Imaging the Vulnerable Carotid Plaque with CT: Caveats to Consider. Comment on Wang et al. Identification Markers of Carotid Vulnerable Plaques: An Update. Biomolecules 2022, 12, 1192
1. Hounsfield Unit Thresholds
2. Role of Spectral CT
3. Calcification as a Vulnerability Marker
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Wang, Y.; Wang, T.; Luo, Y.; Jiao, L. Identification Markers of Carotid Vulnerable Plaques: An Update. Biomolecules 2022, 12, 1192. [Google Scholar] [CrossRef]
- WHO. The Top 10 Causes of Death 2020. Available online: https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death (accessed on 30 December 2022).
- Saba, L.; Francone, M.; Bassareo, P.; Lai, L.; Sanfilippo, R.; Montisci, R.; Suri, J.; De Cecco, C.; Faa, G. CT Attenuation Analysis of Carotid Intraplaque Hemorrhage. AJNR Am. J. Neuroradiol. 2018, 39, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Weng, S.-T.; Lai, Q.-L.; Cai, M.-T.; Wang, J.-J.; Zhuang, L.-Y.; Cheng, L.; Mo, Y.-J.; Liu, L.; Zhang, Y.-X.; Qiao, S. Detecting vulnerable carotid plaque and its component characteristics: Progress in related imaging techniques. Front. Neurol. 2022, 13, 982147. [Google Scholar] [CrossRef] [PubMed]
- Achenbach, S.; Boehmer, K.; Pflederer, T.; Ropers, D.; Seltmann, M.; Lell, M.; Anders, K.; Kuettner, A.; Uder, M.; Daniel, W.G.; et al. Influence of slice thickness and reconstruction kernel on the computed tomographic attenuation of coronary atherosclerotic plaque. J. Cardiovasc. Comput. Tomogr. 2010, 4, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Cademartiri, F.; La Grutta, L.; Runza, G.; Palumbo, A.; Maffei, E.; Mollet, N.R.; Bartolotta, T.V.; Somers, P.; Knaapen, M.; Verheye, S.; et al. Influence of convolution filtering on coronary plaque attenuation values: Observations in an ex vivo model of multislice computed tomography coronary angiography. Eur. Radiol. 2007, 17, 1842–1849. [Google Scholar] [CrossRef] [Green Version]
- Fuchs, T.A.; Stehli, J.; Fiechter, M.; Dougoud, S.; Sah, B.-R.; Gebhard, C.; Bull, S.; Gaemperli, O.; Kaufmann, P.A. First in vivo head-to-head comparison of high-definition versus standard-definition stent imaging with 64-slice computed tomography. Int. J. Cardiovasc. Imaging 2013, 29, 1409–1416. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, S.; Furui, S.; Kuwahara, S.; Kaminaga, T.; Yamauchi, T.; Konno, K.; Yokoyama, N.; Isshiki, T. Accuracy of attenuation measurement of vascular wall in vitro on computed tomography angiography: Effect of wall thickness, density of contrast medium, and measurement point. Investig. Radiol. 2006, 41, 510–515. [Google Scholar] [CrossRef]
- Takagi, H.; Leipsic, J.A.; Indraratna, P.; Gulsin, G.; Khasanova, E.; Tzimas, G.; Lin, F.Y.; Shaw, L.J.; Lee, S.E.; Andreini, D.; et al. Association of Tube Voltage With Plaque Composition on Coronary CT Angiography: Results From PARADIGM Registry. JACC Cardiovasc. Imaging 2021, 14, 2429–2440. [Google Scholar] [CrossRef]
- Del Marmol, O.; Coulier, B. “Black” and “White” Blood on Unenhanced CT. J. Belg. Soc. Radiol. 2019, 103, 16. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Pan, X.; Zhang, B.; Yan, Y.; Huang, Y.; Woolf, A.K.; Gillard, J.H.; Teng, Z.; Hui, P. Superficial and multiple calcifications and ulceration associate with intraplaque hemorrhage in the carotid atherosclerotic plaque. Eur. Radiol. 2018, 28, 4968–4977. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Cao, J.; Bai, X.; Gao, P.; Zhang, D.; Lu, X.; Sui, B. Utility of Dual-Layer Spectral Detector CTA to Characterize Carotid Atherosclerotic Plaque Components: An Imaging-Histopathology Comparison in Patients Undergoing Endarterectomy. AJR Am. J. Roentgenol. 2022, 218, 517–525. [Google Scholar] [CrossRef] [PubMed]
- U-King-Im, J.M.; Fox, A.J.; Aviv, R.I.; Howard, P.; Yeung, R.; Moody, A.R.; Symons, S.P. Characterization of carotid plaque hemorrhage: A CT angiography and MR intraplaque hemorrhage study. Stroke 2010, 41, 1623–1629. [Google Scholar] [CrossRef] [PubMed]
- Saba, L.; Lanzino, G.; Lucatelli, P.; Lavra, F.; Sanfilippo, R.; Montisci, R.; Suri, J.; Yuan, C. Carotid Plaque CTA Analysis in Symptomatic Subjects with Bilateral Intraparenchymal Hemorrhage: A Preliminary Analysis. AJNR Am. J. Neuroradiol. 2019, 40, 1538–1545. [Google Scholar] [CrossRef] [PubMed]
- de Weert, T.T.; Ouhlous, M.; Zondervan, P.E.; Hendriks, J.M.; Dippel, D.W.; van Sambeek, M.R.; van der Lugt, A. In vitro characterization of atherosclerotic carotid plaque with multidetector computed tomography and histopathological correlation. Eur. Radiol. 2005, 15, 1906–1914. [Google Scholar] [CrossRef]
- Yuenyongsinchai, K.; Tan, C.O.; Vranic, J.; Flores, E.; Silverman, S.; Gupta, R. Carotid Plaque Characterization Using Dual-Energy Computed Tomography: Predicting Imminent Ipsilateral Ischemic Stroke in 30 Days. Stroke Vasc. Interv. Neurol. 2022, 2, e000313. [Google Scholar] [CrossRef]
- Qu, H.; Gao, Y.; Li, M.; Zhai, S.; Zhang, M.; Lu, J. Dual Energy Computed Tomography of Internal Carotid Artery: A Modified Dual-Energy Algorithm for Calcified Plaque Removal, Compared With Digital Subtraction Angiography. Front. Neurol. 2020, 11, 621202. [Google Scholar] [CrossRef]
- Mannil, M.; Ramachandran, J.; de Martini, I.V.; Wegener, S.; Schmidt, B.; Flohr, T.; Krauss, B.; Valavanis, A.; Alkadhi, H.; Winklhofer, S. Modified Dual-Energy Algorithm for Calcified Plaque Removal: Evaluation in Carotid Computed Tomography Angiography and Comparison With Digital Subtraction Angiography. Investig. Radiol. 2017, 52, 680–685. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Niu, Z.; Zhan, K.; Tao, X.; Tian, F.; Ding, J.; Jin, Z.; Hu, X. Evaluation of Modified Calcium Removal Algorithm in dual energy CT of Internal Carotid Artery. Eur. J. Radiol. 2021, 145, 109927. [Google Scholar] [CrossRef]
- Murias, E.; Vega, P.; Lopez-Cancio, E.; Peña, J.; Morales, E.; Benavente, L.; González, M.; Larrosa, D.; Rico, M.; Riesco, N.; et al. Dual energy CT in the management of antiplatelet therapy in patients with acute ischemic stroke for carotid obstruction. Interv. Neuroradiol. 2020, 26, 222–230. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Y.; Hu, P.; Niu, Z.; Hu, H. Comparative study of the image quality of twin beam dual energy and single energy carotid CT angiography. Eur. J. Radiol. 2022, 148, 110160. [Google Scholar] [CrossRef]
- Leithner, D.; Mahmoudi, S.; Wichmann, J.L.; Martin, S.S.; Lenga, L.; Albrecht, M.H.; Booz, C.; Arendt, C.T.; Beeres, M.; D’Angelo, T.; et al. Evaluation of virtual monoenergetic imaging algorithms for dual-energy carotid and intracerebral CT angiography: Effects on image quality, artefacts and diagnostic performance for the detection of stenosis. Eur. J. Radiol. 2018, 99, 111–117. [Google Scholar] [CrossRef] [PubMed]
- Dahal, S.; Raja, A.Y.; Searle, E.; Colgan, F.E.; Crighton, J.S.; Roake, J.; Saba, L.; Gieseg, S.; Butler, A.P.H. Components of carotid atherosclerotic plaque in spectral photon-counting CT with histopathologic comparison. Eur. Radiol. 2022, 33, 1612–1619. [Google Scholar] [CrossRef] [PubMed]
- Rotzinger, D.C.; Racine, D.; Becce, F.; Lahoud, E.; Erhard, K.; Si-Mohamed, S.A.; Greffier, J.; Viry, A.; Boussel, L.; Meuli, R.A.; et al. Performance of Spectral Photon-Counting Coronary CT Angiography and Comparison with Energy-Integrating-Detector CT: Objective Assessment with Model Observer. Diagnostics 2021, 11, 2376. [Google Scholar] [CrossRef] [PubMed]
- Shioi, A.; Ikari, Y. Plaque Calcification During Atherosclerosis Progression and Regression. J. Atheroscler. Thromb. 2018, 25, 294–303. [Google Scholar] [CrossRef] [Green Version]
- Otsuka, F.; Sakakura, K.; Yahagi, K.; Joner, M.; Virmani, R. Has our understanding of calcification in human coronary atherosclerosis progressed? Arterioscler. Thromb. Vasc. Biol. 2014, 34, 724–736. [Google Scholar] [CrossRef] [Green Version]
- Irkle, A.; Vesey, A.T.; Lewis, D.Y.; Skepper, J.N.; Bird, J.L.E.; Dweck, M.R.; Joshi, F.R.; Gallagher, F.A.; Warburton, E.A.; Bennett, M.R.; et al. Identifying active vascular microcalcification by (18)F-sodium fluoride positron emission tomography. Nat. Commun. 2015, 6, 7495. [Google Scholar] [CrossRef] [Green Version]
- Tzolos, E.; Dweck, M.R. (18)F-Sodium Fluoride ((18)F-NaF) for Imaging Microcalcification Activity in the Cardiovascular System. Arterioscler. Thromb. Vasc. Biol. 2020, 40, 1620–1626. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, L.; Gan, L.; Fan, Z.; Zhou, B.; Deng, Z.; Dey, D.; Berman, D.S.; Li, D.; Xie, Y. Spotty Calcium on Cervicocerebral Computed Tomography Angiography Associates With Increased Risk of Ischemic Stroke. Stroke 2019, 50, 859–866. [Google Scholar] [CrossRef]
- Shaalan, W.E.; Cheng, H.; Gewertz, B.; McKinsey, J.F.; Schwartz, L.B.; Katz, D.; Cao, D.; Desai, T.; Glagov, S.; Bassiouny, H.S. Degree of carotid plaque calcification in relation to symptomatic outcome and plaque inflammation. J. Vasc. Surg. 2004, 40, 262–269. [Google Scholar] [CrossRef] [Green Version]
- Wong, K.K.; Thavornpattanapong, P.; Cheung, S.C.; Sun, Z.; Tu, J. Effect of calcification on the mechanical stability of plaque based on a three-dimensional carotid bifurcation model. BMC Cardiovasc. Disord. 2012, 12, 7. [Google Scholar] [CrossRef] [Green Version]
- Fan, Z.-X.; Yuan, S.-J.; Li, X.-Q.; Yang, T.-T.; Niu, T.-T.; Ma, L.; Sun, K.; Wang, L.; Liu, G.-Z. Preliminary study on the differentiation of vulnerable carotid plaques via analysis of calcium content and spectral curve slope by using gemstone spectral imaging. Exp. Ther. Med. 2022, 23, 325. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Chen, S.; Liu, G.; Xue, Y.; Zhao, X. Association Between Carotid Atherosclerotic Plaque Calcification and Intraplaque Hemorrhage: A Magnetic Resonance Imaging Study. Arterioscler. Thromb. Vasc. Biol. 2017, 37, 1228–1233. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Hua, Y.; Liu, B.; Zhou, F.; Wang, L.; Hou, W. Correlation Between Calcification Characteristics of Carotid Atherosclerotic Plaque and Plaque Vulnerability. Ther. Clin. Risk Manag. 2021, 17, 679–690. [Google Scholar] [CrossRef] [PubMed]
- Pini, R.; Faggioli, G.; Fittipaldi, S.; Vasuri, F.; Longhi, M.; Gallitto, E.; Pasquinelli, G.; Gargiulo, M.; Stella, A. Relationship between Calcification and Vulnerability of the Carotid Plaques. Ann. Vasc. Surg. 2017, 44, 336–342. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rotzinger, D.C.; Qanadli, S.D.; Fahrni, G. Imaging the Vulnerable Carotid Plaque with CT: Caveats to Consider. Comment on Wang et al. Identification Markers of Carotid Vulnerable Plaques: An Update. Biomolecules 2022, 12, 1192. Biomolecules 2023, 13, 397. https://doi.org/10.3390/biom13020397
Rotzinger DC, Qanadli SD, Fahrni G. Imaging the Vulnerable Carotid Plaque with CT: Caveats to Consider. Comment on Wang et al. Identification Markers of Carotid Vulnerable Plaques: An Update. Biomolecules 2022, 12, 1192. Biomolecules. 2023; 13(2):397. https://doi.org/10.3390/biom13020397
Chicago/Turabian StyleRotzinger, David C., Salah D. Qanadli, and Guillaume Fahrni. 2023. "Imaging the Vulnerable Carotid Plaque with CT: Caveats to Consider. Comment on Wang et al. Identification Markers of Carotid Vulnerable Plaques: An Update. Biomolecules 2022, 12, 1192" Biomolecules 13, no. 2: 397. https://doi.org/10.3390/biom13020397
APA StyleRotzinger, D. C., Qanadli, S. D., & Fahrni, G. (2023). Imaging the Vulnerable Carotid Plaque with CT: Caveats to Consider. Comment on Wang et al. Identification Markers of Carotid Vulnerable Plaques: An Update. Biomolecules 2022, 12, 1192. Biomolecules, 13(2), 397. https://doi.org/10.3390/biom13020397