740 | 0.9649 | 0.9383 | 1.0264 |
Ceramides | 1.0108 | 1.0024 | 0.9158 | 1.0672 |
Sphingomyelins | 0.9367 | 0.8985 (S) | 0.9484 | 1.0772 |
Diacylglycerols | 0.9670 | 1.1038 (S) | 0.9659 | 1.1070 (M) |
PEMT Pathway | ||||
CDP–Ethanolamine | ND | 0.9225 | 0.7928 (L) | 0.8813 # (L) |
Phosphatidylethanolamines | 1.1206 (M) | 0.9004 | 1.0380 | 1.0476 |
SAM | ND | 1.2648 (L) | 0.9806 | 0.9132 |
SAH | 0.6389 (L) | 1.1217 (M) | 0.9513 | 0.9678 |
SAM/SAH Ratio | ND | 1.1492 (M) | 1.0375 | 0.9411 |
Methyl Donor Pathway | ||||
Betaine | 1.0372 | 1.5433 (L) | 0.9111 | 1.0471 |
Dimethylglycine | 1.3635 (L) | 1.6997 (L) | 1.4798 (L) | 1.4138 (L) |
Sarcosine | ND | 1.7170 (M) | ND | 1.5091 (L) |
Methionine | 0.9929 | 1.0273 | 1.0653 | 0.8438 (L) |
Cysteine | 0.9578 | 1.0756 | 1.1522 (M) | 0.8161 (L) |
Other Metabolites | ||||
Serine | 1.8111 (M) | 1.0910 (M) | 1.3459 (L) | 1.0598 |
Glycine | 0.8497 (S) | 0.9271 | 1.0395 | 1.0404 |
Serine/Glycine Ratio | 1.3899 (L) | 1.1313 (M) | 1.2922 * | 1.0237 |
TMAO | 2.2548 (L) | 2.4409 (L) | 1.6200 (L) | 1.2773 (L) |
Metabolites | Gestational Weight Gain | Gavage Weight Gain | Placenta Weight | Placental Efficiency | Fetal Body Weight | Fetal Brain Weight |
---|---|---|---|---|---|---|
Choline | 0.1778 | 0.1803 | −0.0897 | 0.0990 | 0.0512 | 0.0140 |
CDP—Choline Pathway | ||||||
Phosphocholine | 0.2773 | 0.2424 | 0.2178 | −0.0241 | 0.1136 | 0.3218 # |
Phosphatidylcholines | −0.2798 | −0.3917 * | 0.1786 | −0.2690 | −0.1641 | −0.2412 |
Ceramides | −0.0783 | −0.1577 | −0.0463 | −0.1094 | −0.1377 | −0.3158 # |
Sphingomyelins | −0.2650 | −0.4126 * | 0.2540 | −0.3768 * | −0.1968 | −0.2446 |
Diacylglycerols | −0.0818 | −0.0355 | −0.0897 | −0.4212 * | −0.6905 * | −0.6302 * |
PEMT Pathway | ||||||
Phosphatidylethanolamines | 0.0926 | −0.0411 | 0.0636 | −0.3384 # | −0.4353 * | −0.5893 * |
SAH | 0.1382 | 0.2368 | −0.0410 | 0.0493 | −0.1050 | 0.0995 |
Methyl Donor Pathway | ||||||
Betaine | 0.1714 | 0.1106 | 0.0599 | 0.0645 | 0.1345 | 0.1237 |
Dimethylglycine | 0.3734 * | 0.2902 | −0.0577 | 0.3084 | 0.4062 * | 0.1185 |
Methionine | −0.1310 | −0.2074 | 0.4166 * | −0.4251 * | −0.2749 | −0.1798 |
Cysteine | 0.1635 | 0.1833 | 0.0480 | −0.0833 | −0.1919 | −0.916 |
Other Metabolites | ||||||
Serine | 0.2197 | 0.1084 | 0.3124 # | −0.2621 | −0.1439 | −0.919 |
Glycine | −0.3261 # | −0.3774 * | 0.3067 | −0.1360 | 0.0660 | 0.0234 |
Serine/Glycine Ratio | 0.4414 * | 0.3764 * | −0.0567 | 0.0419 | −0.0446 | −0.0751 |
Metabolites | Gestational Weight Gain | Gavage Weight Gain | Placenta Weight | Placental Efficiency | Fetal Body Weight | Fetal Brain Weight |
---|---|---|---|---|---|---|
Choline | −0.1290 | −0.2788 | 0.3618 * | 0.0070 | 0.2955 | −0.0073 |
CDP–Choline Pathway | ||||||
Phosphocholine | 0.3065 # | 0.1397 | −0.0290 | 0.2804 | 0.3259 # | −0.0693 |
CDP–Choline | 0.4428 * | 0.4788 * | −0.4589 * | 0.5161 * | 0.2064 | 0.0268 |
Phosphatidylcholines | −0.2016 | −0.1477 | 0.1133 | −0.2621 | −0.2544 | −0.0524 |
Ceramides | −0.1382 | −0.1111 | 0.0658 | −0.2013 | −0.1776 | −0.0867 |
Sphingomyelins | −0.1488 | −0.1362 | 0.2383 | −0.3691 * | −0.2738 | 0.0000 |
Diacylglycerols | 0.0836 | 0.1487 | 0.0359 | −0.1191 | −0.2034 | −0.0777 |
PEMT Pathway | ||||||
CDP–Ethanolamine | 0.1716 | 0.1281 | −0.1188 | 0.3684 * | 0.3886 * | 0.3185 # |
Phosphatidylethanolamines | −0.1899 | −0.2040 | 0.2353 | −0.2874 | −0.1811 | −0.0183 |
SAM | 0.3149 # | 0.3452 # | −0.1129 | 0.1551 | 0.0070 | 0.0957 |
SAH | −0.0620 | 0.0159 | −0.0139 | 0.1136 | −0.0839 | −0.2551 |
SAM/SAH Ratio | 0.4175 * | 0.3957 * | −0.0850 | 0.1367 | 0.1342 | 0.2896 |
Methyl Donor Pathway | ||||||
Betaine | 0.1004 | 0.0335 | 0.0872 | 0.2720 | 0.3823 * | 0.2199 |
Dimethylglycine | 0.3592 * | 0.3199 # | 0.0022 | 0.3156 # | 0.3427 # | 0.0935 |
Sarcosine | 0.1415 | 0.1523 | −0.0334 | 0.0400 | −0.0990 | −0.2093 |
Methionine | −0.0850 | −0.1199 | 0.2093 | −0.1268 | 0.0396 | 0.0773 |
Cysteine | 0.0920 | 0.0321 | 0.1789 | −0.1932 | −0.0308 | −0.0323 |
Other Metabolites | ||||||
Serine | 0.0565 | 0.0524 | 0.2196 | −0.0297 | 0.1320 | 0.1485 |
Glycine | −0.0583 | 0.0053 | −0.1987 | 0.3068 # | 0.2012 | 0.0689 |
Serine/Glycine Ratio | 0.1338 | 0.0847 | 0.3284 # | −0.2137 | 0.0363 | 0.1657 |
Placenta Metabolites | Fetal Brain Metabolites | ||||
---|---|---|---|---|---|
Metabolites | Placenta Weight | Placental Efficiency | Fetal Body Weight | Fetal Brain Weight | Fetal Brain Weight |
Choline | −0.0106 | 0.1092 | 0.0766 | −0.1338 | 0.1598 |
CDP–Choline Pathway | |||||
Phosphocholine | −0.1268 | −0.2478 | −0.4930 * | −0.4267 * | −0.2786 |
CDP–Choline | −0.2218 | −0.1125 | −0.3152 # | 0.0319 | 0.0649 |
Phosphatidylcholines | −0.2033 | 0.1641 | −0.0422 | −0.1030 | −0.1276 |
Ceramides | −0.0216 | 0.0099 | −0.0018 | 0.1639 | 0.3079 * |
Sphingomyelins | −0.1345 | 0.2054 | 0.0338 | −0.0637 | −0.1430 |
Diacylglycerols | −0.1331 | 0.0696 | −0.0663 | −0.0554 | 0.2731 |
PEMT Pathway | |||||
CDP–Ethanolamine | −0.1298 | −0.1617 | −0.2746 | −0.0726 | 0.1697 |
Phosphatidylethanolamines | −0.0488 | 0.1712 | 0.1790 | −0.0290 | −0.1107 |
SAM | 0.0323 | −0.3633 * | −0.2859 | −0.1972 | 0.1378 |
SAH | −0.2570 | −0.0572 | −0.3189 # | −0.3350 # | −0.0473 |
SAM/SAH Ratio | 0.2064 | −0.2603 | −0.0418 | 0.0051 | 0.1609 |
Methyl Donor Pathway | |||||
Betaine | 0.0616 | 0.1870 | 0.2067 | 0.3996 * | −0.2588 |
Dimethylglycine | 0.1492 | 0.2672 | 0.4443 * | 0.1675 | 0.1378 |
Sarcosine | ND | ND | ND | ND | −0.3226 # |
Methionine | 0.4025 * | −0.2885 | −0.0594 | 0.0392 | −0.0209 |
Cysteine | −0.1221 | 0.2166 | 0.1924 | 0.0740 | −0.0920 |
Other Metabolites | |||||
Serine | 0.1767 | 0.0040 | 0.1573 | 0.1514 | 0.3248 # |
Glycine | 0.3204 # | −0.1010 | 0.1338 | 0.3728 * | 0.4010 * |
Serine/Glycine Ratio | 0.0297 | 0.0942 | 0.1782 | 0.0048 | −0.0817 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petry, H.G.; Saini, N.; Smith, S.M.; Mooney, S.M. Alcohol Exposure May Increase Prenatal Choline Needs Through Redirection of Choline into Lipid Synthesis Rather than Methyl Donation. Metabolites 2025, 15, 289. https://doi.org/10.3390/metabo15050289
Petry HG, Saini N, Smith SM, Mooney SM. Alcohol Exposure May Increase Prenatal Choline Needs Through Redirection of Choline into Lipid Synthesis Rather than Methyl Donation. Metabolites. 2025; 15(5):289. https://doi.org/10.3390/metabo15050289
Chicago/Turabian StylePetry, Hannah G., Nipun Saini, Susan M. Smith, and Sandra M. Mooney. 2025. "Alcohol Exposure May Increase Prenatal Choline Needs Through Redirection of Choline into Lipid Synthesis Rather than Methyl Donation" Metabolites 15, no. 5: 289. https://doi.org/10.3390/metabo15050289
APA StylePetry, H. G., Saini, N., Smith, S. M., & Mooney, S. M. (2025). Alcohol Exposure May Increase Prenatal Choline Needs Through Redirection of Choline into Lipid Synthesis Rather than Methyl Donation. Metabolites, 15(5), 289. https://doi.org/10.3390/metabo15050289