Neutrino Masses and Right-Handed Weak Currents Studied by Neutrino-Less ββ-Decay Detectors
Abstract
:1. Introduction
2. Neutrino Mass and RHC Sensitivities
3. Sensitivities of Current and Near-Future Detectors
4. Sensitivities and NMEs
5. Summary and Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Doi, M.; Kotani, T.; Takasugi, E. Double beta decays and Majorana Neutrino. Prog. Theor. Phys. Suppl. 1985, 83, 1–175. [Google Scholar] [CrossRef]
- Haxton, W.C.; Stephenson, G.J., Jr. Double beta decay. Prog. Part. Nucl. Phys. 1984, 12, 409–479. [Google Scholar] [CrossRef]
- Avignone, F.; Elliott, S.; Engel, J. Double beta decay, Majorana neutrino, and neutrino mass. Rev. Mod. Phys. 2008, 80, 481. [Google Scholar] [CrossRef]
- Vergados, J.; Ejiri, H.; Šimkovic, F. Theory of neutrinoless double-β-decay. Rep. Prog. Phys. 2012, 75, 106301. [Google Scholar] [CrossRef] [PubMed]
- Ejiri, H.; Suhonen, J.; Zuber, K. Neutrino nuclear responses for astro-neutrinos, single β-decays, and double β-decays. Phys. Rep. 2019, 797, 1–102. [Google Scholar] [CrossRef]
- Suhonen, J.; Civitarese, O. Weak interaction and nuclear structure aspect of nuclear double beta decay. Phys. Rep. 1998, 300, 123–214. [Google Scholar] [CrossRef]
- Faessler, A.; Simkovic, F. Double beta decay. J. Phys. G Nucl. Part. Phys. 1998, 24, 2139. [Google Scholar] [CrossRef]
- Suhonen, J.; Civitarese, O. Double-beta decay nuclear matrix elements in the pnQRPA framework. J. Phys. G Nucl. Part Phys. 2012, 39, 035105. [Google Scholar] [CrossRef]
- Barea, J.; Korita, J.; Iachello, F. Nuclear matrix elements for double-β decay. Phys. Rev. C 2013, 87, 014315. [Google Scholar] [CrossRef]
- Engel, J.; Menéndez, J. Status and future of nuclear matrix elements for neutrinoless double β-decay: A review. Rep. Prog. Phys. 2017, 60, 046301. [Google Scholar] [CrossRef]
- Detwiler, J. Future neutrinoless double-beta decay experiments. In Proceedings of the International Conference “Neutrino 2020”, Chicago, IL, USA, 22 June–2 July 2020. [Google Scholar]
- Agostini, M.; Benato, G.; Detwiler, J.A.; Menéndez, J.; Vissani, F. Toward the discovery of matter creation with neutrinoless ββ decay. Rev. Mod. Phys. 2023, 95, 025002. [Google Scholar] [CrossRef]
- Ejiri, H. Experimental approaches to neutrino nuclear responses for ββ-decays and astro-neutrins. Front. Phys. 2021, 9, 650421. [Google Scholar] [CrossRef]
- Štefánik, D.; Dvornickeý, R.; Šimkovic, F.; Vogel, P. Reexamining the light neutrino exchange machanism of the 0νββ decay with left- and right-handed leptonic and hadronic currents. Phys. Rev. C 2015, 92, 055502. [Google Scholar] [CrossRef]
- Neacsu, A.; Sevestrean, V.A.; Stoica, S. Brief Review of the Results Regarding the Possible Underlyuing Mecanisms Driving the Neutrinoless Double Beta Decay. Front. Phys. 2021, 9, 666591. [Google Scholar] [CrossRef]
- Mirea, M.; Pahomi, T.; Stoica, S. Values of the phase Space Factors Involved in Double Beta Decay. Rom. Rep. Phys. 2015, 67, 035503. [Google Scholar]
- Ajimura, S. et al. [CANDLES Collaboration] Low background measurement in CANDLES-III for studying the neutrinoless double beta decay of 48Ca. Phys. Rev. D 2021, 103, 092008. [Google Scholar] [CrossRef]
- Agostini, M. et al. [GERDA Collaboration] Final Results of GERDA on the Search for Neutrinoless Double-β Decay. Phys. Rev. Lett. 2020, 125, 252502. [Google Scholar] [CrossRef] [PubMed]
- Azzolini, O.; Beeman, J.W.; Bellini, F.; Beretta, M.; Biassoni, M.; Brofferio, C.; Bucci, C.; Capelli, S.; Cardani, L.; Carniti, P.; et al. Final Result of CUPID-0 Phase-I in the Search for the 82Se Neutrinoless Double-β Decay. Phys. Rev. Lett. 2019, 123, 032501. [Google Scholar] [CrossRef] [PubMed]
- Argyriades, J. et al. [NEMO-3 Collaboration] Measurement of the two neutrino double beta decay half-life of Zr-96 with the NEMO-3 detector. Nucl. Phys. A 2010, 847, 168. [Google Scholar] [CrossRef]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Bellini, F.; Benato, G.; Benoit, A.; Beretta, M.; Bergé, L.; Billard, J.; Borovlev, Y.A.; et al. New Limit for Neutrinoless Double-Beta Decay of 100Mo from the CUPID-Mo Experiment. Phys. Rev. Lett. 2021, 126, 181802. [Google Scholar] [CrossRef]
- Barabash, A.S.; Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Chernyak, D.M.; Danevich, F.A.; d’Angelo, S.; Incicchitti, A.; et al. Final results of the Aurora experiment to study 2β decay of 116Cd with enriched 116CdWO4 crystal scintillators. Phys. Rev. D 2018, 98, 092007. [Google Scholar] [CrossRef]
- The CUORE Collaboration. Search for Majorana neutrinos exploiting millikelvin cryogenics with CUORE. Nature 2021, 604, 53. [Google Scholar]
- Abe, S. et al. [KamLAND-Zen Collaboration] Search for the Majorana Nature of Neutrinos in the Inverted Mass Ordering Region with KamLAND-Zen. Phys. Rev. Lett. 2023, 130, 051801. [Google Scholar] [CrossRef] [PubMed]
- Arnold, R. et al. [NEMO-3 Collaboration] Measurement of the 2νββ decay half-life of 150Nd and a search for 0νββ decay processes with the full exposure from the NEMO-3 detector. Phys. Rev. D 2016, 94, 072003. [Google Scholar] [CrossRef]
- Abgrall, N.; Abt, I.; Agostini, M.; Alexander, A.; Andreoiu, C.; Araujo, G.R.; Avignone, F.T., III; Bae, W.; Bakalyarov, A.; Balata, M.; et al. LEGEND-1000 Preconceptual Design Report. arXiv 2021, arXiv:2107.11462v1. [Google Scholar]
- Pavel, P. Povinecon behalf of the SuperNEMO collaboration, Background constrains of the SuperNEMO experiment for neutrinoless double beta-decay searches. Nucl. Instr. Meth. A 2017, 845, 398. [Google Scholar]
- The CUPID Interest Group. CUPID pre-CDR. arXiv 2019, arXiv:1907.09376. [Google Scholar]
- The SNO+ Collaboration. The SNO+ experiment. JINST 2021, 16, P08059. [Google Scholar] [CrossRef]
- nEXO Collaboration. NEXO: Neutrinoless double beta decay search beyond 1028 year half-life sensitivity. J. Phys. G Nucl. Part. Phys. 2022, 49, 015104. [Google Scholar] [CrossRef]
- MAJORANA Collaboration. Final Result of the MAJORANA DEMONSTRATOR’s Search for Neutrinoless Double-β Decay in 76Ge. Phys. Rev. Lett. 2023, 130, 062501. [Google Scholar] [CrossRef]
- Lee, M.H. et al. [AMoRE Collaboration] AMoRE: A search for neutrinoless double-beta decay of 100Mo using low-temperature molybdenum-containing crystal detectors. J. Instrum. 2020, 15, C08010. [Google Scholar] [CrossRef]
- Shirai, J. et al. [KamLAND-Zen Collaboration] Results and future plans for the KamLAND-Zen experiment. J. Phys. Conf. Ser. 2017, 888, 012031. [Google Scholar] [CrossRef]
- Anton, G. et al. [EXO-200 Collaboration] Search for Neutrinoless Double-β Decay with the Complete EXO-200 Dataset. Phys. Rev. Lett. 2019, 123, 161802. [Google Scholar] [CrossRef] [PubMed]
- Adams, C. et al. [NEXT Collaboration] Sensitivity of a tonne-scale NEXT detector for neutrinoless double beta decay searches. J. High Energy Phys. 2021, 8, 164. [Google Scholar]
- Chen, X.; Fu, C.; Galan, J.; Giboni, K.; Giuliani, F.; Gu, L.; Han, K.; Ji, X.; Lin, H.; Liu, J.; et al. PandaX-III: Searching for neutrinoless double beta decay with high pressure 136Xe gas time projection chambers. Sci. China Phys. Mech. Astron. 2017, 60, 061011. [Google Scholar] [CrossRef]
- LUX-ZEPLIN (LZ) Collaboration. Projected sensitivity of the LUX-ZEPLIN experiment to the 0νββ decay of 136Xe. Phys. Rev. C 2020, 102, 014602. [Google Scholar] [CrossRef]
- Agostini, F.; Maouloud, S.E.; Althueser, L.; Amaro, F.; Antunovic, B.; Aprile, E.; Baudis, L.; Baur, D.; Biondi, Y.; Bismark, A.; et al. Sensitivity of the DARWIN observatory to the neutrinoless double beta decay of 136Xe. Eur. Phys. J. C 2020, 80, 808. [Google Scholar] [CrossRef]
- Ejiri, H.; Fushimi, K.; Hayashi, K.; Kishimoto, T.; Kudomi, N.; Kume, K.; Kuramoto, H.; Matsuoka, K.; Ohsumi, H.; Takahisa, K.; et al. Limits on the Majorana neutrino mass and right-handed weak currents by neutrinoless double b decay of 100Mo. Phys. Rev. C 2001, 63, 065501. [Google Scholar] [CrossRef]
- Ejiri, H.; Engel, J.; Hazama, R.; Krastev, P.; Kudomi, N.; Robertson, R.G. Spectroscopy of Double-Beta and Inverse-Beta Decays from 100Mo for Neutrinos. Phys. Rev. Lett. 2000, 85, 2917. [Google Scholar] [CrossRef]
- Ejiri, H.; Doe, P.; Elliott, S.R.; Engel, J.; Finger, M.; Finger, M.; Fushimi, K.; Gehman, V.; Greenfield, M.; Hazama, R.; et al. MOON for neutrino-less double beta decays. Eur. Phys. J. Spec. Top. 2008, 162, 239–250. [Google Scholar] [CrossRef]
- Arnold, R.; Augier, C.; Bakalyarov, A.M.; Baker, J.; Barabash, A.; Bernaudin, P.; Bouchel, M.; Brudanin, V.; Caffrey, A.J.; Cailleret, J.; et al. Technical design and performance of the NEMO 3 detector. Nucl. Instr. Methods A 2005, 536, 79–122. [Google Scholar] [CrossRef]
- Arnold, R.; Augier, C.; Baker, J.; Barabash, A.S.; Basharina-Freshville, A.; Bongrand, M.; Brudanin, V.; Caffrey, A.J.; Cebrián, S.; Chapon, A.; et al. Probing new physics models of neutrinoless double beta decay with SuperNEMO. Eur. Phys. J. C 2010, 70, 9270943. [Google Scholar] [CrossRef]
- Suhonen, J. Impact of the quenching of gA on the sensitivity of 0νββ experiments. Phys. Rev. C 2017, 96, 05501. [Google Scholar] [CrossRef]
- Gysbers, P.; Hagen, G.; Holt, J.D.; Jansen, G.R.; Morris, T.D.; Navratil, P.; Papenbrock, T.; Quaglioni, S.; Schwenk, A.; Stroberg, S.R.; et al. Discrepancy between experimental and theoretical β decay rates resolved from first principles. Nat. Phys. 2018, 15, 428–431. [Google Scholar] [CrossRef]
- Perez, E.A.C.; Menéndez, J.; Schwenk, A. Gamow-teller and doubleβ decays of heavy nuclei with an effective theory. Phys. Rev. 2018, 98, 045501. [Google Scholar]
- Coraggio, L.; Angelis, L.D.; Fukui, T.; Gargano, A.; Itaco, N.; Nowacki, F. Renormalization of the Gamow-Teller operator within the realistic shell model. Phys. Rev. 2019, 100, 014316. [Google Scholar] [CrossRef]
- Menéndez, J.; Gazit, D.; Schwenk, A. Chiral Two-Body Currents in Nuclei: Gamow-Teller Transitions and Neutrinoless Double-Beta Decay. Phys. Rev. Lett. 2011, 107, 062501. [Google Scholar] [CrossRef] [PubMed]
- Cappuzzello, F.; Lenske, H.; Cavallaro, M.; Agodi, C.; Auerbach, N.; Bellone, J.I.; Bijker, R.; Burrello, S.; Calabrese, S.; Carbone, D.; et al. Shedding light on nuclear aspects of neutrinoless double beta decay by heavy-ion double charge exchange reactions. Prog. Part. Nucl. Phys. 2023, 128, 103999. [Google Scholar] [CrossRef]
- Ejiri, H.; Jokiniemi, L.; Suhonen, J. Nuclear matrix elements for neutrinoless ββ-decays and spin dipole giant resonances. Phys. Rev. C 2022, 105, L022501. [Google Scholar] [CrossRef]
Ca | Ge | Se | Zr | Mo | Cd | Te | Xe | Nd | |
---|---|---|---|---|---|---|---|---|---|
2.465 | 0.2372 | 1.014 | 2.048 | 1.584 | 1.662 | 1.424 | 1.454 | 6.194 | |
16.229 | 0.391 | 3.529 | 8.959 | 5.787 | 5.349 | 3.761 | 3.679 | 29.187 | |
16.246 | 1.223 | 4.779 | 8.619 | 6.540 | 6.243 | 4.972 | 4.956 | 19.454 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Umehara, S.; Ejiri, H. Neutrino Masses and Right-Handed Weak Currents Studied by Neutrino-Less ββ-Decay Detectors. Universe 2024, 10, 247. https://doi.org/10.3390/universe10060247
Umehara S, Ejiri H. Neutrino Masses and Right-Handed Weak Currents Studied by Neutrino-Less ββ-Decay Detectors. Universe. 2024; 10(6):247. https://doi.org/10.3390/universe10060247
Chicago/Turabian StyleUmehara, Saori, and Hiroyasu Ejiri. 2024. "Neutrino Masses and Right-Handed Weak Currents Studied by Neutrino-Less ββ-Decay Detectors" Universe 10, no. 6: 247. https://doi.org/10.3390/universe10060247
APA StyleUmehara, S., & Ejiri, H. (2024). Neutrino Masses and Right-Handed Weak Currents Studied by Neutrino-Less ββ-Decay Detectors. Universe, 10(6), 247. https://doi.org/10.3390/universe10060247