Predicting Regression of Barrett’s Esophagus—Can All the King’s Men Put It Together Again?
Abstract
:1. Introduction
2. Patients, Materials, and Methods
2.1. Patients
2.1.1. ELISA, Histochemistry, and Western Blotting
2.1.2. Immunohistochemistry
2.1.3. Permissions and Approvals
2.1.4. Statistical Analysis
3. Results
3.1. Tabulated Results
3.1.1. Schematic Summaries and Actual Photomicrographs of Monoclonal Antibody Staining
3.1.2. Tabulation and Correlation of the Effects of Inflammation in Barrett’s Epithelium
3.1.3. Investigation of the Cell Line MAP Kinase (MAPK), Biomarker, and Adhesion Molecule Response to Exposure to Normal and Physiologically Low pH
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosemurgy, A.; Wilfong, C.; Craigg, D.; Co, F.; Sucandy, I.; Ross, S. The Evolving Landscape of Esophageal Cancer: A Four-Decade Analysis. Am. Surg. 2019, 85, 944–948. [Google Scholar] [CrossRef] [PubMed]
- Verbeek, R.E.; Spittuler, L.F.; Peute, A.; van Oijen, M.G.; Ten Kate, F.J.; Vermeijden, J.R.; Oberndorff, A.; van Baal, J.W.; Siersema, P.D. Familial clustering of Barrett’s esophagus and esophageal adenocarcinoma in a European cohort. Clin. Gastroenterol. Hepatol. 2014, 12, 1656–1663.e1. [Google Scholar] [CrossRef] [PubMed]
- Giri, S.; Sundaram, S. Screening for esophageal adenocarcinoma: Should we use Barrett’s screening protocols? Clin. Gastroenterol. Hepatol. 2020, 20, 2409–2418. [Google Scholar] [CrossRef] [PubMed]
- Sawas, T.; Zamani, S.A.; Killcoyne, S.; Dullea, A.; Wang, K.K.; Iyer, P.G.; Fitzgerald, R.C.; Katzka, D.A. Limitations of Heartburn and Other Societies’ Criteria in Barrett’s Screening for Detecting De Novo Esophageal Adenocarcinoma. Clin. Gastroenterol. Hepatol. 2022, 20, 1709–1718. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, A.; Fitzgerald, R.C. Screening for Barrett’s Oesophagus: Are We Ready for it? Curr. Treat. Options Gastroenterol. 2021, 19, 321–336. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Mayrand, S. Treatment of Barrett’s esophagus. Can. J. Gastroenterol. 1997, 11 (Suppl. B), 98B–102B. [Google Scholar] [PubMed]
- Tobi, M.; Bluth, M.H.; Rossi, N.F.; Demian, E.; Talwar, H.; Tobi, Y.Y.; Sochacki, P.; Levi, E.; Lawson, M.; McVicker, B. In the SARS-CoV-2 Pandora Pandemic: Can the Stance of Premorbid Intestinal Innate Immune System as Measured by Fecal Adnab-9 Binding of p87:Blood Ferritin, Yielding the FERAD Ratio, Predict COVID-19 Susceptibility and Survival in a Prospective Population Database? Int. J. Mol. Sci. 2023, 24, 7536. [Google Scholar] [CrossRef]
- Tobi, M.; Weinstein, D.; Kim, M.; Hatfield, J.; Sochacki, P.; Levi, E.; An, T.; Hamre, M.; Tolia, V.; Fligiel, S.; et al. Helicobacter pylori Status May Differentiate Two Distinct Pathways of Gastric Adenocarcinoma Carcinogenesis. Curr. Oncol. 2023, 30, 7950–7963. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Guo, X.; Wang, C.; Yin, Y.; Xu, G.; Chen, H.; Qi, X. Association of Barrett’s esophagus with Helicobacter pylori infection: A meta-analysis. Ther. Adv. Chronic Dis. 2022, 13, 20406223221117971. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Iyer, P.G.; Borah, B.J.; Heien, H.C.; Das, A.; Cooper, G.S.; Chak, A. Association of Barrett’s esophagus with type II Diabetes Mellitus: Results from a large population-based case-control study. Clin. Gastroenterol. Hepatol. 2013, 11, 1108–1114.e5. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zampeli, E.; Karamanolis, G.; Morfopoulos, G.; Xirouchakis, E.; Kalampoki, V.; Michopoulos, S.; Savva, S.; Tzias, V.; Zouboulis-Vafiadis, I.; Kamberoglou, D.; et al. Increased Expression of VEGF, COX-2, and Ki-67 in Barrett’s Esophagus: Does the Length Matter? Dig. Dis. Sci. 2012, 57, 1190–1196. [Google Scholar] [CrossRef] [PubMed]
- Goonawardena, J.; Ward, S. Effect of Roux-en-Y gastric bypass on Barrett’s esophagus: A systematic review. Surg. Obes. Relat. Dis. 2021, 17, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Vogel, S.; Thein, S.L. Platelets at the crossroads of thrombosis, inflammation and haemolysis. Br. J. Haematol. 2018, 180, 761–767. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Gokon, Y.; Fujishima, F.; Taniyama, Y.; Ishida, H.; Yamagata, T.; Sawai, T.; Uzuki, M.; Ichikawa, H.; Itakura, Y.; Takahashi, K.; et al. Immune microenvironment in Barrett’s esophagus adjacent to esophageal adenocarcinoma: Possible influence of adjacent mucosa on cancer development and progression. Virchows Arch. 2020, 477, 825–834. [Google Scholar] [CrossRef] [PubMed]
- Peters, F.T.M.; Ganesh, S.; Kuipers, E.J.; Sluiter, W.J.; Klinkenberg-Knol, E.C.; Lamers, C.B.H.W.; Kleibeuker, J.H. Endoscopic regression of Barrett’s oesophagus during omeprazole treatment; a randomized double-blind study. Gut 1999, 45, 489–494, Erratum in Gut 2000, 47, 54–55. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Weston, A.P.; Badr, A.S.; Hassanein, R.S. Prospective Multivariate Analysis of Factors Predictive of Complete Regression of Barrett’s Esophagus. Am. J. Gastroenterol. 1999, 94, 3420–3426. [Google Scholar] [CrossRef]
- Hyun, J.J.; Lee, H.S.; Kim, N. Predictable Marker for Regression of Barrett’s Esophagus by Proton Pump Inhibitor Treatment in Korea. J. Neurogastroenterol. Motil. 2013, 19, 210–218. [Google Scholar]
- Brown, C.S.; Lapin, B.; Wang, C. Predicting regression of Barrett’s esophagus: Results from a retrospective cohort of 1342 patients. Surg. Endosc. 2014, 28, 2803–2807. [Google Scholar] [CrossRef]
- Que, J.; Garman, K.S.; Souza, R.F.; Spechler, S.J. Pathogenesis and Cells of Origin of Barrett’s Esophagus. Gastroenterology 2019, 157, 349–364. [Google Scholar] [CrossRef]
- Lagisetty, K.H.; McEwen, D.P.; Nancarrow, D.J.; Schiebel, J.G.; Ferrer-Torres, D.; Ray, D.; Frankel, T.L.; Lin, J.; Chang, A.C.; Kresty, L.A.; et al. Immune determinants of Barrett’s progression to esophageal adenocarcinoma. JCI Insight 2021, 6, e143888. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Nowicki-Osuch, K.; Zhuang, L.; Jammula, S.; Bleaney, C.W.; Mahbubani, K.T.; Devonshire, G.; Katz-Summercorn, A.; Eling, N.; Wilbrey-Clark, A.; Madissoon, E.; et al. Molecular phenotyping reveals the identity of Barrett’s esophagus and its malignant transition. Science 2021, 373, 760–767. [Google Scholar] [CrossRef] [PubMed]
- Flejou, J.F.; Muzeau, F.; Potet, F.; Lepelletier, F.; Fékété, F.; Hénin, D. Overexpression of the p53 tumor suppressor gene product in esophageal and gastric carcinomas. Pathol. Res. Pract. 1994, 190, 1141–1148. [Google Scholar] [CrossRef]
- Ishikawa, M.; Kitayama, J.; Kazama, S.; Nagawa, H. The expression pattern of vascular endothelial growth factor C and D in human esophageal normal mucosa, dysplasia and neoplasia. Hepatogastroenterology 2004, 51, 1319–1322. [Google Scholar] [PubMed]
- Morris, C.D.; Armstrong, G.R.; Bigley, G.; Green, H.; Attwood, S.E. Cyclooxygenase-2 expression in the Barrett’s metaplasia-dysplasiaadenocarcinoma sequence. Am. J. Gastroenterol. 2001, 96, 990–996. [Google Scholar] [CrossRef] [PubMed]
- Souza, R.F.; Shewmake, K.; Pearson, S.; Sarosi, G.A., Jr.; Feagins, L.A.; Ramirez, R.D.; Terada, L.S.; Spechler, S.J. Acid increases proliferation via ERK and p38 MAPK-mediated increases in cyclooxygenase-2 in Barrett’s adenocarcinoma cells. Am. J. Physiol. Gastrointest. Liver Physiol. 2004, 287, G743-8. [Google Scholar] [CrossRef] [PubMed]
- Karamchandani, D.M.; Lehman, H.L.; Ohanessian, S.E.; Massé, J.; Welsh, P.A.; Odze, R.D.; Goldblum, J.R.; Berg, A.S.; Stairs, D.B. Increasing diagnostic accuracy to grade dysplasia in Barrett’s esophagus using an immunohistochemical panel for CDX2, p120ctn, c-Myc and Jagged1. Diagn. Pathol. 2016, 11, 23. [Google Scholar] [CrossRef]
- Nomura, Y.; Tanabe, H.; Moriichi, K.; Igawa, S.; Ando, K.; Ueno, N.; Kashima, S.; Tominaga, M.; Goto, T.; Inaba, Y.; et al. Reduction of E-cadherin by human defensin-5 in esophageal squamous cells. Biochem. Biophys. Res. Commun. 2013, 439, 71–77. [Google Scholar] [CrossRef]
- Vallböhmer, D.; DeMeester, S.R.; Peters, J.H.; Oh, D.S.; Kuramochi, H.; Shimizu, D.; Hagen, J.A.; Danenberg, K.D.; Danenberg, P.V.; DeMeester, T.R.; et al. Cdx-2 expression in squamous and metaplastic columnar epithelia of the esophagus. Dis. Esophagus 2006, 19, 260–266. [Google Scholar] [CrossRef] [PubMed]
- Perniceni, T.; Leymarios, J.; Molas, G.; Fékéte, F. L’endobrachyoesophage régresse-t-il après diversion duodénale totale? [Does Barrett esophagus regress after total duodenal diversion?]. Gastroenterol. Clin. Biol. 1988, 12, 709–712. (In French) [Google Scholar] [PubMed]
- Csendes, A.; Bragheto, I.; Burdiles, P.; Smok, G.; Henriquez, A.; Parada, F. Regression of intestinal metaplasia to cardiac or fundic mucosa in patients with Barrett’s esophagus suBEitted to vagotomy, partial gastrectomy and duodenal diversion. A prospective study of 78 patients with more than 5 years of follow up. Surgery 2006, 139, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Talwar, H.; McVicker, B.; Tobi, M. p38γ Activation and BGP (Biliary Glycoprotein) Induction in Primates at Risk for Inflammatory Bowel Disease and Colorectal Cancer-A Comparative Study with Humans. Vaccines 2020, 8, 720. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Keswani, R.N.; Chumsangsri, A.; Mustafi, R.; Delgadom, J.; Cohen, E.E.; Bissonnette, M. Sorafenib inhibits MAPK-mediated proliferation in a Barrett’s esophageal adenocarcinoma cell line. Dis. Esophagus 2008, 21, 514–521. [Google Scholar] [CrossRef] [PubMed]
- Bus, P.; Siersema, P.D.; van Baal, J.W. Cell culture models for studying the development of Barrett’s esophagus: A systematic review. Cell. Oncol. 2012, 35, 149–161. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Bajpai, M.; Liu, J.; Geng, X.; Souza, R.F.; Amenta, P.S.; Das, K.M. Repeated exposure to acid and bile selectively induces colonic phenotype expression in a heterogeneous Barrett’s epithelial cell line. Lab. Investig. 2008, 88, 643–651. [Google Scholar] [CrossRef] [PubMed]
- Redston, M.; Noffsinger, A.; Kim, A.; Akarca, F.G.; Rara, M.; Stapleton, D.; Nowden, L.; Lash, R.; Bass, A.J.; Stachler, M.D. Abnormal IP53 predicts risk of progression in patients with Barrett’s Esophagus Regardless of a diagnosis of dysplasia. Gastroenterology 2022, 162, 468–481. [Google Scholar] [CrossRef]
- Ling, F.C.; Baldus, S.E.; Khochfar, J.; Xi, H.; Neiss, S.; Brabender, J.; Metzger, R.; Drebber, U.; Dienes, H.P.; Bollschweiler, E.; et al. Association of COX-2 expression with corresponding active and chronic inflammatory reactions in Barrett’s metaplasia and progression to cancer. Histopathology 2007, 50, 203–209. [Google Scholar] [CrossRef]
- Dobrochaeva, K.; Khasbiullina, N.; Shilova, N.; Antipova, N.; Obukhova, P.; Ovchinnikova, T.; Galanina, O.; Blixt, O.; Kunz, H.; Filatov, A.; et al. Specificity of human natural antibodies referred to as anti-Tn. Mol. Immunol. 2020, 120, 74–82. [Google Scholar] [CrossRef]
- Zhang, Q.; Yu, C.; Peng, S.; Xu, H.; Wright, E.; Zhang, X.; Huo, X.; Cheng, E.; Pham, T.H.; Asanuma, K.; et al. Autocrine VEGF Signaling Promotes Proliferation of Neoplastic Barrett’s Epithelial Cells Through a PLC-Dependent Pathway. Gastroenterology 2014, 146, 461–472. [Google Scholar] [CrossRef]
- Rueckschloss, U.; Kuerten, S.; Ergün, S. The role of CEA-related cell adhesion molecule-1 (CEACAM1) in vascular homeostasis. Histochem. Cell Biol. 2016, 146, 657–671. [Google Scholar] [CrossRef]
- Rogge-Wolf, C.; Seldenrijk, C.A.; Das, K.M. Prevalence of mAbDAS-1 positivity in biopsy specimens from the esophagogastric junction. Am. J. Gastroenterol. 2002, 97, 2979–2985. [Google Scholar] [CrossRef]
- Das, K.K.; Xiao, H.; Geng, X.; Fernandez-del-Castillo, C.; Morales-Oyarvide, V.; Daglilar, E.; Forcione, D.G.; Bounds, B.C.; Brugge, W.R.; Pitman, M.B.; et al. mAb Das-1 is specific for high-risk and malignant intraductal papillary mucinous neoplasm (IPMN). Gut 2014, 63, 162634. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Chen, W.; Frankel, W.L.; Cronley, K.M.; Yu, L.; Zhou, X.; Yearsley, M.M. Significance of Paneth cell metaplasia in Barrett esophagus: A morphologic and clinicopathologic study. Am. J. Clin. Pathol. 2015, 143, 665–671. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Appelman, H.D.; Umar, A.; Orlando, R.C.; Sontag, S.J.; Nandurkar, S.; El-Zimaity, H.; Lanas, A.; Parise, P.; Lambert, R.; Shields, H.M. Barrett’s esophagus: Natural history. Ann. N. Y. Acad. Sci. 2011, 1232, 292–308. [Google Scholar] [CrossRef] [PubMed]
- Tobi, M.; Chintalapani, S.; Goo, R.; Maliakkal, B.; Reddy, J.; Lundqvist, M.; Oberg, K.; Luk, G. Omeprazole inhibits growth of cancer cell line of colonic origin. Dig. Dis. Sci. 1995, 40, 1526–1530. [Google Scholar] [CrossRef] [PubMed]
- Ihraiz, W.G.; Ahram, M.; Bardaweel, S.K. Proton pump inhibitors enhance chemosensitivity, promote apoptosis, and suppress migration of breast cancer cells. Acta Pharm. 2020, 70, 179–190. [Google Scholar] [CrossRef] [PubMed]
- Naini, B.V.; Souza, R.F.; Odze, R.D. Barrett’s Esophagus: A Comprehensive and Contemporary Review for Pathologists. Am. J. Surg. Pathol. 2016, 40, e45–e66. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sharaiha, R.Z.; Freedberg, D.E.; Abrams, J.A.; Wang, Y.C. Cost-effectiveness of chemoprevention with proton pump inhibitors in Barrett’s esophagus. Dig. Dis. Sci. 2014, 59, 1222–1230. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zeng, X.; Liu, L.; Zheng, M.; Sun, H.; Xiao, J.; Lu, T.; Huang, G.; Chen, P.; Zhang, J.; Zhu, F.; et al. Pantoprazole, an FDA-approved proton-pump inhibitor, suppresses colorectal cancer growth by targeting T-cell-originated protein kinase. Oncotarget 2016, 7, 22460–22473. [Google Scholar] [CrossRef]
- Tsalamandris, S.; Antonopoulos, A.S.; Oikonomou, E.; Papamikroulis, G.A.; Vogiatzi, G.; Papaioannou, S.; Deftereos, S.; Tousoulis, D. The Role of Inflammation in Diabetes: Current Concepts and Future Perspectives. Eur. Cardiol. 2019, 14, 50–59. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Monoclonal Antibody | Biomarker | Source |
---|---|---|
Anti-p53 | Early de novo; late ACS * | Dako Inc. |
Vascular Endothelial Growth Factor | Angiogenesis | PharMingen (San Diego, CA, USA) |
Adnab-9 | ACS | Dako Inc. |
COX-2 | ACS | Cayman (Ann Arbor, MI, USA) |
Anti-Tn | IBD’ de novo | Dako Inc. |
Cdx-2 | IM marker ^ | Biocare (Pacheco, CA, USA) |
mAbDas-1 | Barrett’s Esophagus | KM Das |
Parameter (Number) Regressed Barrett’s Mucosa (10) | Stable Barrett’s Mucosa (36) | Probability |
---|---|---|
PlateletsX1000/cc ± sd 185.2 ± 27.4 | 249.4 ± 70.5 | <0.003 |
Length BE initial (cm) 0.67 ± 0.43 | 1.45 ± 1.50 | <0.016 |
Initial Inflammation x 0.071 ± 0.267 | 0.534 ± 0.534 | <0.012 |
Patient Parameters (n) | Regressed Barrett’s Mucosa (10) | Stable Barrett’s Mucosa (36) | Probability |
---|---|---|---|
Age (years ± sd) | 52.9 ± 5.5 | 62.7 ± 0.22 | <0.005 |
Sex (%Male:Female) | 10:0 (100%) | 33:3 (91.7%) | 1 |
Ethnicity (%Black:White) | 2:8 (20%) | 10:24 (24.9%) | 0.7 |
Body Mass Index | 15.0 ± 2.9 | 29.1 ± 5.5 | <0.01 |
Parameter | BE+ Infl BE− Infl | Normal Infl. Normal No Infl. | OR/t | p or CI | |
---|---|---|---|---|---|
Serum Cr− | 1.040 ± 0.185 1.409 ± 3.032 | NSS NSS | t-Test | <0.022 | |
ACE exposure | 17/45 (78%) 160/95 | (82%) | 0.51 | 0.27–0.98 | |
Urinary Cr− | 115 ± 75 184 ± 100 | t-Test | <0.022 | ||
Quan EtOH | 13/20 (65%) 7/20 (35%) | NSS | NSS | 6.86 | <0.0002 |
Obese BMI > 28 | 7/23 (30%) 22/33 (67%) | NSS | NSS | 0.22 | <0.014 |
AA Ethnicity | 8/38 (21%) | NSS | 104/167(62%) | 0.16 | 0.07–0.37 |
Dysplasia * | 8/26 (31%) 9/39 (23%) | N/A | N/A | 0.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tobi, M.; Khoury, N.; Al-Subee, O.; Sethi, S.; Talwar, H.; Kam, M.; Hatfield, J.; Levi, E.; Hallman, J.; Moyer, M.P.; et al. Predicting Regression of Barrett’s Esophagus—Can All the King’s Men Put It Together Again? Biomolecules 2024, 14, 1182. https://doi.org/10.3390/biom14091182
Tobi M, Khoury N, Al-Subee O, Sethi S, Talwar H, Kam M, Hatfield J, Levi E, Hallman J, Moyer MP, et al. Predicting Regression of Barrett’s Esophagus—Can All the King’s Men Put It Together Again? Biomolecules. 2024; 14(9):1182. https://doi.org/10.3390/biom14091182
Chicago/Turabian StyleTobi, Martin, Nabiha Khoury, Omar Al-Subee, Seema Sethi, Harvinder Talwar, Michael Kam, James Hatfield, Edi Levi, Jason Hallman, Mary Pat Moyer, and et al. 2024. "Predicting Regression of Barrett’s Esophagus—Can All the King’s Men Put It Together Again?" Biomolecules 14, no. 9: 1182. https://doi.org/10.3390/biom14091182
APA StyleTobi, M., Khoury, N., Al-Subee, O., Sethi, S., Talwar, H., Kam, M., Hatfield, J., Levi, E., Hallman, J., Moyer, M. P., Kresty, L., Lawson, M. J., & McVicker, B. (2024). Predicting Regression of Barrett’s Esophagus—Can All the King’s Men Put It Together Again? Biomolecules, 14(9), 1182. https://doi.org/10.3390/biom14091182