Whole-Body Cryotherapy Improves Asprosin Secretion and Insulin Sensitivity in Postmenopausal Women–Perspectives in the Management of Type 2 Diabetes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
- (1)
- T0: on the day when 1 WBC treatment was performed;
- (2)
- T1: the day following the 30 WBC treatments;
- (3)
- T2: 2 weeks after completion of the 30th WBC treatment.
- (1)
- The participants were not in physical training and had a low level of physical activity [22].
- (2)
- The subjects were asked to maintain their previous physical activity and diet, which was controlled by analysing the results of the International Physical Activity Questionnaire—(IPAQ), the 7-day Physical Activity Recall (7-day PAR) and diaries with the use of the Diet 6.0 program (Institute of Food and Nutrition, Warsaw, Poland) [22,23].
- (3)
- The participants did not use any wellness treatments during the WBC protocol.
2.2. Somatic Measurements and Evaluation of Body Composition
2.3. Medical Qualification and Characteristics of the Participants
2.4. Whole-Body Cryotherapy
2.5. Biochemical Determinations
2.6. Statistical Analysis
3. Results
3.1. Glucose
3.2. Glycated Haemoglobin
3.3. Insulin
3.4. HOMA-IR and Quicki Indices
3.5. TyG Index
3.6. Asprosin
3.7. C-Reactive Protein
3.8. Correlations
4. Discussion
Limitation of the Study
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grycel, S.; Blachnio-Zabielska, A. Type 2 diabetes—Epidemiology and pharmacotherapy. Probl. Hig. Epidemiol. 2019, 100, 75–81. [Google Scholar]
- Malecki, M. Obesity—Insulin resistance—Type 2 diabetes mellitus. Pol. Heart J. 2006, 64 (Suppl. S6), 561–566. [Google Scholar]
- Czupryniak, L. Clinical recommendations for the management of patients with diabetes 2022. Recommendations of the Polish Diabetology Society. Curr. Top. Diabetes 2022, 2, 1–134. [Google Scholar]
- Kalbarczyk, W.P. Diabetes. Where Are We? Where Are We Heading? Institute of Health Protection, Warszawa. 2018. Available online: https://e2368fae-89c4-422c-b5c6-1d7220f21c82.filesusr.com/ugd/e91ac2_fc0a3c8757704a1a86fb820cc28c340a.pdf (accessed on 9 February 2023).
- International Diabetes Federation. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021; Available online: https://diabetesatlas.org/idfawp/resource-files/2021/07/IDF_Atlas_10th_Edition_2021.pdf (accessed on 9 February 2023).
- Jaganathan, R.; Ravindran, R.; Dhanasekaran, S. Emerging Role of Adipocytokines in Type 2 Diabetes as Mediators of Insulin Resistance and Cardiovascular Disease. Can. J. Diabetes 2018, 42, 446–456.e1. [Google Scholar] [CrossRef]
- Romere, C.; Duerrschmid, C.; Bournat, J.; Constable, P.; Jain, M.; Xia, F.; Saha, P.K.; Del Solar, M.; Zhu, B.; York, B.; et al. Asprosin, a fasting-induced glucogenic protein hormone. Cell 2016, 165, 566–579. [Google Scholar] [CrossRef]
- Li, X.; Liao, M.; Shen, R.; Zhang, L.; Hu, H.; Wu, J.; Wang, X.; Qu, H.; Guo, S.; Long, M.; et al. Plasma asprosin levels are associated with glucose metabolism, lipid, and sex hormone profiles in females with metabolic-related diseases. Mediat. Inflamm. 2018, 2018, 7375294. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Chen, C.; Zhou, N.; Fu, Y.; Cheng, X. Circulating asprosin concentrations are increased in type 2 diabetes mellitus and independently associated with fasting glucose and triglyceride. Clin. Chim. Acta 2019, 489, 183–188. [Google Scholar] [CrossRef]
- Zhang, Z.; Tan, Y.; Zhu, L.; Zhang, B.; Feng, P.; Gao, E.; Xu, C.; Wang, X.; Yi, W.; Sun, Y. Asprosin improves the survival of mesenchymal stromal cells in myocardial infarction by inhibiting apoptosis via the activated ERK1/2-SOD2 pathway. Life Sci. 2019, 231, 116554. [Google Scholar] [CrossRef] [PubMed]
- Jung, T.W.; Kim, H.C.; Kim, H.U.; Park, T.; Park, J.; Kim, U.; Kim, M.K.; Jeong, J.H. Asprosin attenuates insulin signaling pathway through PKCδ-activated ER stress and inflammation in skeletal muscle. J. Cell. Physiol. 2019, 234, 20888–20899. [Google Scholar] [CrossRef]
- Lee, T.; Yun, S.; Jeong, J.H.; Jung, T.W. Asprosin impairs insulin secretion in response to glucose and viability through TLR4/JNK-mediated inflammation. Mol. Cell. Endocrinol. 2019, 486, 96–104. [Google Scholar] [CrossRef]
- Lombardi, G.; Ziemann, E.; Banfi, G. Whole-Body Cryotherapy: Possible Application in Obesity and Diabesity. In Rehabilitation Interventions in the Patient with Obesity; Capodaglio, P., Ed.; Springer Nature: Cham, Switzerland, 2020; pp. 173–188. [Google Scholar] [CrossRef]
- Lubkowska, A.; Bryczkowska, I.; Szygula, Z.; Giemza, C.; Skrzek, A.; Rotter, I.; Lombardi, G.; Banfi, G. The effect of repeated whole-body cryostimulation on the HSP-70 and lipid metabolisms in healthy subjects. Physiol. Res. 2019, 68, 419–429. [Google Scholar] [CrossRef]
- Lubkowska, A.; Dudzińska, W.; Bryczkowska, I.; Dołęgowska, B. Body Composition, Lipid Profile, Adipokine Concentration, and Antioxidant Capacity Changes during Interventions to Treat Overweight with Exercise Programme and Whole-Body Cryostimulation. Oxid. Med. Cell. Longev. 2015, 2015, 803197. [Google Scholar] [CrossRef]
- Dulian, K.; Laskowski, R.; Grzywacz, T.; Kujach, S.; Flis, D.J.; Smaruj, M.; Ziemann, E. The whole body cryostimulation modifies irisin concentration and reduces inflammation in middle aged, obese men. Cryobiology 2015, 71, 398–404. [Google Scholar] [CrossRef] [PubMed]
- Wiecek, M.; Szymura, J.; Sproull, J.; Szygula, Z. Whole-Body Cryotherapy Is an Effective Method of Reducing Abdominal Obesity in Menopausal Women with Metabolic Syndrome. J. Clin. Med. 2020, 9, 2797. [Google Scholar] [CrossRef] [PubMed]
- Wiecek, M.; Szymura, J.; Sproull, J.; Szygula, Z. Decreased Blood Asprosin in Hyperglycemic Menopausal Women as a Result of Whole-Body Cryotherapy Regardless of Metabolic Syndrome. J. Clin. Med. 2019, 8, 1428. [Google Scholar] [CrossRef] [PubMed]
- Lubkowska, A. Cryotherapy: Physiological Considerations and Applications to Physical Therapy. In Physical Therapy Perspectives in the 21st Century—Challenges and Possibilities, 1st ed.; Bettany-Saltikov, J., Ed.; Intech Europe: Rijeka, Croatia, 2012; pp. 155–176. [Google Scholar]
- Legrand, F.D.; Dugué, B.; Costello, J.; Bleakley, C.; Miller, E.; Broatch, J.R.; Polidori, G.; Lubkowska, A.; Louis, J.; Lombardi, G.; et al. Evaluating Safety Risks of Whole-Body Cryotherapy/Cryostimulation (WBC): A Scoping Review from an International Consortium. Res. Square 2023. preprint. [Google Scholar] [CrossRef]
- Dugué, B.; Bernard, J.P.; Bouzigon, R.; De Nardi, M.; Douzi, W.; Feirreira, J.J. Whole body cryotherapy/cryostimulation, 39th Informatory Note on Refrigeration Technologies. Int. Inst. Refriger. 2020, 1–9. [Google Scholar] [CrossRef]
- Biernat, E.; Stupnicki, R.; Gajewski, A.K. International Physical Activity Questionnaire (IPAQ)—Polish version. Phys. Educ. Sport 2007, 51, 47–54. [Google Scholar]
- Sarkin, J.; Campbell, J.; Gross, L.; Roby, J.; Bazzo, S.; Sallis, J.; Calfas, K. Project GRAD Seven-Day Physical Activity Recall Interviewer’s Manual. Med. Sci. Sports Exerc. 1997, 29, S91–S102. [Google Scholar]
- Wang, Y.; Qu, H.; Xiong, X.; Qiu, Y.; Liao, Y.; Chen, Y.; Zheng, Y.; Zheng, H. Plasma Asprosin Concentrations Are Increased in Individuals with Glucose Dysregulation and Correlated with Insulin Resistance and First-Phase Insulin Secretion. Mediat. Inflamm. 2018, 2018, 9471583. [Google Scholar] [CrossRef]
- Ugur, K.; Aydin, S. Saliva and Blood Asprosin Hormone Concentration Associated with Obesity. Int. J. Endocrinol. 2019, 2019, 2521096. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Jiang, H.; Ma, X.; Wu, H. Increased serum level and impaired response to glucose fluctuation of asprosin is associated with type 2 diabetes mellitus. J. Diabetes Investig. 2020, 11, 349–355. [Google Scholar] [CrossRef] [PubMed]
- Kozłowska, M.; Kortas, J.; Żychowska, M.; Antosiewicz, J.; Żuczek, K.; Perego, S.; Lombardi, G.; Ziemann, E. Beneficial effects of whole-body cryotherapy on glucose homeostasis and amino acid profile are associated with a reduced myostatin serum concentration. Sci. Rep. 2021, 11, 7097. [Google Scholar] [CrossRef] [PubMed]
- Lubkowska, A.; Dolegowska, B.; Szygula, Z. Whole-Body Cryostimulation—Potential Beneficial Treatment for Improving Antioxidant Capacity in Healthy Men—Significance of the Number of Sessions. PLoS ONE 2012, 7, e46352. [Google Scholar] [CrossRef]
- Elfahem, R.; Abbes, B.; Bouchet, B.; Murer, S.; Bogard, F.; Moussa, T.; Beaumont, F.; Polidori, G. Whole-Body Cryostimulation: New Insights in Thermo-Aeraulic Fields inside Chambers. Inventions 2023, 8, 81. [Google Scholar] [CrossRef]
- van Beek, S.; Hashim, D.; Bengtsson, T.; Hoeks, J. Physiological and molecular mechanisms of cold-induced improvements in glucose homeostasis in humans beyond brown adipose tissue. Int. J. Obes. 2023, 47, 338–347. [Google Scholar] [CrossRef]
- Eda, N.; Shimizu, K.; Takemura, A.; Narumi, E.; Nakamura, M.; Hoshikawa, M.; Dohi, M. Whole-body cryotherapy enhances the expression of heat shock protein 70 and related hormones. Cryo Lett. 2022, 43, 83–90. [Google Scholar] [CrossRef]
- Hammond, L.; Mitchell, K.; Cuttell, S. Ventilatory responses to whole body cryotherapy. J. Therm. Biol. 2020, 91, 102633. [Google Scholar] [CrossRef]
- Bostrom, P.; Wu, J.; Jedrychowski, M.P.; Korde, A.; Ye, L.; Lo, J.C.; Rasbach, K.A.; Bostrom, E.A.; Choi, J.H.; Long, J.Z.; et al. A PCG-1—Dependent myokine that drives brown-fatlike development of white fat and thermogenesis. Nature 2012, 481, 463–468. [Google Scholar] [CrossRef]
- Arhire, L.I.; Mihalache, L.; Covasa, M. Irisin: A hope in understanding and managing obesity and metabolic syndrome. Front. Endocrinol. 2019, 10, 524. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Li, F.; Li, H.; Huang, Y.; Liu, Y.; Chen, Y. Effects and molecular mechanism of GST-Irisin on lipolysis and autocrine function in 3T3-L1 adipocytes. PLoS ONE 2016, 11, e0147480. [Google Scholar] [CrossRef]
- Xiong, X.Q.; Chen, D.; Sun, H.J.; Ding, L.; Wang, J.J.; Chen, Q.; Li, Y.H.; Zhou, Y.B.; Han, Y.; Zhang, F.; et al. FNDC5 overexpression and irisin ameliorate glucose/lipid metabolic derangements and enhance lipolysis in obesity. Biochim. Biophys. Acta 2015, 1852, 1867–1875. [Google Scholar] [CrossRef] [PubMed]
- Ozcan, S.; Ulker, N.; Bulmus, O.; Yardimci, A.; Ozcan, M.; Canpolat, S. The modulatory effects of irisin on asprosin, leptin, glucose levels and lipid profile in healthy and obese male and female rats. Arch Physiol. Biochem. 2020, 128, 724–731. [Google Scholar] [CrossRef]
- Sliwicka, E.; Cison, T.; Straburzynska-Lupa, A.; Pilaczynska-Szczesniak, L. Effects of whole-body cryotherapy on 25-hydroxyvitamin D, irisin, myostatin, and interleukin-6 levels in healthy young men of different fitness levels. Sci. Rep. 2020, 10, 6175. [Google Scholar] [CrossRef]
- Ziemann, E.; Olek, R.A.; Grzywacz, T.; Antosiewicz, J.; Kujach, S.; Łuszczyk, M.; Smaruj, M.; Sledziewska, E.; Laskowski, R. Whole-body cryostimulation as an effective method of reducing low-grade inflammation in obese men. J. Physiol. Sci. 2013, 63, 333–343. [Google Scholar] [CrossRef]
- Lombardi, G.; Ziemann, E.; Banfi, G. Whole-body cryotherapy in athletes: From therapy to stimulation. An updated review of the literature. Front. Physiol. 2017, 8, 258. [Google Scholar] [CrossRef]
- Ziemann, E.; Olek, R.A.; Kujach, S.; Grzywacz, T.; Antosiewicz, J.; Garsztka, T.; Laskowski, R. Five-day whole-body cryostimulation, blood inflammatory markers, and performance in high-ranking professional tennis players. J. Athl. Train. 2012, 47, 664–672. [Google Scholar] [CrossRef]
- Pilch, W.; Wyrostek, J.; Major, P.; Zuziak, R.; Piotrowska, A.; Czerwińska-Ledwig, O.; Grzybkowska, A.; Zasada, M.; Ziemann, E.; Żychowska, M. The effect of whole-body cryostimulation on body composition and leukocyte expression of HSPA1A, HSPB1, and CRP in obese men. Cryobiology 2020, 94, 100–106. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Ding, Y.; Liang, B.; Lin, J.; Kim, T.K.; Yu, H.; Hang, H.; Wang, K. A Systematic Study of Dysregulated MicroRNA in Type 2 Diabetes Mellitus. Int. J. Mol. Sci. 2017, 18, 456. [Google Scholar] [CrossRef] [PubMed]
- Seeliger, C.; Krauss, T.; Honecker, J.; Mengel, L.A.; Buekens, L.; Mesas-Fernández, A.; Skurk, T.; Claussnitzer, M.; Hauner, H. miR-375 is cold exposure sensitive and drives thermogenesis in visceral adipose tissue derived stem cells. Sci. Rep. 2022, 12, 9557. [Google Scholar] [CrossRef] [PubMed]
Variable | T2DM | CON | p-Value |
---|---|---|---|
Age (years) | 65.89 ± 3.67 | 61.56 ± 4.71 | <0.01 |
Body Mass (kg) | 78.77 ± 9.94 | 73.94 ± 8.62 | 0.13 |
BMI (kg/m2) | 31.18 ± 4.51 | 28.96 ± 5.31 | 0.08 |
Lean Body Mass (kg) | 43.95 ± 4.62 | 43.89 ± 3.72 | 0.96 |
Total Body Fat (kg) | 34.81 ± 6.65 | 34.42 ± 13.13 | 0.28 |
Total Body Fat (%) | 43.92 ± 4.28 | 40.13 ± 5.58 | 0.03 |
Trunk Fat (%) | 48.66 ± 5.26 | 42.97 ± 6.75 | 0.01 |
Android Fat (%) | 50.78 ± 6.80 | 45.02 ± 8.30 | 0.02 |
Gynoid Fat (%) | 44.55 ± 4.52 | 43.13 ± 5.58 | 0.40 |
Android/Gynoid (A/G) | 1.12 ± 0.12 | 1.03 ± 0.13 | 0.02 |
Variable | T2DM | CON | p-Value |
---|---|---|---|
Erythrocytes (106/µL) | 4.51 ± 1.96 | 4.40 ± 0.26 | 0.28 |
Haemoglobin (g/dL) | 13.76 ± 1.08 | 13.31 ± 0.93 | 0.18 |
Haematocrit (%) | 39.88 ± 2.86 | 38.88 ± 3.12 | 0.32 |
Platelets (103/µL) | 228.94 ± 52.32 | 267.94 ± 52.22 | 0.03 |
Leukocytes (103/µL) | 6.82 ± 1.96 | 5.44 ± 1.16 | 0.01 |
Neutrophils (%) | 55.34 ± 7.84 | 47.72 ± 8.64 | 0.01 |
Lymphocytes (%) | 32.29 ± 6.37 | 40.17 ± 8.05 | <0.01 |
Monocytes (%) | 8.35 ± 1.35 | 8.59 ± 1.88 | 0.66 |
Eosinophils (%) | 3.26 ± 2.38 | 2.64 ± 1.34 | 0.59 |
Basophils (%) | 0.75 ± 0.38 | 0.88 ± 0.22 | 0.04 |
Creatinine (µmol/L) | 65.47 ± 11.33 | 71.48 ± 10.58 | 0.11 |
TCHOL (mmol/L) | 4.50 ± 1.24 | 5.70 ± 1.19 | 0.01 |
LDL (mmol/L) | 2.16 ± 1.12 | 3.29 ± 0.98 | <0.01 |
HDL (mmol/L) | 1.59 ± 0.52 | 1.89 ± 0.39 | 0.06 |
TG (mmol/L) | 1.63 ± 0.62 | 1.16 ± 0.43 | 0.01 |
AIP (log10TG/HDL) | −0.01 ± 0.22 | −0.23 ± 0.20 | <0.01 |
SBP (mmHg) | 127.27 ± 7.54 | 126.56 ± 12.21 | 0.96 |
DBP (mmHg) | 79.09 ± 3.02 | 78.13 ± 6.29 | 0.64 |
Variable | p | F | Effect Size η2 | Power Test 1-β |
---|---|---|---|---|
Group effect | ||||
FBG (mmol/L) | <0.01 | 20.82 | 0.37 | 0.99 |
HbA1c (%) | 0.03 | 6.52 | 0.45 | 0.61 |
Insulin (µIU/mL) | <0.01 | 12.27 | 0.29 | 0.92 |
HOMA-IR | <0.01 | 11.73 | 0.72 | 1.00 |
Quicki index | <0.01 | 17.89 | 0.36 | 0.98 |
TyG index | <0.01 | 18.06 | 0.35 | 0.99 |
Asprosin (ng/mL) | 0.39 | 0.76 | 0.02 | 0.13 |
CRP (µg/mL) | 0.18 | 1.85 | 0.05 | 0.26 |
WBC effect | ||||
FBG (mmol/L) | 0.02 | 4.13 | 0.11 | 0.71 |
HbA1c (%) | <0.01 | 10.86 | 0.58 | 0.97 |
Insulin (µIU/mL) | 0.01 | 4.67 | 0.13 | 0.76 |
HOMA-IR | <0.01 | 8.01 | 0.20 | 0.95 |
Quicki index | 0.01 | 5.76 | 0.15 | 0.85 |
TyG index | 0.59 | 0.53 | 0.02 | 0.13 |
Asprosin (ng/mL) | <0.01 | 6.03 | 0.16 | 0.87 |
CRP (µg/mL) | 0.01 | 4.95 | 1.33 | 0.79 |
Interaction GROUP × WBC effect | ||||
FBG (mmol/L) | 0.02 | 4.19 | 0.11 | 0.72 |
HbA1c (%) | 0.14 | 2.24 | 0.22 | 0.39 |
Insulin (µIU/mL) | 0.80 | 0.23 | 0.01 | 0.80 |
HOMA-IR | 0.42 | 0.87 | 0.03 | 0.19 |
Quicki index | 0.92 | 0.09 | <0.01 | 0.06 |
TyG index | 0.60 | 0.52 | 0.02 | 0.13 |
Asprosin (ng/mL) | 0.51 | 0.67 | 0.02 | 0.16 |
CRP (µg/mL) | 0.98 | 0.03 | <0.01 | 0.05 |
T0 | T1 | T2 | ΔT1-T0 | ΔT2-T0 | |
---|---|---|---|---|---|
Mean ± SD | Mean ± SD | Mean ± SD | Mean (95% CI) | Mean (95% CI) | |
T2DM | |||||
FBG (mmol/L) | 6.97 ± 1.56 # | 6.68 ± 1.53 # | 6.34 ± 1.40 # | −0.30 (−0.68; 0.08) * | −0.64 (−1.11; −0.17) * |
HbA1c (%) | 6.42 ± 0.78 # | 6.24 ± 0.68 | 6.20 ± 0.80 | −0.18 (−0.32; −0.04) * | −0.40 (−1.00; 0.20) * |
Insulin (µIU/mL) | 18.06 ± 7.60 # | 16.99 ± 8.44 # | 14.67 ± 6.58 # | −0.69 (−3.70; 2.31) | −3.39 (−6.25; −0.52) * |
HOMA-IR | 5.80 ± 3.27 # | 5.32 ± 3.61 # | 4.38 ± 2.97 # | −0.38 (−1.19; 0.43) | −1.43 (−2.29; −0.56) * |
Quicki index | 0.30 ± 0.03 # | 0.31 ± 0.03 # | 0.32 ± 0.03 # | 0.00 (−0.00; 0.01) | 0.02 (0.01; 0.02) * |
TyG index | 9.02 ± 0.49 # | 8.94 ± 0.54 # | 8.93 ± 047 # | −0.08 (−0.23; 0.07) | −0.09 (−0.27; 0.09) |
Asprosin (ng/mL) | 3.34 ± 2.58 | 2.96 ± 2.66 | 2.83 ± 2.59 | −0.38 (−0.92; 0.16) | −0.51 (−1.05; 0.02) |
CRP (µg/mL) | 2.66 ± 1.58 | 2.01 ± 1.06 | 1.80 ± 0.99 | −0.59 (−1.35; 0.16) | −0.86 (−1.72; −0.01) * |
CON | |||||
FBG (mmol/L) | 5.10 ± 0.37 | 5.10 ± 0.48 | 5.10 ± 0.36 | 0.01 (−0.13; 0.15) | 0.00 (−0.14; 0.15) |
HbA1c (%) | 5.56 ± 0.18 | 5.43 ± 0.19 | 5.45 ± 0.21 | −0.13 (−0.20; −0.05) | −0.15 (−0.31; 0.01) |
Insulin (µIU/mL) | 11.02 ± 5.44 | 9.29 ± 3.65 | 8.27 ± 2.58 | −1.73 (−4.90; 1.43) | −2.75 (−5.97; 0.47) |
HOMA-IR | 2.62 ± 1.33 | 2.35 ± 1.29 | 1.98 ± 0.70 | −0.27 (−0.98; 0.44) | −0.64 (−1.31; 0.44) |
Quicki index | 0.34 ± 0.03 | 0.34 ± 0.02 | 0.35 ± 0.02 | 0.01 (−0.01; 0.02) | 0.01 (−0.00; 0.02) * |
TyG index | 8.39 ± 0.43 | 8.39 ± 0.40 | 8.32 ± 0.36 | 0.02 (−0.13; 0.18) | −0.04 (−0.20; 0.11) |
Asprosin (ng/mL) | 2.94 ± 2.00 | 2.27 ± 2.17 | 1.87 ± 1.44 | −0.68 (−1.69; 0.34) | −1.08 (−2.02; −0.14) * |
CRP (µg/mL) | 2.11 ± 2.11 | 1.46 ± 0.91 | 1.42 ± 0.80 | −0.65 (−1.48; 0.18) | −0.69 (−1.54; 0.16) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wiecek, M.; Szymura, J.; Kusmierczyk, J.; Lipowska, M.; Szygula, Z. Whole-Body Cryotherapy Improves Asprosin Secretion and Insulin Sensitivity in Postmenopausal Women–Perspectives in the Management of Type 2 Diabetes. Biomolecules 2023, 13, 1602. https://doi.org/10.3390/biom13111602
Wiecek M, Szymura J, Kusmierczyk J, Lipowska M, Szygula Z. Whole-Body Cryotherapy Improves Asprosin Secretion and Insulin Sensitivity in Postmenopausal Women–Perspectives in the Management of Type 2 Diabetes. Biomolecules. 2023; 13(11):1602. https://doi.org/10.3390/biom13111602
Chicago/Turabian StyleWiecek, Magdalena, Jadwiga Szymura, Justyna Kusmierczyk, Maria Lipowska, and Zbigniew Szygula. 2023. "Whole-Body Cryotherapy Improves Asprosin Secretion and Insulin Sensitivity in Postmenopausal Women–Perspectives in the Management of Type 2 Diabetes" Biomolecules 13, no. 11: 1602. https://doi.org/10.3390/biom13111602
APA StyleWiecek, M., Szymura, J., Kusmierczyk, J., Lipowska, M., & Szygula, Z. (2023). Whole-Body Cryotherapy Improves Asprosin Secretion and Insulin Sensitivity in Postmenopausal Women–Perspectives in the Management of Type 2 Diabetes. Biomolecules, 13(11), 1602. https://doi.org/10.3390/biom13111602