Effective f(R) Actions for Modified Loop Quantum Cosmologies via Order Reduction
Abstract
:1. Introduction
1.1. Motivations: Loop Quantum Cosmology and Its Modifications
1.2. Modified Loop Quantum Cosmology—I: mLQC-I
1.3. Modified Loop Quantum Cosmology—Ii: mLQC-II
1.4. Order Reduction
1.5. Outline of the Paper
2. Covariant Order Reduction Technique
2.1. Reduced Equations in Gravity
2.2. Strategy to Obtain Effective Actions
3. Effective Actions for Modified Loop Quantum Cosmology Models
3.1. Effective Action for LQC
3.2. Effective Actions for mLQC-I
3.2.1. Effective Action for the Branch
3.2.2. Effective Action for the Branch
3.3. Effective Action for mLQC-II
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
1 | The Gaussian, or ordinary hypergeometric function, is a special function defined by the hypergeometric series
|
References
- Amelino-Camelia, G. Quantum-Spacetime Phenomenology. Living Rev. Relativ. 2013, 16, 1–137. [Google Scholar] [CrossRef] [Green Version]
- Carlip, S. Quantum gravity: A Progress report. Rep. Prog. Phys. 2001, 64, 885. [Google Scholar] [CrossRef]
- Rovelli, C. Loop quantum gravity. Living Rev. Relativ. 2008, 11, 1–69. [Google Scholar] [CrossRef] [Green Version]
- Thiemann, T. Modern Canonical Quantum General Relativity; Cambridge University Press: Cambridge, UK, 2008. [Google Scholar]
- Ashtekar, A.; Lewandowski, J. Background independent quantum gravity: A Status report. Class. Quantum Gravity 2004, 21, R53. [Google Scholar] [CrossRef]
- Bojowald, M. Loop quantum cosmology. Living Rev. Relativ. 2008, 11, 1–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bojowald, M. Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 2001, 86, 5227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum Nature of the Big Bang: An Analytical and Numerical Investigation. Phys. Rev. D 2006, 73, 124038. [Google Scholar] [CrossRef] [Green Version]
- Ashtekar, A.; Pawlowski, T.; Singh, P. Quantum Nature of the Big Bang: Improved dynamics. Phys. Rev. D 2006, 74, 84003. [Google Scholar] [CrossRef] [Green Version]
- Taveras, V. Corrections to the Friedmann Equations from LQG for a Universe with a Free Scalar Field. Phys. Rev. D 2008, 78, 64072. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, K.; Calcagni, G.; Martin-Benito, M. Introduction to loop quantum cosmology. SIGMA 2012, 8, 16. [Google Scholar] [CrossRef]
- De Haro, J.; Amorós, J. Bouncing cosmologies via modified gravity in the ADM formalism: Application to Loop Quantum Cosmology. Phys. Rev. D 2018, 97, 64014. [Google Scholar] [CrossRef] [Green Version]
- Singh, P. Loop cosmological dynamics and dualities with Randall-Sundrum braneworlds. Phys. Rev. D 2006, 73, 63508. [Google Scholar] [CrossRef] [Green Version]
- Meissner, K.A. Black hole entropy in loop quantum gravity. Class. Quantum Gravity 2004, 21, 5245. [Google Scholar] [CrossRef] [Green Version]
- Li, B.F.; Singh, P.; Wang, A. Towards Cosmological Dynamics from Loop Quantum Gravity. Phys. Rev. D 2018, 97, 84029. [Google Scholar] [CrossRef] [Green Version]
- Li, B.F.; Singh, P.; Wang, A. Qualitative dynamics and inflationary attractors in loop cosmology. Phys. Rev. D 2018, 98, 66016. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Ding, Y.; Ma, Y. Alternative quantization of the Hamiltonian in loop quantum cosmology II: Including the Lorentz term. Phys. Lett. B 2009, 682, 1–7. [Google Scholar] [CrossRef]
- Dapor, A.; Liegener, K. Cosmological Effective Hamiltonian from full Loop Quantum Gravity Dynamics. Phys. Lett. B 2018, 785, 506–510. [Google Scholar] [CrossRef]
- Dapor, A.; Liegener, K. Cosmological coherent state expectation values in loop quantum gravity I. Isotropic kinematics. Class. Quantum Gravity 2018, 35, 135011. [Google Scholar] [CrossRef] [Green Version]
- Alesci, E.; Barrau, A.; Botta, G.; Martineau, K.; Stagno, G. Phenomenology of Quantum Reduced Loop Gravity in the isotropic cosmological sector. Phys. Rev. D 2018, 98, 106022. [Google Scholar] [CrossRef] [Green Version]
- Bilski, J.; Marcianò, A. Critical Insight into the Cosmological Sector of Loop Quantum Gravity. Phys. Rev. D 2020, 101, 66026. [Google Scholar] [CrossRef] [Green Version]
- Li, B.F.; Singh, P.; Wang, A. Genericness of pre-inflationary dynamics and probability of the desired slow-roll inflation in modified loop quantum cosmologies. Phys. Rev. D 2019, 100, 63513. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Singh, P. Effective Action for Loop Quantum Cosmology a la Palatini. J. Cosmol. Astropart. Phys. 2009, 2009, 30. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J. Palatini Approach to Modified Gravity: f(R) Theories and Beyond. Int. J. Mod. Phys. D 2011, 20, 413–462. [Google Scholar] [CrossRef] [Green Version]
- Sotiriou, T.P.; Faraoni, V. f(R) Theories Of Gravity. Rev. Mod. Phys. 2010, 82, 451. [Google Scholar] [CrossRef] [Green Version]
- Lobo, F.S.N. The Dark side of gravity: Modified theories of gravity. arXiv 2008, arXiv:0807.1640. [Google Scholar]
- De Felice, A.; Tsujikawa, S. f(R) theories. Living Rev. Relativ. 2010, 13, 1–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nojiri, S.; Odintsov, S.D. Unified cosmic history in modified gravity: From f(R) theory to Lorentz non-invariant models. Phys. Rep. 2011, 505, 59–144. [Google Scholar] [CrossRef] [Green Version]
- Clifton, T.; Ferreira, P.G.; Padilla, A.; Skordis, C. Modified Gravity and Cosmology. Phys. Rep. 2012, 513, 1–189. [Google Scholar] [CrossRef] [Green Version]
- Capozziello, S.; De Laurentis, M. Extended Theories of Gravity. Phys. Rep. 2011, 509, 167–321. [Google Scholar] [CrossRef] [Green Version]
- Harko, T.; Lobo, F.S.N. Extensions of f(R) Gravity: Curvature-Matter Couplings and Hybrid Metric-Palatini Theory. In Cambridge Monographs on Mathematical Physics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Sotiriou, T.P. Covariant Effective Action for Loop Quantum Cosmology from Order Reduction. Phys. Rev. D 2009, 79, 44035. [Google Scholar] [CrossRef] [Green Version]
- Bel, L.; Zia, H.S. Regular reduction of relativistic theories of gravitation with a quadratic Lagrangian. Phys. Rev. D 1985, 32, 3128–3135. [Google Scholar] [CrossRef] [PubMed]
- Simon, J.Z. Higher Derivative Lagrangians, Nonlocality, Problems and Solutions. Phys. Rev. D 1990, 41, 3720. [Google Scholar] [CrossRef] [Green Version]
- Simon, J.Z. No Starobinsky inflation from selfconsistent semiclassical gravity. Phys. Rev. D 1992, 45, 1953–1960. [Google Scholar] [CrossRef] [Green Version]
- Huang, Q.G. A polynomial f(R) inflation model. J. Cosmol. Astropart. Phys. 2014, 2, 35. [Google Scholar] [CrossRef] [Green Version]
- Castellanos, A.R.R.; Sobreira, F.; Shapiro, I.L.; Starobinsky, A.A. On higher derivative corrections to the R + R2 inflationary model. J. Cosmol. Astropart. Phys. 2018, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Terrucha, I.; Vernieri, D.; Lemos, J.P.S. Covariant action for bouncing cosmologies in modified Gauss–Bonnet gravity. Ann. Phys. 2019, 404, 39–46. [Google Scholar] [CrossRef] [Green Version]
- Barros, B.J.; Teixeira, E.M.; Vernieri, D. Bouncing cosmology in f(R,) gravity by order reduction. Ann. Phys. 2020, 419, 168231. [Google Scholar] [CrossRef]
- Bajardi, F.; Vernieri, D.; Capozziello, S. Bouncing Cosmology in f(Q) Symmetric Teleparallel Gravity. Eur. Phys. J. Plus 2020, 135, 912. [Google Scholar] [CrossRef]
- Miranda, M.; Vernieri, D.; Capozziello, S.; Lobo, F.S.N. Effective actions for loop quantum cosmology in fourth-order gravity. Eur. Phys. J. C 2021, 81, 975. [Google Scholar] [CrossRef]
- Miranda, M.; Vernieri, D.; Capozziello, S.; Lobo, F.S.N. Bouncing Cosmology in Fourth-Order Gravity. Universe 2022, 8, 161. [Google Scholar] [CrossRef]
- Amorós, J.; de Haro, J.; Odintsov, S.D. R + αR2 Loop Quantum Cosmology. Phys. Rev. D 2014, 89, 104010. [Google Scholar] [CrossRef] [Green Version]
- Olmo, G.J.; Rubiera-Garcia, D. “Brane-world and loop cosmology from a gravity–matter coupling perspective. Phys. Lett. B 2015, 740, 73–79. [Google Scholar] [CrossRef] [Green Version]
- Bojowald, M. Noncovariance of the dressed-metric approach in loop quantum cosmology. Phys. Rev. D 2020, 102, 23532. [Google Scholar] [CrossRef]
- Bernal, T.; Capozziello, S.; Hidalgo, J.C.; Mendoza, S. Recovering MOND from extended metric theories of gravity. Eur. Phys. J. C 2011, 71, 1794. [Google Scholar] [CrossRef] [Green Version]
- de Haro, J.; Aresté Saló, L.; Pan, S. Limiting curvature mimetic gravity and its relation to Loop Quantum Cosmology. Gen. Relativ. Gravit. 2019, 51, 49. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, A.R.; Vernieri, D.; Lobo, F.S.N. Effective f(R) Actions for Modified Loop Quantum Cosmologies via Order Reduction. Universe 2023, 9, 181. https://doi.org/10.3390/universe9040181
Ribeiro AR, Vernieri D, Lobo FSN. Effective f(R) Actions for Modified Loop Quantum Cosmologies via Order Reduction. Universe. 2023; 9(4):181. https://doi.org/10.3390/universe9040181
Chicago/Turabian StyleRibeiro, Ana Rita, Daniele Vernieri, and Francisco S. N. Lobo. 2023. "Effective f(R) Actions for Modified Loop Quantum Cosmologies via Order Reduction" Universe 9, no. 4: 181. https://doi.org/10.3390/universe9040181
APA StyleRibeiro, A. R., Vernieri, D., & Lobo, F. S. N. (2023). Effective f(R) Actions for Modified Loop Quantum Cosmologies via Order Reduction. Universe, 9(4), 181. https://doi.org/10.3390/universe9040181