Deviation from Slow-Roll Regime in the EGB Inflationary Models with r ∼ †
Abstract
:1. Introduction
2. Slow-Roll Regime in EGB Gravity
3. Application
- If we can suppose ;
- And if , we can suppose .
3.1. Power-Law Effective Potential
3.2. Exponential Effective Potential
- if then ,
- if then ,
- if then .
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Akrami, Y.; Arroja, F.; Ashdown, M.; Aumont, J.; Baccigalupi, C.; Ballardini, M.; Banday, A.J.; Barreiro, R.B.; Bartolo, N.; Planck Collaboration; et al. Planck 2018 results. X. Constraints on inflation. Astron. Astrophys. 2020, 641, A10. [Google Scholar]
- Starobinsky, A.A. A New Type of Isotropic Cosmological Models Without Singularity. Phys. Lett. B 1980, 91, 99–102. [Google Scholar] [CrossRef]
- Starobinsky, A.A. Dynamics of phase transition in the new inflationary universe scenario and generation of perturbations. Phys. Lett. B 1982, 117, 175–178. [Google Scholar] [CrossRef]
- Starobinsky, A.A. The Perturbation Spectrum Evolving from a Nonsingular Initially De-Sitter Cosmology and the Microwave Background Anisotropy. Sov. Astron. Lett. 1983, 9, 302–304. [Google Scholar]
- Mijic, M.B.; Morris, M.S.; Suen, W.M. The R2 Cosmology: Inflation without a Phase Transition. Phys. Rev. D 1986, 34, 2934–2946. [Google Scholar] [CrossRef] [PubMed]
- Maeda, K. Inflation as a Transient Attractor in R2 Cosmology. Phys. Rev. D 1988, 37, 858–862. [Google Scholar] [CrossRef]
- Kallosh, R.; Linde, A. Universality Class in Conformal Inflation. J. Cosmol. Astropart. Phys. 2013, 07, 002. [Google Scholar] [CrossRef] [Green Version]
- Galante, M.; Kallosh, R.; Linde, A.; Roest, D. Unity of Cosmological Inflation Attractors. Phys. Rev. Lett. 2015, 114, 141302. [Google Scholar] [CrossRef] [Green Version]
- Roest, D. Universality classes of inflation. J. Cosmol. Astropart. Phys. 2014, 01, 007. [Google Scholar] [CrossRef] [Green Version]
- Barvinsky, A.O.; Kamenshchik, A.Y. Quantum scale of inflation and particle physics of the early universe. Phys. Lett. B 1994, 332, 270–276. [Google Scholar] [CrossRef] [Green Version]
- Bezrukov, F.L.; Shaposhnikov, M. The Standard Model Higgs boson as the inflaton. Phys. Lett. B 2008, 659, 703–706. [Google Scholar] [CrossRef] [Green Version]
- Barvinsky, A.O.; Kamenshchik, A.Y.; Starobinsky, A.A. Inflation scenario via the Standard Model Higgs boson and LHC. J. Cosmol. Asropart. Phys. 2008, 811, 21. [Google Scholar] [CrossRef]
- Bezrukov, F.L.; Magnin, A.; Shaposhnikov, M.; Sibiryakov, S. Higgs inflation: Consistency and generalizations. J. High Energy Phys. 2011, 2011, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Bezrukov, F.L. The Higgs field as an inflaton. Class. Quant. Grav. 2013, 30, 214001. [Google Scholar] [CrossRef]
- Rubio, J. Higgs inflation. Front. Astron. Space Sci. 2019, 5, 50. [Google Scholar] [CrossRef]
- Cervantes-Cota, J.L.; Dehnen, H. Induced gravity inflation in the standard model of particle physics. Nucl. Phys. B 1995, 442, 391–412. [Google Scholar] [CrossRef] [Green Version]
- Elizalde, E.; Odintsov, S.D.; Pozdeeva, E.O.; Vernov, S.Y. Renormalization-group inflationary scalar electrodynamics and SU(5) scenarios confronted with Planck2013 and BICEP2 results. Phys. Rev. D 2014, 90, 084001. [Google Scholar] [CrossRef] [Green Version]
- Elizalde, E.; Odintsov, S.D.; Pozdeeva, E.O.; Vernov, S.Y. Cosmological attractor inflation from the RG-improved Higgs sector of finite gauge theory. J. Cosmol. Astropart. Phys. 2016, 1602, 25. [Google Scholar] [CrossRef] [Green Version]
- Kaiser, D.I.; Mazenc, E.A.; Sfakianakis, E.I. Primordial Bispectrum from Multifield Inflation with Nonminimal Couplings. Phys. Rev. D 2013, 87, 064004. [Google Scholar] [CrossRef] [Green Version]
- Greenwood, R.N.; Kaiser, D.I.; Sfakianakis, E.I. Multifield Dynamics of Higgs Inflation. Phys. Rev. D 2013, 87, 064021. [Google Scholar] [CrossRef] [Green Version]
- Dubinin, M.N.; Petrova, E.Y.; Pozdeeva, E.O.; Sumin, M.V.; Vernov, S.Y. MSSM-inspired multifield inflation. J. High Energy Phys. 2017, 1712, 36. [Google Scholar] [CrossRef] [Green Version]
- Dubinin, M.N.; Petrova, E.Y.; Pozdeeva, E.O.; Vernov, S.Y. MSSM inflation and cosmological attractors. Int. J. Geom. Meth. Mod. Phys. 2018, 15, 1840001. [Google Scholar] [CrossRef] [Green Version]
- Antoniadis, I.; Rizos, J.; Tamvakis, K. Singularity-free cosmological solutions of the superstring effective action. Nucl. Phys. B 1994, 415, 497–514. [Google Scholar] [CrossRef] [Green Version]
- Torii, T.; Yajima, H.; Maeda, K.I. Dilatonic black holes with Gauss-Bonnet term. Phys. Rev. D 1997, 55, 739–753. [Google Scholar] [CrossRef] [Green Version]
- Kawai, S.; Sakagami, M.A.; Soda, J. Instability of one loop superstring cosmology. Phys. Lett. B 1998, 437, 284–290. [Google Scholar] [CrossRef] [Green Version]
- Calcagni, G.; Tsujikawa, S.; Sami, M. Dark energy and cosmological solutions in second-order string gravity. Class. Quant. Grav. 2005, 22, 3977–4006. [Google Scholar] [CrossRef]
- Calcagni, G.; Hwang, J.C.; Copeland, E.J. Evolution of cosmological perturbations in nonsingular string cosmologies. Phys. Rev. D 2001, 64, 103504. [Google Scholar]
- Hwang, J.C.; Noh, H. Classical evolution and quantum generation in generalized gravity theories including string corrections and tachyon: Unified analyses. Phys. Rev. D 2005, 71, 063536. [Google Scholar] [CrossRef] [Green Version]
- Tsujikawa, S.; Sami, M. String-inspired cosmology: Late time transition from scaling matter era to dark energy universe caused by a Gauss-Bonnet coupling. J. Cosmol. Astropart. Phys. 2007, 01, 006. [Google Scholar] [CrossRef]
- Cognola, G.; Elizalde, E.; Nojiri, S.; Odintsov, S.D.; Zerbini, S. String-Inspired Gauss-Bonnet gravity reconstructed from the universe expansion history and yielding the transition from matter dominance to dark energy. Phys. Rev. D 2007, 75, 086002. [Google Scholar] [CrossRef] [Green Version]
- Pozdeeva, E.O.; Gangopadhyay, M.R.; Sami, M.; Toporensky, A.V.; Vernov, S.Y. Inflation with a quartic potential in the framework of Einstein-Gauss-Bonnet gravity. Phys. Rev. D 2020, 102, 043525. [Google Scholar] [CrossRef]
- Satoh, M.; Soda, J. Higher Curvature Corrections to Primordial Fluctuations in Slow-roll Inflation. J. Cosmol. Astropart. Phys. 2008, 9, 19. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.K.; Schwarz, D.J. Power spectra from an inflaton coupled to the Gauss-Bonnet term. Phys. Rev. D 2009, 80, 063523. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.K.; Schwarz, D.J. Slow-roll inflation with a Gauss-Bonnet correction. Phys. Rev. D 2010, 81, 123520. [Google Scholar] [CrossRef] [Green Version]
- Jiang, P.X.; Hu, J.W.; Guo, Z.K. Inflation coupled to a Gauss-Bonnet term. Phys. Rev. D 2013, 88, 123508. [Google Scholar] [CrossRef] [Green Version]
- Koh, S.; Lee, B.H.; Lee, W.; Tumurtushaa, G. Observational constraints on slow-roll inflation coupled to a Gauss-Bonnet term. Phys. Rev. D 2014, 90, 063527. [Google Scholar] [CrossRef] [Green Version]
- Koh, S.; Lee, B.H.; Tumurtushaa, G. Reconstruction of the Scalar Field Potential in Inflationary Models with a Gauss-Bonnet term. Phys. Rev. D 2017, 95, 123509. [Google Scholar] [CrossRef] [Green Version]
- Koh, S.; Lee, B.H.; Tumurtushaa, G. Constraints on the reheating parameters after Gauss-Bonnet inflation from primordial gravitational waves. Phys. Rev. D 2018, 98, 103511. [Google Scholar] [CrossRef] [Green Version]
- van de Bruck, C.; Longden, C. Higgs Inflation with a Gauss-Bonnet term in the Jordan Frame. Phys. Rev. D 2016, 93, 063519. [Google Scholar] [CrossRef] [Green Version]
- Mathew, J.; Shankaranarayanan, S. Low scale Higgs inflation with Gauss-Bonnet coupling. Astropart. Phys. 2016, 84, 1–7. [Google Scholar] [CrossRef] [Green Version]
- van de Bruck, C.; Longden, C.; Dimopoulos, K. Reheating in Gauss-Bonnet-coupled inflation. Phys. Rev. D 2016, 94, 023506. [Google Scholar] [CrossRef] [Green Version]
- Nozari, K.; Rashidi, N. Perturbation, Non-Gaussianity, and reheating in a Gauss-Bonnet α-attractor model. Phys. Rev. D 2017, 95, 123518. [Google Scholar] [CrossRef] [Green Version]
- Armaleo, J.M.; Osorio Morales, J.; Santillan, O. Gauss-Bonnet models with cosmological constant and non zero spatial curvature in D = 4. Eur. Phys. J. C 2018, 78, 85. [Google Scholar] [CrossRef] [Green Version]
- Chakraborty, S.; Paul, T.; SenGupta, S. Inflation driven by Einstein-Gauss-Bonnet gravity. Phys. Rev. D 2018, 98, 083539. [Google Scholar] [CrossRef] [Green Version]
- Yi, Z.; Gong, Y.; Sabir, M. Inflation with Gauss-Bonnet coupling. Phys. Rev. D 2018, 98, 083521. [Google Scholar] [CrossRef] [Green Version]
- Odintsov, S.D.; Oikonomou, V.K. Viable Inflation in Scalar-Gauss-Bonnet Gravity and Reconstruction from Observational Indices. Phys. Rev. D 2018, 98, 044039. [Google Scholar] [CrossRef] [Green Version]
- Nojiri, S.; Odintsov, S.D.; Oikonomou, V.K.; Chatzarakis, N.; Paul, T. Viable inflationary models in a ghost-free Gauss–Bonnet theory of gravity. Eur. Phys. J. C 2019, 79, 565. [Google Scholar] [CrossRef] [Green Version]
- Kleidis, K.; Oikonomou, V. A Study of an Einstein Gauss-Bonnet Quintessential Inflationary Model. Nucl. Phys. B 2019, 948, 114765. [Google Scholar] [CrossRef]
- Rashidi, N.; Nozari, K. Gauss-Bonnet Inflation after Planck2018. Astrophys. J. 2020, 890, 58. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K.; Fronimos, F.P. Rectifying Einstein-Gauss-Bonnet Inflation in View of GW170817. Nucl. Phys. B 2020, 958, 115135. [Google Scholar] [CrossRef]
- Odintsov, S.D.; Oikonomou, V.K. Swampland Implications of GW170817-compatible Einstein-Gauss-Bonnet Gravity. Phys. Lett. B 2020, 805, 135437. [Google Scholar] [CrossRef]
- Hikmawan, G.; Soda, J.; Suroso, A.; Zen, F.P. Comment on “Gauss-Bonnet inflation”. Phys. Rev. D 2016, 93, 068301. [Google Scholar] [CrossRef] [Green Version]
- Mukhanov, V. Quantum Cosmological Perturbations: Predictions and Observations. Eur. Phys. J. C 2013, 73, 2486. [Google Scholar] [CrossRef] [Green Version]
- Pozdeeva, E.O. Generalization of cosmological attractor approach to Einstein–Gauss–Bonnet gravity. Eur. Phys. J. C 2020, 80, 612. [Google Scholar] [CrossRef]
- Pozdeeva, E.O.; Vernov, S.Y. Construction of inflationary scenarios with the Gauss-Bonnet term and nonminimal coupling. arXiv 2021, arXiv:2104.04995. [Google Scholar]
- Leach, S.M.; Liddle, A.R.; Martin, J.; Schwarz, D.J. Cosmological parameter estimation and the inflationary cosmology. Phys. Rev. D 2002, 66, 023515. [Google Scholar] [CrossRef] [Green Version]
- Linde, A.D. Chaotic Inflation. Phys. Lett. B 1983, 129, 177. [Google Scholar] [CrossRef]
- Pozdeeva, E.O.; Sami, M.; Toporensky, A.V.; Vernov, S.Y. Stability analysis of de Sitter solutions in models with the Gauss-Bonnet term. Phys. Rev. D 2019, 100, 083527. [Google Scholar] [CrossRef] [Green Version]
- Vernov, S.Y.; Pozdeeva, E.O. De Sitter solutions in Einstein-Gauss-Bonnet gravity. Universe 2021, 7, 149. [Google Scholar] [CrossRef]
- Bassett, B.A.; Tsujikawa, S.; Wands, D. Inflation dynamics and reheating. Rev. Mod. Phys. 2006, 78, 537–589. [Google Scholar] [CrossRef] [Green Version]
- Martin, J.; Pinol, L. Opening the reheating box in multifield inflation. arXiv 2021, arXiv:2105.03301. [Google Scholar]
- Marco, A.D.; Pradisi, G. Variable Inflaton Equation of State and Reheating. arXiv 2021, arXiv:2102.00326. [Google Scholar]
- Garcia, M.A.G.; Kaneta, K.; Mambrini, Y.; Olive, K.A. Inflaton Oscillations and Post-Inflationary Reheating. JCAP 2021, 4, 12. [Google Scholar] [CrossRef]
- Shojaee, R.; Nozari, K.; Darabi, F. α-Attractors and reheating in a nonminimal inflationary model. Int. J. Mod. Phys. D 2020, 29, 2050077. [Google Scholar] [CrossRef]
- Mohammadi, A.; Golanbari, T.; Enayati, J.; Jalalzadeh, S.; Saaidi, K. Revisiting Scalar Tensor inflation by swampland criteria and Reheating. arXiv 2021, arXiv:2011.13957. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pozdeeva, E.O.
Deviation from Slow-Roll Regime in the EGB Inflationary Models with r ∼
Pozdeeva EO.
Deviation from Slow-Roll Regime in the EGB Inflationary Models with r ∼
Pozdeeva, Ekaterina O.
2021. "Deviation from Slow-Roll Regime in the EGB Inflationary Models with r ∼
Pozdeeva, E. O.
(2021). Deviation from Slow-Roll Regime in the EGB Inflationary Models with r ∼