Conformal Symmetry and Supersymmetry in Rindler Space
Abstract
:1. Introduction
2. Massless Fields in 2-D Minkowski Space
3. Massless Fields in 2-D Rindler Space
4. Relating Rindler and Minkowski Fields
5. Supersymmetry
6. Conformal Symmetries
7. Ghosts and Local Conformal Symmetry
8. Conformal and Superconformal Ghosts in Rindler Space
9. Local Conformal Invariance in Rindler Space
10. Conclusions
Funding
Acknowledgments
Conflicts of Interest
Appendix A. 2-D Spinor Conventions
Appendix B. Thermal Correlations in Rindler Space
References
- Belavin, A.A.; Polyakov, A.M.; Zamolodchikov, A.B. Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 1984, 241, 333–380. [Google Scholar] [CrossRef] [Green Version]
- Cardy, J.L. Conformal Invariance and Statistical Mechanics. Les Houches Summerschool in Theoretical Physcis (1988). Brezin, E., Zinn-Justin, J., Eds.; 1990. Available online: https://inspirehep.net/literature/25027 (accessed on 3 September 2020).
- Schellekens, A.N. Conformal Field Theory. Lectures at the Saalburg Summerschool 1995. Available online: https://www.nikhef.nl/~t58/CFTBW.pdf (accessed on 3 September 2020).
- Green, M.B.; Schwarz, J.H.; Witten, E. Superstring Theory; Cambridge University Press: Cambridge, UK, 1987. [Google Scholar]
- Fradkin, E. Field Theories of Condensed Matter Physics; Cambridge University Press: Cambridge, UK, 2013. [Google Scholar]
- Zaanen, J.; Sun, Y.; Liu, Y.; Schalm, K. Holographic Duality in Condensed Matter Physics; Cambridge University Press: Cambridge, UK, 2015. [Google Scholar]
- Rindler, W. Kruskal Space and the Uniformly Accelerated Frame. Am. J. Phys. 1966, 34, 1174. [Google Scholar] [CrossRef]
- Unruh, W.G. Notes on black-hole evaporation. Phys. Rev. D 1976, 14, 870. [Google Scholar] [CrossRef] [Green Version]
- Davies, P.C.W. Scalar production in Schwarzschild and Rindler metrics. J. Phys. A 1975, 8, 609. [Google Scholar] [CrossRef]
- Wald, R.M. On particle creation by black holes. Comm. Math. Phys. 1975, 45, 9–34. [Google Scholar] [CrossRef]
- Fulling, S.A. Alternative vacuum states in static space-times with horizons. J. Phys. A 1977, 10, 917. [Google Scholar] [CrossRef]
- Hawking, S.W. Black hole explosions? Nature 1974, 248, 30–31. [Google Scholar] [CrossRef]
- Hawking, S.W. Particle creation by black holes. Comm. Math. Phys. 1975, 43, 199–200. [Google Scholar] [CrossRef]
- Gibbons, G.W.; Hawking, S.W. Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 1977, 15, 2738. [Google Scholar] [CrossRef] [Green Version]
- Samantray, P.; Padmanabhan, T. Conformal symmetry, Rindler space, and the AdS/CFT correspondence. Phys. Rev. D 2014, 90, 47502. [Google Scholar] [CrossRef] [Green Version]
- Brout, R.; Massar, S.; Parentani, R.; Spindel, P. A Primer for Black Hole Quantum Physics. Phys. Rept. 1995, 260, 329. [Google Scholar] [CrossRef] [Green Version]
- Crispino, L.C.; Higuchi, A.; Matsas, G. The Unruh effect and its applications. Rev. Mod. Phys. 2008, 80, 787. [Google Scholar] [CrossRef] [Green Version]
- Wald, R.M. General Relativity; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Fulling, S.A. Aspects of Quantum Field Theory in Curved Space-Time; Cambridge University Press: Cambridge, UK, 1989. [Google Scholar]
- Siegel, W. Covariantly second-quantized string. Phys. Lett. B 1984, 142, 276. [Google Scholar] [CrossRef]
- Petcher, D.N.; van Holten, J.W. A note on Fujikawa’s method of determining the critical dimension of the relativistic string. Phys. Lett. B 1987, 194, 221. [Google Scholar] [CrossRef]
- van Holten, J.W.; Kowalski-Glikman, J.; Petcher, D.N. BRST invariance and gauge independence of string path-integrals. Nucl. Phys. B 1988, 309, 608. [Google Scholar] [CrossRef] [Green Version]
- Wess, J.; Zumino, B. Consequences of anomalous ward identities. Phys. Lett. B 1971, 37, 95. [Google Scholar] [CrossRef] [Green Version]
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
van Holten, J.-W. Conformal Symmetry and Supersymmetry in Rindler Space. Universe 2020, 6, 144. https://doi.org/10.3390/universe6090144
van Holten J-W. Conformal Symmetry and Supersymmetry in Rindler Space. Universe. 2020; 6(9):144. https://doi.org/10.3390/universe6090144
Chicago/Turabian Stylevan Holten, Jan-Willem. 2020. "Conformal Symmetry and Supersymmetry in Rindler Space" Universe 6, no. 9: 144. https://doi.org/10.3390/universe6090144
APA Stylevan Holten, J. -W. (2020). Conformal Symmetry and Supersymmetry in Rindler Space. Universe, 6(9), 144. https://doi.org/10.3390/universe6090144