From the Janis–Newman–Winicour Naked Singularities to the Einstein–Maxwell Phantom Wormholes
Abstract
:1. Introduction
2. A Useful Expression for the JNW Metric
3. A New Traversable Wormhole
3.1. The Solution
3.2. Stability Analysis
4. The Exponential Wormhole Spacetime
5. Naked Singularity and Wormhole in de Sitter Universe
6. Naked Singularity and Wormhole in DAU
6.1. Solutions in DAU
6.2. Spacetime Structure of JNW in DAU
6.2.1.
6.2.2.
6.2.3.
6.3. Spacetime Structure of Wormhole in DAU
6.4. Spacetime Structure of Exponential Wormhole in DAU
7. The Scalar Potential for the Quintessence Field
8. The Scalar Potential for the Phantom Field
9. Quintessence Potential Is Exactly the Dilaton Potential
10. Charged Phantom Wormholes and Black Holes
10.1. JNW Naked Singularity Solution Is Unphysical
10.2. Two Double-Horizon Spacetimes Connected by a Timelike Wormhole
10.3. Two Black–White Hole Spacetimes Connected by a Spacelike Wormhole
11. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Janis, A.I.; Newman, E.T.; Winicour, J. Reality of the Schwarzschild Singularity. Phys. Rev. Lett. 1968, 20, 878. [Google Scholar] [CrossRef]
- Fisher, I.Z. Scalar metastatic field with regard for gravitational effects. Zh. Eksp. Teor. Fiz. 1948, 18, 636–640. [Google Scholar]
- Wyman, M. Static Spherically Symmetric Scalar Fields in General Relativity. Phys. Rev. D 1981, 24, 839. [Google Scholar] [CrossRef]
- Virbhadra, K.S. Janis-Newman-Winicour and Wyman solutions are the same. Int. J. Mod. Phys. A 1997, 12, 4831–4836. [Google Scholar] [CrossRef]
- Agnese, A.G.; La Camera, M. Gravitation without black holes. Phys. Rev. D 1985, 31, 1280. [Google Scholar] [CrossRef]
- Roberts, M.D. Massless scalar static spheres. Astrophys. Space Sci. 1993, 200, 331. [Google Scholar] [CrossRef]
- Bronnikov, K.A.; Khodunov, A.V. Scalar field and gravitational instability. Gen. Relativ. Gravit. 1979, 11, 13–18. [Google Scholar] [CrossRef]
- Chew, X.Y.; Lim, K.G. Gravitating Scalarons with Inverted Higgs Potential. Universe 2024, 10, 212. [Google Scholar] [CrossRef]
- Gyulchev, G.N.; Yazadjiev, S.S. Gravitational Lensing by Rotating Naked Singularities. Phys. Rev. D 2008, 78, 083004. [Google Scholar] [CrossRef]
- Virbhadra, K.S.; Ellis, G.F.R. Gravitational lensing by naked singularities. Phys. Rev. D 2002, 65, 103004. [Google Scholar] [CrossRef]
- Virbhadra, K.S.; Narasimha, D.; Chitre, S.M. Role of the scalar field in gravitational lensing. Astron. Astrophys. 1998, 337, 1–8. [Google Scholar]
- Virbhadra, K.S.; Keeton, C.R. Time delay and magnification centroid due to gravitational lensing by black holes and naked singularities. Phys. Rev. D 2008, 77, 124014. [Google Scholar] [CrossRef]
- Gyulchev, G.; Nedkova, P.; Vetsov, T.; Yazadjiev, S. Image of the Janis-Newman-Winicour naked singularity with a thin accretion disk. Phys. Rev. D 2019, 100, 024055. [Google Scholar] [CrossRef]
- Sau, S.; Banerjee, I.; SenGupta, S. Imprints of the Janis-Newman-Winicour spacetime on observations related to shadow and accretion. Phys. Rev. D 2020, 102, 064027. [Google Scholar] [CrossRef]
- Yang, L.; Li, Z. Shadow of a dressed black hole and determination of spin and viewing angle. Int. J. Mod. Phys. D 2015, 25, 1650026. [Google Scholar] [CrossRef]
- Takahashi, R. Shapes and positions of black hole shadows in accretion disks and spin parameters of black holes. J. Korean Phys. Soc. 2004, 45, S1808–S1812. [Google Scholar] [CrossRef]
- Chowdhury, A.N.; Patil, M.; Malafarina, D.; Joshi, P.S. Circular geodesics and accretion disks in Janis-Newman-Winicour and Gamma metric. Phys. Rev. D 2012, 85, 104031. [Google Scholar] [CrossRef]
- Pal, K.; Pal, K.; Shaikh, R.; Sarkar, T. A rotating modified JNW spacetime as a Kerr black hole mimicker. J. Cosmol. Astropart. Phys. 2023, 11, 060. [Google Scholar] [CrossRef]
- Zhdanov, V.; Stashko, O. Static spherically symmetric configurations with N non-linear scalar fields: Global and asymptotic properties. Phys. Rev. D 2020, 101, 064064. [Google Scholar] [CrossRef]
- Stashko, O.S.; Zhdanov, V.I.; Alexandrov, A.N. Thin accretion discs around spherically symmetric configurations with nonlinear scalar fields. Phys. Rev. D 2021, 104, 104055. [Google Scholar] [CrossRef]
- Stashko, O.S.; Savchuk, O.V.; Zhdanov, V.I. Quasi-normal modes of naked singularities in presence of non-linear scalar fields. Phys. Rev. D 2024, 109, 024012. [Google Scholar] [CrossRef]
- Matos, T.; Nuñez, D. Rotating Scalar Field Wormhole. Class. Quant. Gravit. 2006, 23, 4485–4495. [Google Scholar] [CrossRef]
- Matos, T. Class of Einstein-Maxwell phantom Fields: Rotating and Magnetized Wormholes. Gen. Relativ. Gravit. 2010, 42, 1969. [Google Scholar] [CrossRef]
- Matos, T.; Miranda, G.; Montelongo, N. Kerr-like Scalar Field Wormhole. Gen. Relativ. Gravit. 2014, 46, 1613. [Google Scholar]
- Matos, T.; Arturo Ureña-López, L.; Miranda, G. Wormhole Cosmic Censorship. Gen. Relativ. Gravit. 2016, 48, 61. [Google Scholar] [CrossRef]
- del Aguila, J.C.; Matos, T. Wormhole Cosmic Censorship: An Analytical Proof. Gen. Relativ. Gravit. 2019, 36, 015018. [Google Scholar] [CrossRef]
- Miranda, G.; del Aguila, J.C.; Matos, T. Exact Rotating Magnetic Traversable Wormholes satisfying the Energy Conditions. Phys. Rev. D 2019, 99, 124045. [Google Scholar] [CrossRef]
- del Aguila, J.C.; Matos, T. Gravitational perturbations in the Newman-Penrose formalism: Applications to wormholes. Phys. Rev. D 2021, 103, 084033. [Google Scholar] [CrossRef]
- del Aguila, J.C.; Matos, T. On the geodesic completeness of a ring wormhole. Phys. Rev. D 2023, 107, 064047. [Google Scholar] [CrossRef]
- Sadhu, A.; Suneeta, V. A naked singularity stable under scalar field perturbations. Int. J. Mod. Phys. D 2013, 22, 1350015. [Google Scholar] [CrossRef]
- Gibbons, G.; Maeda, K. Black holes and membranes in higher-dimensional theories with dilaton fields. Nucl. Phys. B 1988, 298, 741. [Google Scholar] [CrossRef]
- Garfinkle, D.; Horowitz, G.; Strominger, A. Charged black holes in string theory. Phys. Rev. D 1991, 43, 3140. [Google Scholar] [CrossRef] [PubMed]
- Caldwell, R.R. A Phantom Menace? Cosmological consequences of a dark energy component with super-negative equation of state. Phys. Lett. B 2002, 545, 23–29. [Google Scholar] [CrossRef]
- Papapetrou, A. Eine Theorie des Gravitationsfeldes mit einer Feldfunktion. Z. Fur Phys. Bd. 1954, 139, 518. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, S.N. Dilaton black holes in the de Sitter or anti—de Sitter universe. Phys. Rev. D—Part. Fields Gravit. Cosmol. 2004, 70, 124019. [Google Scholar] [CrossRef]
- Nozawa, M.; Torii, T. Wormhole C metric. Phys. Rev. D 2023, 108, 064036. [Google Scholar] [CrossRef]
- Boonserm, P.; Ngampitipan, T.; Simpson, A.; Visser, M. Exponential metric represents a traversable wormhole. Phys. Rev. D 2018, 98, 084048. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S. Wormholes in space-time and their use for interstellar travel: A tool for teaching general relativity. Am. J. Phys. 1988, 56, 395. [Google Scholar] [CrossRef]
- Morris, M.S.; Thorne, K.S.; Yurtsever, U. Wormholes, Time Machines, and the Weak Energy Condition. Phys. Rev. Lett. 1988, 61, 1446. [Google Scholar] [CrossRef] [PubMed]
- Visser, M. Traversable wormholes: Some simple examples. Phys. Rev. D 1989, 39, 3182. [Google Scholar] [CrossRef]
- Visser, M. Traversable wormholes from surgically modified Schwarzschild space-times. Nucl. Phys. B 1989, 328, 203. [Google Scholar] [CrossRef]
- Tangphati, T.; Muniz, C.R.; Pradhan, A.; Banerjee, A. Traversable wormholes in Rastall-Rainbow gravity. Phys. Dark Univ. 2023, 42, 101364. [Google Scholar] [CrossRef]
- Kobayashi, T.; Motohashi, H.; Suyama, T. Black hole perturbation in the most general scalar-tensor theory with second-order field equations. II. The even-parity sector. Phys. Rev. D 2012, 85, 084025. [Google Scholar] [CrossRef]
- Gao, C.; Qiu, J. On black holes with scalar hairs. Gen. Relativ. Gravit. 2022, 54, 158. [Google Scholar] [CrossRef]
- Yilmaz, H. New approach to general relativity. Phys. Rev. 1958, 111, 1417–1426. [Google Scholar] [CrossRef]
- Yilmaz, H. New theory of gravitation. Phys. Rev. Lett. 1971, 27, 1399. [Google Scholar] [CrossRef]
- Yilmaz, H. New approach to relativity and gravitation. Ann. Phys. 1973, 81, 179–200. [Google Scholar] [CrossRef]
- Roger, E. Clapp, Preliminary quasar model based on the Yilmaz exponential metric. Phys. Rev. D 1973, 7, 345–355. [Google Scholar]
- Rastall, P. Gravity without geometry. Am. J. Phys. 1975, 43, 591–595. [Google Scholar] [CrossRef]
- Fennelly, A.J.; Pavelle, R. Nonviability of Yilmaz’ Gravitation Theories and His Criticisms of Rosen’s Gravitation Theory. Print-76-0905. Available online: https://inspirehep.net/literature/110048 (accessed on 22 July 2024).
- Misner, C.W. Yilmaz cancels Newton. Nuovo Cim. B 1999, 114, 1079. [Google Scholar]
- Alley, C.O.; Aschan, P.K.; Yilmaz, H. Refutation of C.W. Misner’s claims in his article ‘Yilmaz cancels Newton’. arXiv 1995, arXiv:gr-qc/9506082. [Google Scholar]
- Robertson, S.L. X-Ray novae, event horizons, and the exponential metric. Astrophys. J. 1999, 515, 365. [Google Scholar] [CrossRef]
- Robertson, S.L. Bigger bursts from merging neutron stars. Astrophys. J. 1999, 517, L117. [Google Scholar] [CrossRef]
- Ibison, M. The Yilmaz cosmology. AIP Conf. Proc. 2006, 822, 181. [Google Scholar]
- Ibison, M. Cosmological test of the Yilmaz theory of gravity. Class. Quant. Gravit. 2006, 23, 577. [Google Scholar] [CrossRef]
- Ben-Amots, N. Relativistic exponential gravitation and exponential potential of electric charge. Found. Phys. 2007, 37, 773. [Google Scholar] [CrossRef]
- Svidzinsky, A.A. Vector theory of gravity in Minkowski space-time: Flat universe without black holes. arXiv 2009, arXiv:0904.3155. [Google Scholar]
- Martinis, M.; Perkovic, N. Is exponential metric a natural space-time metric of Newtonian gravity? arXiv 2010, arXiv:1009.6017. [Google Scholar]
- Ben-Amots, N. Some features and implications of exponential gravitation. J. Phys. Conf. Ser. 2011, 330, 012017. [Google Scholar] [CrossRef]
- Svidzinsky, A.A. Vector theory of gravity: Universe without black holes and solution of dark energy problem. Phys. Scr. 2017, 92, 125001. [Google Scholar] [CrossRef]
- Aldama, M.E. The gravity apple tree. J. Phys. Conf. Ser. 2015, 600, 012050. [Google Scholar] [CrossRef]
- Robertson, S.L. MECO in an exponential metric. arXiv 2016, arXiv:1606.01417. [Google Scholar]
- Simpson, A. Traversable Wormholes, Regular Black Holes, and Black-Bounces. arXiv 2021, arXiv:2104.14055. [Google Scholar]
- Lobo, F.S.N.; Crawford, P. Linearized stability analysis of thin shell wormholes with a cosmological constant. Class. Quant. Gravit. 2004, 21, 391–404. [Google Scholar] [CrossRef]
- Lemos, J.P.S.; Lobo, F.S.N. Plane symmetric thin-shell wormholes: Solutions and stability. Phys. Rev. D 2008, 78, 044030. [Google Scholar] [CrossRef]
- Li, A.C.; Xu, W.L.; Zeng, D.F. Linear Stability Analysis of Evolving Thin Shell Wormholes. J. Cosmol. Astropart. Phys. 2019, 1903, 016. [Google Scholar] [CrossRef]
- Hochberg, D.; Kephart, T.W. Wormhole cosmology and the horizon problem. Phys. Rev. Lett. 1993, 70, 2665–2668. [Google Scholar] [CrossRef]
- Kim, S.W. Evolution of Cosmological Horizons of Wormhole Cosmology. Int. J. Mod. Phys. D 2020, 29, 2050079. [Google Scholar] [CrossRef]
- Bhawal, B.; Kar, S. Lorentzian wormholes in Einstein-Gauss-Bonnet theory. Phys. Rev. D 1992, 46, 2464–2468. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, D. Lorentzian wormholes in higher order gravity theories. Phys. Lett. B 1990, 251, 349–354. [Google Scholar] [CrossRef]
- Agnese, A.G.; La Camera, M. Wormholes in the Brans-Dicke theory of gravitation. Phys. Rev. D 1995, 51, 2011–2013. [Google Scholar] [CrossRef]
- Jusufi, K.; Banerjee, A.; Ghosh, S.G. Wormholes in 4D Einstein–Gauss–Bonnet gravity. Eur. Phys. J. C 2020, 80, 698. [Google Scholar] [CrossRef]
- Huang, H.; Lu, H.; Yang, J. Bronnikov-like Wormholes in Einstein-Scalar Gravity. arXiv 2010, arXiv:2010.00197. [Google Scholar] [CrossRef]
- Ibadov, R.; Kleihaus, B.; Kunz, J.; Murodov, S. Wormholes in Einstein-scalar-Gauss-Bonnet theories with a scalar self-interaction potential. Phys. Rev. D 2020, 102, 064010. [Google Scholar] [CrossRef]
- Kanti, P.; Kleihaus, B.; Kunz, J. Wormholes in Dilatonic Einstein-Gauss-Bonnet Theory. Phys. Rev. Lett. 2011, 107, 271101. [Google Scholar] [CrossRef] [PubMed]
- Rosa, J.L.; Lemos, J.P.S.; Lobo, F.S.N. Wormholes in generalized hybrid metric-Palatini gravity obeying the matter null energy condition everywhere. Phys. Rev. D 2018, 98, 064054. [Google Scholar] [CrossRef]
- Cariglia, M.; Gibbons, G.W. Levy-Leblond fermions on the wormhole. arXiv 2018, arXiv:1806.05047. [Google Scholar]
- Blazquez-Salcedo, J.L.; Knoll, C.; Radu, E. Traversable wormholes in Einstein-Dirac-Maxwell theory. Phys. Rev. Lett. 2021, 126, 101102. [Google Scholar] [CrossRef]
- Sahoo, P.K.; Moraes, P.H.R.S.; Sahoo, P.; Ribeiro, G. Phantom fluid supporting traversable wormholes in alternative gravity with extra material terms. Int. J. Mod. Phys. D 2018, 27, 1950004. [Google Scholar] [CrossRef]
- Parsaeia, F.; Rastgoob, S. Wormhole solutions with a polynomial equation-of-state and minimal violation of the null energy condition. Eur. Phys. J. C 2020, 80, 366. [Google Scholar] [CrossRef]
- Lobo, F.S.N.; Rodrigues, M.E.; Silva, M.V.D.S.; Simpson, A.; Visser, M. Novel black-bounce spacetimes: Wormholes, regularity, energy conditions, and causal structure. Phys. Rev. D 2021, 103, 084052. [Google Scholar] [CrossRef]
- Di Grezia, E.; Battista, E.; Manfredonia, M.; Miele, G. Spin, torsion and violation of null energy condition in traversable wormholes. Eur. Phys. J. Plus 2017, 132, 537. [Google Scholar] [CrossRef]
- Lu, M.; Yang, J.; Mann, R.B. Gravitational Wormholes. Universe 2024, 10, 257. [Google Scholar] [CrossRef]
- Nozawas, M. Static spacetimes haunted by a phantom scalar field. II. Dilatonic charged solutions. Phys. Rev. D 2021, 103, 024004. [Google Scholar] [CrossRef]
- Simpson, A.; Visser, M. Black-bounce to traversable wormhole. J. Cosmol. Astropart. Phys. 2019, 02, 042. [Google Scholar] [CrossRef]
- Nojiri, S.; Odintsov, S.D.; Folomeev, V. Wormholes inside stars and black holes. Phys. Rev. D 2024, 109, 104007. [Google Scholar] [CrossRef]
- Mann, R.B. Black Holes of Negative Mass. Class. Quant. Gravit. 1997, 14, 2927–2930. [Google Scholar] [CrossRef]
- Hull, B.R.; Mann, R.B. Negative mass black holes in de Sitter space. Phys. Rev. D 2023, 107, 064027. [Google Scholar] [CrossRef]
- Nozawa, M. Static spacetimes haunted by a phantom scalar field. III. Asymptotically (A)dS solutions. Phys. Rev. D 2021, 103, 024005. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, C.; Qiu, J. From the Janis–Newman–Winicour Naked Singularities to the Einstein–Maxwell Phantom Wormholes. Universe 2024, 10, 328. https://doi.org/10.3390/universe10080328
Gao C, Qiu J. From the Janis–Newman–Winicour Naked Singularities to the Einstein–Maxwell Phantom Wormholes. Universe. 2024; 10(8):328. https://doi.org/10.3390/universe10080328
Chicago/Turabian StyleGao, Changjun, and Jianhui Qiu. 2024. "From the Janis–Newman–Winicour Naked Singularities to the Einstein–Maxwell Phantom Wormholes" Universe 10, no. 8: 328. https://doi.org/10.3390/universe10080328
APA StyleGao, C., & Qiu, J. (2024). From the Janis–Newman–Winicour Naked Singularities to the Einstein–Maxwell Phantom Wormholes. Universe, 10(8), 328. https://doi.org/10.3390/universe10080328