Cosmic Strings from Thermal Inflation
Abstract
:1. Introduction
2. Thermal Inflation Strings
3. Thermal String Loop Distribution
4. Constraints from Cosmological Observations
5. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | A real scalar field with a symmetry breaking potential would lead to domain walls, a cosmological disaster [5]. |
2 | The new term quadratic in T in the formula for the effective potential is the leading term in the one-loop finite temperature effective potential (see e.g., [7,8] for original discussions). As reviewed in [9], the one-loop finite temperature effective potential determines the dynamics of a Gaussian wavepacket state for in the presence of a thermal bath. |
3 | Thermal inflation strings were briefly considered in Section 5.2 of [18], with a focus on the dependence of the mass per unit length on the expectation value of the scalar field after symmetry breaking. Our discussion covers many more issues. Cosmic strings in theories with a highly suppressed coefficient of the usual symmetry breaking potential were considered in [19]. While some of the implications for the cosmic strings are similar, the setup is very different. Density fluctuations from thermal inflation strings were discussed e.g., in [20,21]. This is not the topic of the present article. |
4 | The absence of a quartic term in the potential is crucial if we are to generate a hierarchy between and . |
5 | Note that some field theory simulations [25] of the Abelian Higgs model indicate that the energy loss required to maintain the scaling distribution of the long string network proceeds mostly by particle emission rather than by the formation of large loops which then decay by gravitational radiation. We are assuming here that the Nambu–Goto simulations [26,27,28,29,30,31,32] are correct. These simulations demonstrate the generation of a scaling distribution of string loops as described here. |
6 | To obtain the first line in (23), note that there is of the order one loop per Hubble volume at the time of formation , i.e., , where . This number density redshifts such that , making use of the fact that the volume increases as in the matter era. The second line is obtained by doing an analogous analysis for loops formed in the radiation period, and taking into account that the physical size of a fixed comoving volume increases as in the radiation phase. |
7 |
References
- Berera, A. Warm inflation. Phys. Rev. Lett. 1995, 75, 3218–3221. [Google Scholar] [CrossRef] [PubMed]
- Lyth, D.H.; Stewart, E.D. Thermal inflation and the moduli problem. Phys. Rev. D 1996, 53, 1784–1798. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, G.D.; Fischler, W.; Kolb, E.W.; Raby, S.; Ross, G.G. Cosmological Problems for the Polonyi Potential. Phys. Lett. B 1983, 131, 59–64. [Google Scholar] [CrossRef]
- Ellis, J.R.; Nanopoulos, D.V.; Quiros, M. On the Axion, Dilaton, Polonyi, Gravitino and Shadow Matter Problems in Supergravity and Superstring Models. Phys. Lett. B 1986, 174, 176–182. [Google Scholar] [CrossRef]
- Zeldovich, Y.B.; Kobzarev, I.Y.; Okun, L.B. Cosmological Consequences of the Spontaneous Breakdown of Discrete Symmetry. Zh. Eksp. Teor. Fiz. 1974, 67, 3–11. [Google Scholar]
- Banks, T.; Seiberg, N. Symmetries and Strings in Field Theory and Gravity. Phys. Rev. D 2011, 83, 084019. [Google Scholar] [CrossRef]
- Dolan, L.; Jackiw, R. Symmetry Behavior at Finite Temperature. Phys. Rev. D 1974, 9, 3320–3341. [Google Scholar] [CrossRef]
- Weinberg, S. Gauge and Global Symmetries at High Temperature. Phys. Rev. D 1974, 9, 3357–3378. [Google Scholar] [CrossRef]
- Brandenberger, R.H. Quantum Field Theory Methods and Inflationary Universe Models. Rev. Mod. Phys. 1985, 57, 1. [Google Scholar] [CrossRef]
- Kibble, T.W.B. Phase Transitions In The Early Universe. Acta Phys. Pol. B 1982, 13, 723. [Google Scholar]
- Kibble, T.W.B. Some Implications Of A Cosmological Phase Transition. Phys. Rept. 1980, 67, 183. [Google Scholar] [CrossRef]
- Vilenkin, A.; Shellard, E.P.S. Cosmic Strings and Other Topological Defects; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Hindmarsh, M.B.; Kibble, T.W.B. Cosmic strings. Rept. Prog. Phys. 1995, 58, 477. [Google Scholar] [CrossRef]
- Brandenberger, R.H. Topological defects and structure formation. Int. J. Mod. Phys. A 1994, 9, 2117. [Google Scholar] [CrossRef]
- Durrer, R.; Kunz, M.; Melchiorri, A. Cosmic structure formation with topological defects. Phys. Rept. 2002, 364, 1. [Google Scholar] [CrossRef]
- Nielsen, H.B.; Olesen, P. Vortex Line Models for Dual Strings. Nucl. Phys. B 1973, 61, 45–61. [Google Scholar] [CrossRef]
- Brandenberger, R.H. Searching for Cosmic Strings in New Observational Windows. Nucl. Phys. B Proc. Suppl. 2014, 246–247, 45–57. [Google Scholar] [CrossRef]
- Barreiro, T.; Copeland, E.J.; Lyth, D.H.; Prokopec, T. Some aspects of thermal inflation: The Finite temperature potential and topological defects. Phys. Rev. D 1996, 54, 1379–1392. [Google Scholar] [CrossRef] [PubMed]
- Perkins, W.B.; Davis, A.C. Cosmic strings in low mass Higgs cosmology. Phys. Lett. B 1998, 428, 254–262. [Google Scholar] [CrossRef]
- Bastero-Gil, M.; Gomes, J.M.; Rosa, J.G. Thermal curvature perturbations in thermal inflation. arXiv 2023, arXiv:2301.11666. [Google Scholar]
- Kawasaki, M.; Takahashi, T.; Yokoyama, S. Density Fluctuations in Thermal Inflation and Non-Gaussianity. JCAP 2009, 12, 012. [Google Scholar] [CrossRef]
- Copeland, E.J.; Kibble, T.W.B.; Austin, D. Scaling solutions in cosmic string networks. Phys. Rev. D 1992, 45, 1000. [Google Scholar] [CrossRef] [PubMed]
- Perivolaropoulos, L. COBE versus cosmic strings: An Analytical model. Phys. Lett. B 1993, 298, 305. [Google Scholar] [CrossRef]
- Austin, D.; Copeland, E.J.; Kibble, T.W.B. Evolution of cosmic string configurations. Phys. Rev. D 1993, 48, 5594. [Google Scholar] [CrossRef]
- Hindmarsh, M.; Lizarraga, J.; Urrestilla, J.; Daverio, D.; Kunz, M. Scaling from gauge and scalar radiation in Abelian Higgs string networks. arXiv 2017, arXiv:1703.06696. [Google Scholar] [CrossRef]
- Ringeval, C.; Sakellariadou, M.; Bouchet, F. Cosmological evolution of cosmic string loops. JCAP 2007, 0702, 023. [Google Scholar] [CrossRef]
- Vanchurin, V.; Olum, K.D.; Vilenkin, A. Scaling of cosmic string loops. Phys. Rev. D 2006, 74, 063527. [Google Scholar] [CrossRef]
- Lorenz, L.; Ringeval, C.; Sakellariadou, M. Cosmic string loop distribution on all length scales and at any redshift. JCAP 2010, 1010, 003. [Google Scholar] [CrossRef]
- Blanco-Pillado, J.J.; Olum, K.D.; Shlaer, B. Large parallel cosmic string simulations: New results on loop production. Phys. Rev. D 2011, 83, 083514. [Google Scholar] [CrossRef]
- Blanco-Pillado, J.J.; Olum, K.D.; Shlaer, B. The number of cosmic string loops. Phys. Rev. D 2014, 89, 023512. [Google Scholar] [CrossRef]
- Auclair, P.; Ringeval, C.; Sakellariadou, M.; Steer, D. Cosmic string loop production functions. JCAP 2019, 1906, 015. [Google Scholar] [CrossRef]
- Blanco-Pillado, J.J.; Olum, K.D. Direct determination of cosmic string loop density from simulations. Phys. Rev. D 2020, 101, 103018. [Google Scholar] [CrossRef]
- Vachaspati, T.; Vilenkin, A. Gravitational Radiation from Cosmic Strings. Phys. Rev. D 1985, 31, 3052. [Google Scholar] [CrossRef]
- Brandenberger, R.H. On the Decay of Cosmic String Loops. Nucl. Phys. B 1987, 293, 812. [Google Scholar] [CrossRef]
- Blanco-Pillado, J.J.; Olum, K.D. The Form of cosmic string cusps. Phys. Rev. D 1999, 59, 063508. [Google Scholar] [CrossRef]
- Kibble, T.W.B.; Turok, N. Selfintersection of Cosmic Strings. Phys. Lett. 1982, 116B, 141. [Google Scholar] [CrossRef]
- Kaiser, N.; Stebbins, A. Microwave Anisotropy Due To Cosmic Strings. Nature 1984, 310, 391. [Google Scholar] [CrossRef]
- Moessner, R.; Perivolaropoulos, L.; Brandenberger, R.H. A Cosmic string specific signature on the cosmic microwave background. Astrophys. J. 1994, 425, 365. [Google Scholar] [CrossRef]
- Vilenkin, A. Gravitational Field of Vacuum Domain Walls and Strings. Phys. Rev. D 1981, 23, 852–857. [Google Scholar] [CrossRef]
- Hergt, L.; Amara, A.; Brandenberger, R.; Kacprzak, T.; Refregier, A. Searching for Cosmic Strings in CMB Anisotropy Maps using Wavelets and Curvelets. JCAP 2017, 06, 004. [Google Scholar] [CrossRef]
- McEwen, J.D.; Feeney, S.M.; Peiris, H.V.; Wiaux, Y.; Ringeval, C.; Bouchet, F.R. Wavelet-Bayesian inference of cosmic strings embedded in the cosmic microwave background. Mon. Not. R. Astron. Soc. 2017, 472, 4081–4098. [Google Scholar] [CrossRef]
- Charnock, T.; Avgoustidis, A.; Copeland, E.J.; Moss, A. CMB constraints on cosmic strings and superstrings. Phys. Rev. D 2016, 93, 123503. [Google Scholar] [CrossRef]
- Dvorkin, C.; Wyman, M.; Hu, W. Cosmic String constraints from WMAP and the South Pole Telescope. Phys. Rev. D 2011, 84, 123519. [Google Scholar] [CrossRef]
- Ade, P.A.R. et al. [Planck Collaboration] Planck 2013 results. XXV. Searches for cosmic strings and other topological defects. Astron. Astrophys. 2014, 571, A25. [Google Scholar]
- Blanco-Pillado, J.J.; Olum, K.D.; Siemens, X. New limits on cosmic strings from gravitational wave observation. Phys. Lett. B 2018, 778, 392. [Google Scholar] [CrossRef]
- Arzoumanian, Z. et al. [NANOGRAV Collaboration] NANOGrav 11-Year Data Set: Pulsar-Timing Constraints Stoch. Gravitational-Wave Background. Astrophys. J. 2018, 859, 47. [Google Scholar] [CrossRef]
- Silk, J.; Vilenkin, A. Cosmic Strings And Galaxy Formation. Phys. Rev. Lett. 1984, 53, 1700. [Google Scholar] [CrossRef]
- Rees, M.J. Baryon concentrations in string wakes at z≳200: Implications for galaxy formation and large-scale structure. Mon. Not. R. Astron. Soc. 1986, 222, 27. [Google Scholar] [CrossRef]
- Vachaspati, T. Cosmic Strings and the Large-Scale Structure of the Universe. Phys. Rev. Lett. 1986, 57, 1655. [Google Scholar] [CrossRef] [PubMed]
- Stebbins, A.; Veeraraghavan, S.; Brandenberger, R.H.; Silk, J.; Turok, N. Cosmic String Wakes. Astrophys. J. 1987, 322, 1. [Google Scholar] [CrossRef]
- Brandenberger, R.H.; Danos, R.J.; Hernandez, O.F.; Holder, G.P. The 21 cm Signature of Cosmic String Wakes. JCAP 2010, 1012, 028. [Google Scholar] [CrossRef]
- Maibach, D.; Brandenberger, R.; Crichton, D.; Refregier, A. Extracting the signal of cosmic string wakes from 21-cm observations. Phys. Rev. D 2021, 104, 123535. [Google Scholar] [CrossRef]
- Danos, R.J.; Brandenberger, R.H.; Holder, G. A Signature of Cosmic Strings Wakes in the CMB Polarization. Phys. Rev. D 2010, 82, 023513. [Google Scholar] [CrossRef]
- Blamart, M.; Fronenberg, H.; Brandenberger, R. Signal of cosmic strings in cross-correlation of 21-cm redshift and CMB polarization maps. JCAP 2022, 11, 012. [Google Scholar] [CrossRef]
- da Cunha, D.C.N.; Harnois-Deraps, J.; Brandenberger, R.; Amara, A.; Refregier, A. Dark Matter Distribution Induced by a Cosmic String Wake in the Nonlinear Regime. Phys. Rev. D 2018, 98, 083015. [Google Scholar] [CrossRef]
- Vilenkin, A. Cosmological Density Fluctuations Produced by Vacuum Strings. Phys. Rev. Lett. 1981, 46, 1169, Erratum in Phys. Rev. Lett. 1981, 46, 1496. [Google Scholar] [CrossRef]
- Turok, N.; Brandenberger, R.H. Cosmic Strings And The Formation Of Galaxies And Clusters Of Galaxies. Phys. Rev. D 1986, 33, 2175. [Google Scholar] [CrossRef] [PubMed]
- Sato, H. Galaxy Formation by Cosmic Strings. Prog. Theor. Phys. 1986, 75, 1342. [Google Scholar] [CrossRef]
- Stebbins, A. Cosmic Strings and Cold Matter. Astrophys. J. (Lett.) 1986, 303, L21. [Google Scholar] [CrossRef]
- Jiao, H.; Brandenberger, R.; Refregier, A. Early structure formation from cosmic string loops in light of early JWST observations. Phys. Rev. D 2023, 108, 043510. [Google Scholar] [CrossRef]
- Bramberger, S.F.; Brandenberger, R.H.; Jreidini, P.; Quintin, J. Cosmic String Loops as the Seeds of Super-Massive Black Holes. JCAP 2015, 1506, 007. [Google Scholar] [CrossRef]
- Brandenberger, R.; Cyr, B.; Jiao, H. Intermediate mass black hole seeds from cosmic string loops. Phys. Rev. D 2021, 104, 123501. [Google Scholar] [CrossRef]
- Cyr, B.; Jiao, H.; Brandenberger, R. Massive black holes at high redshifts from superconducting cosmic strings. Mon. Not. R. Astron. Soc. 2022, 517, 2221–2230. [Google Scholar] [CrossRef]
- MacGibbon, J.H.; Brandenberger, R.H. Gamma-ray signatures from ordicosmic strings. Phys. Rev. D 1993, 47, 2283. [Google Scholar] [CrossRef] [PubMed]
- MacGibbon, J.H.; Brandenberger, R.H. High-energy neutrino flux from ordinary cosmic strings. Nucl. Phys. B 1990, 331, 153. [Google Scholar] [CrossRef]
- Hill, C.T.; Schramm, D.N.; Walker, T.P. Ultrahigh-Energy Cosmic Rays from Superconducting Cosmic Strings. Phys. Rev. D 1987, 36, 1007. [Google Scholar] [CrossRef]
- Wichoski, U.F.; MacGibbon, J.H.; Brandenberger, R.H. High-energy neutrinos, photons and cosmic ray fluxes from VHS cosmic strings. Phys. Rev. D 2002, 65, 063005. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brandenberger, R.; Favero, A. Cosmic Strings from Thermal Inflation. Universe 2024, 10, 253. https://doi.org/10.3390/universe10060253
Brandenberger R, Favero A. Cosmic Strings from Thermal Inflation. Universe. 2024; 10(6):253. https://doi.org/10.3390/universe10060253
Chicago/Turabian StyleBrandenberger, Robert, and Aline Favero. 2024. "Cosmic Strings from Thermal Inflation" Universe 10, no. 6: 253. https://doi.org/10.3390/universe10060253
APA StyleBrandenberger, R., & Favero, A. (2024). Cosmic Strings from Thermal Inflation. Universe, 10(6), 253. https://doi.org/10.3390/universe10060253