New Copper-Based Metallodrugs with Anti-Invasive Capacity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of the Heteroleptic Copper-Based Biomolecules
2.2. Cell Cultures and Treatments
2.3. Viability Assay and Cell Proliferation (XTT) Assays
2.4. Wound Healing Assay
2.5. Western Blot Analysis
2.6. Measurement of Intracellular Reactive Oxygen Species (ROS) Production
2.7. Stability Measurements
2.8. Statistical Analysis
3. Results and Discussion
3.1. Stability of [Cu(Trop)Cl] and [Cu(Trop)Sac] Complexes in Solution
3.2. Inhibition of RKO-siHIPK2 Cell Proliferation by [Cu(Trop)Sac] Treatment
3.3. Inhibition of RKO-HIPK2i Migration by [Cu(Trop)Sac] Treatment
3.4. Anticancer and Antiproliferative Activities of [Cu(Trop)Cl]
3.5. Antioxidant Activity of [Cu(Trop)Sac] and [Cu(Trop)Cl Complexes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell 2011, 144, 646–674. [Google Scholar] [CrossRef]
- Steeg, P.S. Targeting metastasis. Nat. Rev. Cancer 2016, 16, 201. [Google Scholar] [CrossRef] [PubMed]
- Gandalovicová, A.; Rosel, D.; Fernandes, M.; Veselý, P.; Heneberg, P.; Cermák, V.; Petruželka, L.; Kumar, S.; Sanz-Moreno, V.; Brábek, J. Migrastatics—Anti-metastatic and Anti-invasion Drugs: Promises and Challenges. Trends Cancer 2017, 3, 391–406. [Google Scholar] [CrossRef] [PubMed]
- Paprocka, R.; Wiese-Szadkowska, M.; Janciauskiene, S.; Kosmalski, T.; Kulik, M.; Helmin-Basa, A. Latest developments in metal complexes as anticancer agents. Coord. Chem. Rev. 2022, 452, 214307. [Google Scholar] [CrossRef]
- Gonzalez-Ballesteros, M.M.; Mejìa, C.; Ruiz-Azuara, L. Metallodrugs: An approach against invasion and metastasis in cancer treatment. FEBS Open Bio 2022, 12, 880–899. [Google Scholar] [CrossRef]
- Bergamo, A.; Sava, G. Linking the future of anticancer metal-complexes to the therapy of tumour metastases. Chem. Soc. Rev. 2015, 44, 8818–8835. [Google Scholar] [CrossRef]
- Sonkar, C.; Sarkar, S.; Mukhopadhyay, S. Ruthenium(ii)–Arene complexes as anti-metastatic agents, and related techniques. RSC Med. Chem. 2022, 13, 22–38. [Google Scholar] [CrossRef]
- Alessio, E. Thirty Years of the Drug Candidate NAMI-A and the Myths in the Field of Ruthenium Anticancer Compounds: A Personal Perspective. Eur. J. Inorg. Chem. 2017, 17, 1549–1560. [Google Scholar] [CrossRef]
- Karges, J.; Jakubaszek, M.; Mari, C.; Zarschler, K.; Goud, B.; Stephan, H.; Gasser, G. Synthesis and Characterization of an Epidermal Growth Factor Receptor-Selective RuIIPolypyridyl-Nanobody Conjugate as a Photosensitizer for Photodynamic Therapy. ChemBioChem 2020, 21, 531–542. [Google Scholar] [CrossRef]
- Ma, D.L.; He, H.-Z.; Leung, K.-H.; Chan, D.S.-H.; Leung, C.-H. Bioactive luminescent transition-metal complexes for biomedical applications. Angew. Chem. Int. Ed. 2013, 52, 7666. [Google Scholar] [CrossRef] [PubMed]
- Balsano, C.; Porcu, C.; Sideri, S. Is copper a new target to counteract the progression of chronic diseases? Metallomics 2018, 10, 1712–1722. [Google Scholar] [CrossRef] [PubMed]
- Zehra, S.; Tabassum, S.; Arjmand, F. Biochemical pathways of copper complexes: Progress over the past 5 years. Drug Discov. Today 2021, 26, 1086–1096. [Google Scholar] [CrossRef] [PubMed]
- Krasnovskaya, O.; Naumov, A.; Guk, D.; Gorelkin, P.; Erofeev, A.; Beloglazkina, E.; Majouga, A. Copper Coordination Compounds as Biologically Active Agents. Int. J. Mol. Sci. 2020, 21, 3965. [Google Scholar] [CrossRef] [PubMed]
- Spoerlein, C.; Mahal, K.; Schmidt, H.; Schobert, R. Effects of chrysin, apigenin, genistein and their homoleptic copper(II) complexes on the growth and metastatic potential of cancer cells. J. Inorg. Biochem. 2013, 127, 107–115. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, Y.; Guo, Z.; Wang, X. Hypotoxic copper complexes with potent anti-metastatic and anti-angiogenic activities against cancer cells. Dalton Trans. 2018, 47, 5049–5054. [Google Scholar] [CrossRef]
- Balsa, L.M.; Ruiz, M.C.; de la Parra, L.S.M.; Baran, E.J.; León, I.E. Anticancer and antimetastatic activity of copper(II)-tropolone complex against human breast cancer cells, breast multicellular spheroids and mammospheres. J. Inorg. Biochem. 2020, 204, 110975. [Google Scholar] [CrossRef]
- Mazzone, G.; Sicilia, E.; Szerb, E.I.; La Deda, M.; Ricciardi, L.; Furia, E.; Sanz Mendiguchia, B.; Scarpelli, F.; Crispini, A.; Aiello, I. Heteroleptic Cu(II) saccharin complexes: Intriguing coordination modes and properties. Inorg. Chem. Front. 2021, 8, 3342–3353. [Google Scholar] [CrossRef]
- Mahon, B.P.; Hendon, A.M.; Driscoll, J.M.; Rankin, G.M.; Poulsen, S.A.; Supuran, C.T.; McKenna, R. Saccharin: A lead compound for structure based drug design of carbonic anhydrase IX inhibitors. Bioorg. Med. Chem. 2015, 23, 849–854. [Google Scholar] [CrossRef]
- Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in Copper Complexes as Anticancer Agents. Chem. Rev. 2014, 114, 815–862. [Google Scholar] [CrossRef]
- Haney, S.L.; Allen, C.; Varney, M.L.; Dykstra, K.M.; Falcone, E.R.; Colligan, S.H.; Hu, Q.; Aldridge, A.M.; Wright, D.L.; Wiemer, A.J.; et al. Novel tropolones induce the unfolded protein response pathway and apoptosis in multiple myeloma cells. Oncotarget 2017, 8, 76085–76098. [Google Scholar] [CrossRef]
- Gusakov, E.A.; Topchu, I.A.; Mazitova, A.M.; Dorogan, I.V.; Bulatov, E.R.; Serebriiski, I.G.; Abramova, Z.I.; Tupaeva, I.O.; Demidov, O.P.; Toan, D.N.; et al. Design, synthesis and biological evaluation of 2-quinolyl-1,3-tropolone derivatives as new anti-cancer agents. RSC Adv. 2021, 11, 4555–4571. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, V.; Rinaldo, C.; Sacchi, A.; Soddu, S.; D’Orazi, G. Homeodomain-interacting protein kinase-2 activity and p53 phosphorylation are critical events for cisplatin-mediated apoptosis. Exp. Cell Res. 2004, 293, 311–320. [Google Scholar] [CrossRef] [PubMed]
- D’Orazi, G.; Rinaldo, C.; Soddu, S. Updates on HIPK2: A resourceful oncosuppressor for clearing cancer. J. Exp. Clin. Cancer Res. 2012, 31, 63. [Google Scholar] [CrossRef] [PubMed]
- Garufi, A.; Traversi, G.; Cirone, M.; D’Orazi, G. HIPK2 role in the tumor-host interaction: Impact on fibroblasts transdifferentiation CAF-like. IUBMB Life 2019, 71, 2055–2061. [Google Scholar] [CrossRef]
- Conte, A.; Valente, V.; Paladino, S.; Pierantoni, G.M. HIPK2 in cancer biology and therapy: Recent findings and future perspectives. Cell. Signal. 2023, 101, 110491. [Google Scholar] [CrossRef]
- Garufi, A.; Pistritto, G.; D’Orazi, G. HIPK2 as a novel regulator of fibrosis. Cancers 2023, 15, 1059. [Google Scholar] [CrossRef]
- Garufi, A.; D’Orazi, V.; Pistritto, G.; Cirone, M.; D’Orazi, G. HIPK2 in angiogenesis: A promising biomarker in cancer progression and in angiogenic diseases. Cancers 2023, 15, 1566. [Google Scholar] [CrossRef]
- Garufi, A.; D’Orazi, V.; Pistritto, G.; D’Orazi, G. The sweet side of HIPK2. Cancers 2023, 15, 2678. [Google Scholar] [CrossRef]
- Nardinocchi, L.; Puca, R.; Guidolin, M.; Belloni, A.S.; Bossi, G.; Michiels, C.; Sacchi, A.; Onisto, M.; D’Orazi, G. Transcriptional regulation of hypoxia-inducible factor 1alpha by HIPK2 suggests a novel mechanism to restrain tumor growth. Biochim. Biophys. Acta 2009, 1793, 368–377. [Google Scholar] [CrossRef]
- Aggarval, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, A.; Sethi, G. Role of reactive oxygen species in cancer progression: Molecular mechanisms and recent advancements. Biomolecules 2019, 9, 735. [Google Scholar] [CrossRef]
- Garufi, A.; Pistritto, G.; D’Orazi, V.; Cirone, M.; D’Orazi, G. The impact of NRF2 inhibition on drug-induced colon cancer cell death and p53 activity: A pilot study. Biomolecules 2022, 12, 461. [Google Scholar] [CrossRef]
- Miao, Y.; Chen, L.; Shi, C.; Fan, R.; Chen, P.; Liu, H.; Xia, A.; Qin, X. Increased phosphorylation of 4E-binding protein 1 predicts poor prognosis for patients with colorectal cancer. Mol. Med. Rep. 2017, 15, 3099–3104. [Google Scholar] [CrossRef] [PubMed]
- Armengol, G.; Rojo, F.; Castellvi, J.; Iglesias, C.; Cuatrecasas, M.; Pons, B.; Baselga, J.; Ramon y Cajal, S. 4E-binding protein 1: A key molecular “funnel factor” in human cancer with clinical implications. Cancer Res. 2007, 67, 7551–7555. [Google Scholar] [CrossRef] [PubMed]
- She, Q.B.; Halilovic, E.; Ye, Q.; Zhen, W.; Shirasawa, S.; Sasazuki, T.; Solit, D.B.; Rose, N. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell 2010, 18, 39–51. [Google Scholar] [CrossRef]
- Cai, W.; Ye, Q.; She, Q.-B. Loss of 4E-BP1 function induces EMT and promotes cancer cell migration and invasion via cap-dependent translational activation of snail. Oncotarget 2014, 5, 6015–6027. [Google Scholar] [CrossRef] [PubMed]
- Liguori, Y.P.F.; Valentini, A.; Palma, M.; Bellusci, A.; Bernardini, S.; Ghedini, M.; Panno, M.L.; Pettinari, C.; Marchetti, F.; Crispini, A.; et al. Non-classical anticancer agents: Synthesis and biological evaluation of zinc(II) heteroleptic complexes. Dalton Trans. 2010, 39, 4205–4212. [Google Scholar] [CrossRef]
- Heston, X.A.J.; Colopy, M.L.; Stenger, C.N.; Zappitelli, L.E. Investigating the Cellular Response of Copper (II) Ions on both Cancerous and Noncancerous Cell Lines: A Closer Look into MCF-7, A375, and HFF Cells. Int. J. Appl. Sci. Technol. 2017, 7, 1–7. [Google Scholar]
- Mo, X.; Chen, Z.; Chu, B.; Liu, D.; Lianga, Y.; Liang, F. Structure and anticancer activities of four Cu(II) complexes bearing tropolone. Metallomics 2019, 11, 1952–1964. [Google Scholar] [CrossRef]
- Nodale, C.; Sheffer, M.; Jacob-Hirsch, J.; Folgiero, V.; Falcioni, R.; Aiello, A.; Garufi, A.; Rechavi, G.; Givol, D.; D’Orazi, G. HIPK2 downregulates vimentin and inhibits breast cancer cell invasion. Cancer Biol. Ther. 2012, 13, 198–205. [Google Scholar] [CrossRef]
- Tan, M.; Gong, H.; Zeng, Y.; Tao, L.; Jiang, J.; Xu, D.; Bao, E.; Qiu, J.; Liu, Z. Downregulation of homeodomain-interacting protein kinase-2 contributes to bladder cancer metastasis by regulating Wnt signaling. J. Cell. Biochem. 2014, 115, 1762–1767. [Google Scholar] [CrossRef]
- Tan, X.; Tang, H.; Bi, J.; Jia, Y. MicroRNA-222-3p associated with Helicobacter pylori targets HIPK2 to promote cell proliferation, invasion, and inhibits apoptosis in gastric cancer. J. Cell. Biochem. 2018, 119, 5153–5162. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wen, P.; Li, F.; Yao, C.; Wang, T.; Liang, B.; Yang, Q.; Ma, L.; He, L. HIPK2 inhibits cell metastasis and improves chemosensitivity in esophageal squamous cell carcinoma. Exp. Ther. Med. 2018, 15, 1113–1118. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Pan, Y.; Chen, X.; Xia, S.; Hu, Y.; Zhou, Y.; Zhang, J. Inactivation of homeodomain-interacting protein kinase-2 promotes oral squamous cell carcinoma metastasis through inhibition of p53-dependent E-cadherin expression. Cancer Sci. 2021, 112, 117–132. [Google Scholar] [CrossRef] [PubMed]
- Rankin, E.B.; Nam, J.M.; Giaccia, A.J. Hypoxia: Signaling the metastatic cascade. Trends Cancer 2016, 2, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Potter, C.; Harris, A.L. Hypoxia inducible carbonic anhydrase IX, marker of tumour hypoxia, survival pathway and therapy target. Cell Cycle 2004, 3, 164–167. [Google Scholar] [CrossRef]
- Ong, C.H.C.; Lee, D.Y.; Lee, B.; Li, H.; Tatt, J.C.; Lim, J.X.; Yeing, J.P.S.; Lau, H.Y.; Thike, A.A.; Tan, P.H.; et al. Hypoxia-regulated carbonic anhydrase IX (CAIX) protein is an independent prognostic indicator in triple negative breast cancer. Breast Cancer Res. 2022, 24, 38. [Google Scholar] [CrossRef]
- Kilpin, K.J.; Dyson, P.J. Enzyme inhibition by metal complexes: Concepts, strategies and applications. Chem. Sci. 2013, 4, 1410–1419. [Google Scholar] [CrossRef]
- Ye, R.; Tan, C.; Chen, B.; Li, R.; Mao, Z. Zinc-Containing Metalloenzymes: Inhibition by Metal-Based Anticancer Agents. Front. Chem. 2020, 8, 402. [Google Scholar] [CrossRef]
- Blois, M.S. Antioxidant determinations by the use of a stable free radical. Nature 1958, 181, 1199–1200. [Google Scholar] [CrossRef]
- Kedare, S.B.; Singh, R.P. Genesis and development of DPPH method of antioxidant assay. J. Food Sci. Technol. 2011, 48, 412–422. [Google Scholar] [CrossRef] [PubMed]
Compound | Antioxidant Activity (%) 3 h | Antioxidant Activity (%) 24 h | Antioxidant Activity (%) 48 h | Antioxidant Activity (%) 72 h |
---|---|---|---|---|
[Cu(Trop)Cl] | 1.84 ± 0.15 | 6.75 ± 0.23 | 9.06 ± 0.12 | 12.62 ± 0.21 |
[Cu(Trop)Sac] | 8.29 ± 0.13 | 15.78 ± 0.16 | 21.02 ± 0.20 | 24.48 ± 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garufi, A.; Scarpelli, F.; Ricciardi, L.; Aiello, I.; D’Orazi, G.; Crispini, A. New Copper-Based Metallodrugs with Anti-Invasive Capacity. Biomolecules 2023, 13, 1489. https://doi.org/10.3390/biom13101489
Garufi A, Scarpelli F, Ricciardi L, Aiello I, D’Orazi G, Crispini A. New Copper-Based Metallodrugs with Anti-Invasive Capacity. Biomolecules. 2023; 13(10):1489. https://doi.org/10.3390/biom13101489
Chicago/Turabian StyleGarufi, Alessia, Francesca Scarpelli, Loredana Ricciardi, Iolinda Aiello, Gabriella D’Orazi, and Alessandra Crispini. 2023. "New Copper-Based Metallodrugs with Anti-Invasive Capacity" Biomolecules 13, no. 10: 1489. https://doi.org/10.3390/biom13101489
APA StyleGarufi, A., Scarpelli, F., Ricciardi, L., Aiello, I., D’Orazi, G., & Crispini, A. (2023). New Copper-Based Metallodrugs with Anti-Invasive Capacity. Biomolecules, 13(10), 1489. https://doi.org/10.3390/biom13101489