Modulation of the Neuro–Cancer Connection by Metabolites of Gut Microbiota
Abstract
:1. Introduction
2. Overview of the Gut Microbiota and Its Metabolites
2.1. Diversity of Gut Microbiota and Key Genera Involved in Metabolite Production
2.2. Key Metabolites: SCFAs, Tryptophan Metabolites, Secondary Bile Acids, and LPS
- •
- SCFAs, primarily acetate, propionate, and butyrate, are fermentation products of dietary fibers by gut bacteria such as Faecalibacterium sp. [45]. Butyrate is a crucial energy source for colonocytes and has potent anti-inflammatory properties. It strengthens gut barrier integrity by regulating tight junction proteins and reducing gut permeability [46]. SCFAs also influence systemic inflammation, immune cell differentiation, and epigenetic modulation through histone deacetylase (HDAC) inhibition [47]. Their neuroprotective effects include modulating neurotransmitter production and reducing neuroinflammation, making SCFAs central to the gut–brain–cancer axis [48];
- •
- Tryptophan metabolites: Tryptophan, an essential amino acid, undergoes metabolism by gut microbiota into bioactive compounds such as indoles, serotonin, and kynurenine. Indoles, produced by bacteria like Lactobacillus sp., have been linked to immune regulation, epithelial barrier maintenance, and signaling within the gut–brain axis [49]. Serotonin, a neurotransmitter synthesized partly in the gut, influences mood and gastrointestinal motility [50]. Kynurenine, derived from host-mediated tryptophan metabolism, has dual roles in immunosuppression and neurodegeneration [51]. The interplay of these metabolites with cancer progression and brain function presents a fertile ground for research into therapeutic interventions [52];
- •
- Secondary bile acids: Gut microbiota converts primary bile acids into secondary bile acids, such as deoxycholic acid (DCA) and lithocholic acid (LCA), through deconjugation and transformation processes [53]. These metabolites influence lipid metabolism, immune signaling, and gut microbiota composition [54]. However, secondary bile acids also exhibit context-dependent roles in cancer [55]. While some promote carcinogenesis by inducing DNA damage and inflammation, others inhibit tumor growth by modulating apoptosis and cellular differentiation [56]. Their impact on neuroinflammation and systemic signaling underscores their significance in the gut–brain–cancer triad [57];
- •
- LPS. a structural component of gram-negative bacterial membranes [58], acts as a potent endotoxin [59]. The translocation of LPS into the systemic circulation due to increased gut permeability triggers chronic inflammation through toll-like receptor 4 (TLR4) activation [60]. This inflammation is implicated in cancer progression, particularly in fostering a pro-tumorigenic microenvironment [61]. In addition, LPS-induced inflammation has been linked to neurodegenerative conditions, emphasizing its dual impact on cancer and neurological health [62].
2.3. Novelty: Emerging Metabolites with Neuro-Cancer Implications
- •
- Indoles: Indoles are metabolic byproducts of tryptophan catabolism by gut bacteria such as Clostridium sp., Escherichia coli, and Lactobacillus sp. [69]. These metabolites are pivotal in maintaining gut epithelial integrity by enhancing tight junction expression and reducing gut permeability [70]. Beyond their localized effects in the gut, indoles signal systemically through the aryl hydrocarbon receptor (AhR), influencing immune regulation and inflammation [71]. In neurobiology, indoles have been shown to modulate serotonin production, a key neurotransmitter in mood regulation and cognitive function [72]. They also exhibit antioxidant and anti-inflammatory properties that could mitigate neurodegenerative processes [73]. In oncology, indole derivatives like indole-3-carbinol (I3C) have demonstrated anti-cancer potential by inducing apoptosis, suppressing cell proliferation, and modulating estrogen metabolism in hormone-responsive cancers [74]. However, the precise interplay of indoles in the neuro–cancer axis remains largely uncharted, warranting further investigation into their systemic and localized effects [75];
- •
- Polyamines: Polyamines, including putrescine, spermidine, and spermine, are small, positively charged molecules produced by gut microbiota and host cells [76]. These metabolites are integral to cellular functions such as DNA stabilization, protein synthesis, and cell proliferation [77]. Evidence shows that polyamines are primarily generated by certain bacteria in the gut, including Lactobacillus sp., Bifidobacterium sp., and Enterococcus species [78]. These bacteria metabolize dietary components to produce polyamines [79]. While polyamines are essential for normal cellular function, their dysregulation is implicated in both cancer progression and neurodegenerative diseases [80]. In cancer, elevated polyamine levels support tumor growth by promoting angiogenesis, evading apoptosis, and enhancing cellular proliferation [81]. Conversely, some studies suggest that polyamines like spermidine exhibit anti-aging and neuroprotective effects, potentially modulating autophagy and reducing oxidative stress in the brain [82]. This duality articulates the need to investigate their context-dependent roles in cancer and neurological health, especially in the gut–brain–cancer axis;
- •
- Uncharted territory and research opportunities: The intersection of indoles and polyamines with the neuro–cancer connection is a nascent field with numerous unanswered questions [83]. As summarized in Table 1, gut microbiota-derived metabolites play crucial roles in modulating neurobiological processes and cancer pathways. This table features key metabolites and their effects on both the brain and cancer and identifies current knowledge gaps, with data compiled from recent studies on gut–brain and gut–cancer interactions.
3. Mechanisms Linking Gut Microbiota Metabolites to Neurobiology and Cancer
3.1. Modulation of the Immune System via SCFAs (Butyrate’s Role in Tregs and Anti-Inflammatory Pathways)
3.2. Tryptophan–Kynurenine Pathway: Neurotoxicity and Tumor Immune Escape
3.3. Novelty: Lack of In Vivo Data Connecting Polyamine Metabolism to Neuro–Cancer Crosstalk
4. Emerging Evidence from Preclinical and Clinical Studies
4.1. Preclinical Studies: Rodent Models of Gut Dysbiosis Demonstrating Neurobehavioral and Tumorigenic Outcomes
4.2. Clinical Studies: Correlations Between Gut Dysbiosis, Altered Metabolite Profiles, and Brain Tumors
4.3. Novelty: Limited Longitudinal Human Studies Linking Microbiome Interventions to Neuro-Cancer Outcomes
5. Case Studies: Gut Microbiota Modulation in Neuro-Cancer Interventions
5.1. Case Studies Showing Dietary Interventions, FMT, and Probiotics in Neuro-Cancer Contexts
- •
- Dietary interventions in neuro-cancer: Several studies have investigated the effects of nutritional interventions on gut microbiota and their subsequent influence on brain cancer progression [164]. In one case study, patients with brain disorders were placed on a diet rich in fiber and fermented foods. The aim was to promote the growth of beneficial gut bacteria that produce SCFAs, particularly butyrate, which is known for its anti-inflammatory and immune-modulating properties [165]. The results showed that these dietary changes led to an improvement in immune responses and a reduction in systemic inflammation, suggesting a potential pathway for slowing glioblastoma progression [166]. However, this study was limited by a small sample size, and more extended follow-up periods are necessary to assess the long-term efficacy of such dietary interventions [167];
- •
- FMT in brain cancer: FMT, a procedure in which fecal material from a healthy donor is transplanted into the gastrointestinal tract of a patient, has gained attention as a potential tool for restoring microbial diversity and improving health outcomes [168]. A case study involving glioma patients demonstrated that FMT from healthy donors had a positive impact on gut microbial diversity, which was associated with better clinical outcomes in terms of immune modulation and reduced tumor growth [142]. In these patients, FMT was combined with conventional therapies, such as chemotherapy, to enhance treatment efficacy. The issue here lies in the heterogeneity of microbiome composition between individuals and the difficulty of identifying consistent microbial profiles that can be linked to successful outcomes [169];
- •
- Probiotics in neuro-cancer therapy: Probiotics have been tested in various cancer therapies for their ability to restore gut microbiota balance and influence the tumor microenvironment [170]. A case study involving glioma patients undergoing treatment found that supplementation with specific probiotic strains improved immune responses and reduced treatment-related side effects [171]. Furthermore, specific probiotic strains were shown to produce metabolites such as SCFAs, which can inhibit the growth of cancer cells and modulate neuroinflammation [172]. However, these studies also marked the variability in response based on the strain of probiotics, underscoring the need for more research into which probiotics may have specific neuro-cancer therapeutic benefits [173].
5.2. Novelty: Spotlighting Failures and Complications in Translating Gut–Brain Interventions to Cancer Therapy
- •
- Microbial variability and personalized medicine: The complexity of individual microbiomes and their interaction with genetic and environmental factors complicates the development of standardized microbiome-based therapies for glioma [177]. For example, the variability in gut microbiota among cancer patients, particularly those with brain tumors, may contribute to the differential responses observed in clinical studies [178]. Personalized approaches, which tailor treatments to an individual’s microbiome profile, could help address this complication, but such strategies are still in the early stages of development [179];
- •
- Lack of longitudinal human studies: Another problem is the lack of long-term, longitudinal studies that investigate the sustained effects of microbiome-based interventions on cancer progression and neurobiology [180]. While there have been numerous short-term studies examining the immediate effects of dietary changes, probiotics, and FMT on gut microbiota composition and cancer outcomes, there is a dearth of data on the long-term impact of these interventions [181]. Without longitudinal studies, it is difficult to determine whether these interventions can provide lasting benefits in slowing tumor progression or improving the quality of life for patients with brain cancer [182];
- •
- Regulatory and safety concerns: The safety and regulatory issues surrounding FMT and probiotics are also significant barriers to their widespread adoption in clinical oncology. FMT, while promising, carries the risk of transmitting infections or undesirable microbial species, and its clinical application is still subject to strict regulatory oversight [183]. Similarly, the safety of long-term probiotic use, particularly in immunocompromised cancer patients, remains a concern. Further research into the safety profiles and potential side effects of microbiome interventions is essential before they can be incorporated into routine cancer therapy [184];
- •
- Limited acumen of mechanisms: The lack of grasp of the mechanisms by which gut microbiota-derived metabolites influence both the immune system and cancer progression is a significant obstacle [185]. While metabolites such as SCFAs and tryptophan derivatives have been implicated in immune modulation and tumor suppression, the exact pathways and interactions between these metabolites [155], the gut–brain axis, and the tumor microenvironment remain poorly understood. Further mechanistic studies are needed to elucidate how specific metabolites exert their effects and how these processes can be harnessed for therapeutic purposes. While gut microbiota modulation holds promise as an adjunctive therapy for brain cancer, significant trials remain in standardizing treatments, ensuring the safety and intuition of the underlying biological mechanisms [186]. Table 3 provides an overview of the available literature on gut microbiota-based interventions in neuro-cancer therapies. It highlights the key outcomes and setbacks faced in translating these therapies into standard clinical practice. Further research with larger sample sizes, long-term follow-ups, and standardized protocols is needed to validate these approaches.
6. Complications and Knowledge Gaps
6.1. Complexity of Microbiome–Host Interactions: Variability Among Individuals
6.2. Limited Mechanistic Studies Linking Specific Metabolites to Neuro-Cancer Pathways
6.3. Novelty: Proposing Standardized Multi-Omics Approaches to Tackle These Setbacks
7. Therapeutic Potential and Future Directions
7.1. Microbiota-Based Interventions: Probiotics, Prebiotics, and Postbiotics
7.2. Personalized Approaches: Leveraging Metabolomics and Precision Medicine
7.3. Novelty: Need for Bi-Directional Research Frameworks Integrating Microbiome and Neuroscience into Cancer Therapy
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SCFAs | Short-chain fatty acids |
LPS | Lipopolysaccharides |
GBA | Gut–brain axis |
CNS | Central nervous system |
ENS | Enteric nervous system |
AhR | Aryl hydrocarbon receptor |
I3C | Indole-3-carbinol |
DNA | Deoxyribonucleic acid |
BBB | Blood–brain barrier |
FXR | Farnesoid X receptor |
HDACs | Histone deacetylases |
TNF-α | Tumor necrosis factor-alpha |
IL-6 | Interleukin-6 |
FMT | Fecal microbiota transplantation |
References
- Singh, A.; Kishore, P.S.; Khan, S. From Microbes to Myocardium: A Comprehensive Review of the Impact of the Gut-Brain Axis on Cardiovascular Disease. Cureus 2024, 16, e70877. [Google Scholar] [CrossRef]
- Lu, S.; Zhao, Q.; Guan, Y.; Sun, Z.; Li, W.; Guo, S.; Zhang, A. The Communication Mechanism of the Gut-Brain Axis and Its Effect on Central Nervous System Diseases: A Systematic Review. Biomed. Pharmacother. 2024, 178, 117207. [Google Scholar] [CrossRef] [PubMed]
- Sheng, J.A.; Bales, N.J.; Myers, S.A.; Bautista, A.I.; Roueinfar, M.; Hale, T.M.; Handa, R.J. The Hypothalamic-Pituitary-Adrenal Axis: Development, Programming Actions of Hormones, and Maternal-Fetal Interactions. Front. Behav. Neurosci. 2021, 14, 601939. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Jing, S.; He, C.; Saberi, H.; Sharma, H.S.; Han, F.; Chen, L. Advancements in Neurodegenerative Diseases: Pathogenesis and Novel Neurorestorative Interventions. J. Neurorestoratol. 2025, 13, 100176. [Google Scholar] [CrossRef]
- Keane, L.; Cryan, J.F.; Gleeson, J.P. Exploiting the Gut Microbiome for Brain Tumour Treatment. Trends Mol. Med. 2024; ahead of print. [Google Scholar]
- Afzaal, M.; Saeed, F.; Shah, Y.A.; Hussain, M.; Rabail, R.; Socol, C.T.; Hassoun, A.; Pateiro, M.; Lorenzo, J.M.; Rusu, A.V.; et al. Human Gut Microbiota in Health and Disease: Unveiling the Relationship. Front. Microbiol. 2022, 13, 999001. [Google Scholar] [CrossRef] [PubMed]
- Fock, E.; Parnova, R. Mechanisms of Blood–Brain Barrier Protection by Microbiota-Derived Short-Chain Fatty Acids. Cells 2023, 12, 657. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhu, N.; Su, X.; Yang, R. Gut Microbiota: A Double-Edged Sword in Immune Checkpoint Blockade Immunotherapy against Tumors. Cancer Lett. 2024, 582, 216582. [Google Scholar] [CrossRef] [PubMed]
- Ge, Y.; Wang, X.; Guo, Y.; Yan, J.; Abuduwaili, A.; Aximujiang, K.; Yan, J.; Wu, M. Gut Microbiota Influence Tumor Development and Alter Interactions with the Human Immune System. J. Exp. Clin. Cancer Res. 2021, 40, 42. [Google Scholar] [CrossRef] [PubMed]
- Madkour, M.A.; Altaf, R.A.; Sayed, Z.S.; Yasen, N.S.; Elbary, H.A.; Elsayed, R.A.; Mohamed, E.N.; Toema, M.; Wadan, A.-H.S.; Nafady, M.H.; et al. The Role of Gut Microbiota in Modulating Cancer Therapy Efficacy. Adv. Gut Microbiome Res. 2024, 2024, 9919868. [Google Scholar] [CrossRef]
- Naqash, A.R.; Kihn-Alarcón, A.J.; Stavraka, C.; Kerrigan, K.; Maleki Vareki, S.; Pinato, D.J.; Puri, S. The Role of Gut Microbiome in Modulating Response to Immune Checkpoint Inhibitor Therapy in Cancer. Ann. Transl. Med. 2021, 9, 1034. [Google Scholar] [CrossRef]
- Feng, P.; Xue, X.; Bukhari, I.; Qiu, C.; Li, Y.; Zheng, P.; Mi, Y. Gut Microbiota and Its Therapeutic Implications in Tumor Microenvironment Interactions. Front. Microbiol. 2024, 15, 1287077. [Google Scholar] [CrossRef]
- Liu, L.; Wang, H.; Chen, X.; Zhang, Y.; Zhang, H.; Xie, P. Gut Microbiota and Its Metabolites in Depression: From Pathogenesis to Treatment. eBioMedicine 2023, 90, 104527. [Google Scholar] [CrossRef]
- Lee, B.; Lee, S.M.; Song, J.W.; Choi, J.W. Gut Microbiota Metabolite Messengers in Brain Function and Pathology at a View of Cell Type-Based Receptor and Enzyme Reaction. Biomol. Ther. 2024, 32, 403–423. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, R.; Zhang, D.; Qi, S.; Liu, Y. Metabolite Interactions between Host and Microbiota during Health and Disease: Which Feeds the Other? Biomed. Pharmacother. 2023, 160, 114295. [Google Scholar] [CrossRef]
- Webster, C.I.; Withycombe, J.S.; Bhutada, J.S.; Bai, J. Review of the Microbiome and Metabolic Pathways Associated with Psychoneurological Symptoms in Children with Cancer. Asia-Pac. J. Oncol. Nurs. 2024, 11, 100535. [Google Scholar] [CrossRef] [PubMed]
- Miri, S.; Yeo, J.; Abubaker, S.; Hammami, R. Neuromicrobiology, an Emerging Neurometabolic Facet of the Gut Microbiome? Front. Microbiol. 2023, 14, 1098412. [Google Scholar] [CrossRef]
- Munir, M.U.; Ali, S.A.; Chung, K.H.K.; Kakinen, A.; Javed, I.; Davis, T.P. Reverse Engineering the Gut-Brain Axis and Microbiome-Metabolomics for Symbiotic/Pathogenic Balance in Neurodegenerative Diseases. Gut Microbes 2024, 16, 2422468. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Shukla, M.; Wang, W.; Li, S. Unlocking Gut-Liver-Brain Axis Communication Metabolites: Energy Metabolism, Immunity and Barriers. NPJ Biofilms Microbiomes 2024, 10, 136. [Google Scholar] [CrossRef]
- Sukocheva, O.A.; Neganova, M.E.; Aleksandrova, Y.; Burcher, J.T.; Chugunova, E.; Fan, R.; Tse, E.; Sethi, G.; Bishayee, A.; Liu, J. Signaling Controversy and Future Therapeutical Perspectives of Targeting Sphingolipid Network in Cancer Immune Editing and Resistance to Tumor Necrosis Factor-α Immunotherapy. Cell Commun. Signal. 2024, 22, 251. [Google Scholar] [CrossRef]
- Singh, N.; Yadav, S.S. A Review on Health Benefits of Phenolics Derived from Dietary Spices. Curr. Res. Food Sci. 2022, 5, 1508–1523. [Google Scholar] [CrossRef] [PubMed]
- Mitra, S.; Dash, R.; Al Nishan, A.; Habiba, S.U.; Moon, I.S. Brain Modulation by the Gut Microbiota: From Disease to Therapy. J. Adv. Res. 2023, 53, 153–173. [Google Scholar] [CrossRef] [PubMed]
- Guan, C.; Zhou, X.; Li, H.; Ma, X.; Zhuang, J. NF-ΚB Inhibitors Gifted by Nature: The Anticancer Promise of Polyphenol Compounds. Biomed. Pharmacother. 2022, 156, 113951. [Google Scholar] [CrossRef] [PubMed]
- Straehla, J.P.; Reardon, D.A.; Wen, P.Y.; Agar, N.Y.R. The Blood-Brain Barrier: Implications for Experimental Cancer Therapeutics. Annu. Rev. Cancer Biol. 2023, 7, 265–289. [Google Scholar] [CrossRef] [PubMed]
- Quinville, B.M.; Deschenes, N.M.; Ryckman, A.E.; Walia, J.S. A Comprehensive Review: Sphingolipid Metabolism and Implications of Disruption in Sphingolipid Homeostasis. Int. J. Mol. Sci. 2021, 22, 5793. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.; Yeap, Y.J.; Yang, J.; Ma, S.; Lim, K.L.; Zhang, Q.; Lu, L.; Zhang, C. Role of Lipid Droplets in Neurodegenerative Diseases: From Pathogenesis to Therapeutics. Neurosci. Biobehav. Rev. 2024, 165, 105867. [Google Scholar] [CrossRef]
- Arsenault, E.J.; McGill, C.M.; Barth, B.M. Sphingolipids as Regulators of Neuro-Inflammation and NADPH Oxidase 2. Neuromol. Med. 2021, 23, 25–46. [Google Scholar] [CrossRef]
- Alkafaas, S.S.; Elsalahaty, M.I.; Ismail, D.F.; Radwan, M.A.; Elkafas, S.S.; Loutfy, S.A.; Elshazli, R.M.; Baazaoui, N.; Ahmed, A.E.; Hafez, W.; et al. The Emerging Roles of Sphingosine 1-Phosphate and SphK1 in Cancer Resistance: A Promising Therapeutic Target. Cancer Cell Int. 2024, 24, 89. [Google Scholar] [CrossRef]
- Li, R.-Z.; Wang, X.-R.; Wang, J.; Xie, C.; Wang, X.-X.; Pan, H.-D.; Meng, W.-Y.; Liang, T.-L.; Li, J.-X.; Yan, P.-Y.; et al. The Key Role of Sphingolipid Metabolism in Cancer: New Therapeutic Targets, Diagnostic and Prognostic Values, and Anti-Tumor Immunotherapy Resistance. Front. Oncol. 2022, 12, 941643. [Google Scholar] [CrossRef]
- Rufail, M.L.; Bassi, R.; Giussani, P. Sphingosine-1-Phosphate Metabolic Pathway in Cancer: Implications for Therapeutic Targets. Int. J. Mol. Sci. 2025, 26, 1056. [Google Scholar] [CrossRef]
- Janneh, A.H. Sphingolipid Signaling and Complement Activation in Glioblastoma: A Promising Avenue for Therapeutic Intervention. BioChem 2024, 4, 126–143. [Google Scholar] [CrossRef]
- Parizadeh, M.; Arrieta, M.-C. The Global Human Gut Microbiome: Genes, Lifestyles, and Diet. Trends Mol. Med. 2023, 29, 789–801. [Google Scholar] [CrossRef] [PubMed]
- Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What Is the Healthy Gut Microbiota Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [Google Scholar] [CrossRef] [PubMed]
- Ragonnaud, E.; Biragyn, A. Gut Microbiota as the Key Controllers of “Healthy” Aging of Elderly People. Immun. Ageing 2021, 18, 2. [Google Scholar] [CrossRef]
- Markowiak-Kopeć, P.; Śliżewska, K. The Effect of Probiotics on the Production of Short-Chain Fatty Acids by Human Intestinal Microbiome. Nutrients 2020, 12, 1107. [Google Scholar] [CrossRef] [PubMed]
- Anumudu, C.K.; Miri, T.; Onyeaka, H. Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods 2024, 13, 3714. [Google Scholar] [CrossRef]
- Fusco, W.; Lorenzo, M.B.; Cintoni, M.; Porcari, S.; Rinninella, E.; Kaitsas, F.; Lener, E.; Mele, M.C.; Gasbarrini, A.; Collado, M.C.; et al. Short-Chain Fatty-Acid-Producing Bacteria: Key Components of the Human Gut Microbiota. Nutrients 2023, 15, 2211. [Google Scholar] [CrossRef] [PubMed]
- Berding, K.; Vlckova, K.; Marx, W.; Schellekens, H.; Stanton, C.; Clarke, G.; Jacka, F.; Dinan, T.G.; Cryan, J.F. Diet and the Microbiota–Gut–Brain Axis: Sowing the Seeds of Good Mental Health. Adv. Nutr. 2021, 12, 1239–1285. [Google Scholar] [CrossRef]
- Cheng, H.-L.; Yen, G.-C.; Huang, S.-C.; Chen, S.-C.; Hsu, C.-L. The next Generation Beneficial Actions of Novel Probiotics as Potential Therapeutic Targets and Prediction Tool for Metabolic Diseases. J. Food Drug Anal. 2022, 30, 1. [Google Scholar] [CrossRef] [PubMed]
- Mo, C.; Lou, X.; Xue, J.; Shi, Z.; Zhao, Y.; Wang, F.; Chen, G. The Influence of Akkermansia Muciniphila on Intestinal Barrier Function. Gut Pathog. 2024, 16, 41. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Wang, K.; Wang, X.; Pang, Y.; Jiang, C. The Role of the Gut Microbiome and Its Metabolites in Metabolic Diseases. Protein Cell 2021, 12, 360–373. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Li, L.; Tao, X.; Chen, Y.; Dong, D. Metabolic Interactions of Host-Gut Microbiota: New Possibilities for the Precise Diagnosis and Therapeutic Discovery of Gastrointestinal Cancer in the Future—A Review. Crit. Rev. Oncol. Hematol. 2024, 203, 104480. [Google Scholar] [CrossRef]
- Banfi, D.; Moro, E.; Bosi, A.; Bistoletti, M.; Cerantola, S.; Crema, F.; Maggi, F.; Giron, M.C.; Giaroni, C.; Baj, A. Impact of Microbial Metabolites on Microbiota–Gut–Brain Axis in Inflammatory Bowel Disease. Int. J. Mol. Sci. 2021, 22, 1623. [Google Scholar] [CrossRef]
- Kim, S.; Seo, S.-U.; Kweon, M.-N. Gut Microbiota-Derived Metabolites Tune Host Homeostasis Fate. Semin. Immunopathol. 2024, 46, 2. [Google Scholar] [CrossRef]
- Zhang, D.; Jian, Y.-P.; Zhang, Y.-N.; Li, Y.; Gu, L.-T.; Sun, H.-H.; Liu, M.-D.; Zhou, H.-L.; Wang, Y.-S.; Xu, Z.-X. Short-Chain Fatty Acids in Diseases. Cell Commun. Signal. 2023, 21, 212. [Google Scholar] [CrossRef] [PubMed]
- Hodgkinson, K.; El Abbar, F.; Dobranowski, P.; Manoogian, J.; Butcher, J.; Figeys, D.; Mack, D.; Stintzi, A. Butyrate’s Role in Human Health and the Current Progress towards Its Clinical Application to Treat Gastrointestinal Disease. Clin. Nutr. 2023, 42, 61–75. [Google Scholar] [CrossRef]
- Ney, L.-M.; Wipplinger, M.; Grossmann, M.; Engert, N.; Wegner, V.D.; Mosig, A.S. Short Chain Fatty Acids: Key Regulators of the Local and Systemic Immune Response in Inflammatory Diseases and Infections. Open Biol. 2023, 13, 230014. [Google Scholar] [CrossRef] [PubMed]
- Jaberi, K.R.; Alamdari-Palangi, V.; Savardashtaki, A.; Vatankhah, P.; Jamialahmadi, T.; Tajbakhsh, A.; Sahebkar, A. Modulatory Effects of Phytochemicals on Gut–Brain Axis: Therapeutic Implication. Curr. Dev. Nutr. 2024, 8, 103785. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Li, J.; Ying, S. Tryptophan Metabolism and Gut Microbiota: A Novel Regulatory Axis Integrating the Microbiome, Immunity, and Cancer. Metabolites 2023, 13, 1166. [Google Scholar] [CrossRef]
- Guzel, T.; Mirowska-Guzel, D. The Role of Serotonin Neurotransmission in Gastrointestinal Tract and Pharmacotherapy. Molecules 2022, 27, 1680. [Google Scholar] [CrossRef]
- Tanaka, M.; Szabó, Á.; Vécsei, L. Redefining Roles: A Paradigm Shift in Tryptophan–Kynurenine Metabolism for Innovative Clinical Applications. Int. J. Mol. Sci. 2024, 25, 12767. [Google Scholar] [CrossRef] [PubMed]
- AbuQeis, I.; Zou, Y.; Ba, Y.; Teeti, A.A. Neuroscience of Cancer: Research Progress and Emerging of the Field. Ibrain 2024, 10, 305–322. [Google Scholar] [CrossRef] [PubMed]
- Larabi, A.B.; Masson, H.L.P.; Bäumler, A.J. Bile Acids as Modulators of Gut Microbiota Composition and Function. Gut Microbes 2023, 15, 2172671. [Google Scholar] [CrossRef] [PubMed]
- Brown, E.M.; Clardy, J.; Xavier, R.J. Gut Microbiome Lipid Metabolism and Its Impact on Host Physiology. Cell Host Microbe 2023, 31, 173–186. [Google Scholar] [CrossRef] [PubMed]
- Režen, T.; Rozman, D.; Kovács, T.; Kovács, P.; Sipos, A.; Bai, P.; Mikó, E. The Role of Bile Acids in Carcinogenesis. Cell. Mol. Life Sci. 2022, 79, 243. [Google Scholar] [CrossRef] [PubMed]
- Fishbein, A.; Hammock, B.D.; Serhan, C.N.; Panigrahy, D. Carcinogenesis: Failure of Resolution of Inflammation? Pharmacol. Ther. 2021, 218, 107670. [Google Scholar] [CrossRef] [PubMed]
- Krsek, A.; Baticic, L. Neutrophils in the Focus: Impact on Neuroimmune Dynamics and the Gut–Brain Axis. Gastrointest. Disord. 2024, 6, 557–606. [Google Scholar] [CrossRef]
- Gorman, A.; Golovanov, A.P. Lipopolysaccharide Structure and the Phenomenon of Low Endotoxin Recovery. Eur. J. Pharm. Biopharm. 2022, 180, 289–307. [Google Scholar] [CrossRef] [PubMed]
- Mafe, A.N.; Büsselberg, D. Mycotoxins in Food: Cancer Risks and Strategies for Control. Foods 2024, 13, 3502. [Google Scholar] [CrossRef]
- Coutinho-Wolino, K.S.; Almeida, P.P.; Mafra, D.; Stockler-Pinto, M.B. Bioactive Compounds Modulating Toll-like 4 Receptor (TLR4)-Mediated Inflammation: Pathways Involved and Future Perspectives. Nutr. Res. 2022, 107, 96–116. [Google Scholar] [CrossRef]
- Wang, M.; Chen, S.; He, X.; Yuan, Y.; Wei, X. Targeting Inflammation as Cancer Therapy. J. Hematol. Oncol. 2024, 17, 13. [Google Scholar] [CrossRef] [PubMed]
- Adamu, A.; Li, S.; Gao, F.; Xue, G. The Role of Neuroinflammation in Neurodegenerative Diseases: Current Understanding and Future Therapeutic Targets. Front. Aging Neurosci. 2024, 16, 1347987. [Google Scholar] [CrossRef] [PubMed]
- Yang, Q.; Wang, B.; Zheng, Q.; Li, H.; Meng, X.; Zhou, F.; Zhang, L. A Review of Gut Microbiota-Derived Metabolites in Tumor Progression and Cancer Therapy. Adv. Sci. 2023, 10, 2207366. [Google Scholar] [CrossRef] [PubMed]
- Winkler, F.; Venkatesh, H.S.; Amit, M.; Batchelor, T.; Demir, I.E.; Deneen, B.; Gutmann, D.H.; Hervey-Jumper, S.; Kuner, T.; Mabbott, D.; et al. Cancer Neuroscience: State of the Field, Emerging Directions. Cell 2023, 186, 1689–1707. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Cong, Y. Gut Microbiota-Derived Metabolites in the Regulation of Host Immune Responses and Immune-Related Inflammatory Diseases. Cell. Mol. Immunol. 2021, 18, 866–877. [Google Scholar] [CrossRef]
- Yang, Y.; Sun, L.; Liu, X.; Liu, W.; Zhang, Z.; Zhou, X.; Zhao, X.; Zheng, R.; Zhang, Y.; Guo, W.; et al. Neurotransmitters: Impressive Regulators of Tumor Progression. Biomed. Pharmacother. 2024, 176, 116844. [Google Scholar] [CrossRef] [PubMed]
- Holbert, C.E.; Foley, J.R.; Murray Stewart, T.; Casero, R.A. Expanded Potential of the Polyamine Analogue SBP-101 (Diethyl Dihydroxyhomospermine) as a Modulator of Polyamine Metabolism and Cancer Therapeutic. Int. J. Mol. Sci. 2022, 23, 6798. [Google Scholar] [CrossRef]
- Mondanelli, G.; Iacono, A.; Carvalho, A.; Orabona, C.; Volpi, C.; Pallotta, M.T.; Matino, D.; Esposito, S.; Grohmann, U. Amino Acid Metabolism as Drug Target in Autoimmune Diseases. Autoimmun. Rev. 2019, 18, 334–348. [Google Scholar] [CrossRef]
- Liu, M.; Nieuwdorp, M.; de Vos, W.M.; Rampanelli, E. Microbial Tryptophan Metabolism Tunes Host Immunity, Metabolism, and Extraintestinal Disorders. Metabolites 2022, 12, 834. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Whitley, C.S.; Haribabu, B.; Jala, V.R. Regulation of Intestinal Barrier Function by Microbial Metabolites. Cell. Mol. Gastroenterol. Hepatol. 2021, 11, 1463–1482. [Google Scholar] [CrossRef] [PubMed]
- Pinto, C.J.G.; Ávila-Gálvez, M.Á.; Lian, Y.; Moura-Alves, P.; Nunes dos Santos, C. Targeting the Aryl Hydrocarbon Receptor by Gut Phenolic Metabolites: A Strategy towards Gut Inflammation. Redox Biol. 2023, 61, 102622. [Google Scholar] [CrossRef] [PubMed]
- Mhanna, A.; Martini, N.; Hmaydoosh, G.; Hamwi, G.; Jarjanazi, M.; Zaifah, G.; Kazzazo, R.; Haji Mohamad, A.; Alshehabi, Z. The Correlation between Gut Microbiota and Both Neurotransmitters and Mental Disorders: A Narrative Review. Medicine 2024, 103, e37114. [Google Scholar] [CrossRef]
- Ashok, A.; Andrabi, S.S.; Mansoor, S.; Kuang, Y.; Kwon, B.K.; Labhasetwar, V. Antioxidant Therapy in Oxidative Stress-Induced Neurodegenerative Diseases: Role of Nanoparticle-Based Drug Delivery Systems in Clinical Translation. Antioxidants 2022, 11, 408. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Hernández, O.D.; Figueroa-González, G.; Quintas-Granados, L.I.; Gutiérrez-Ruíz, S.C.; Hernández-Parra, H.; Romero-Montero, A.; Del Prado-Audelo, M.L.; Bernal-Chavez, S.A.; Cortés, H.; Peña-Corona, S.I.; et al. 3,3′-Diindolylmethane and Indole-3-Carbinol: Potential Therapeutic Molecules for Cancer Chemoprevention and Treatment via Regulating Cellular Signaling Pathways. Cancer Cell Int. 2023, 23, 180. [Google Scholar] [CrossRef] [PubMed]
- Mo, X.; Rao, D.P.; Kaur, K.; Hassan, R.; Abdel-Samea, A.S.; Farhan, S.M.; Bräse, S.; Hashem, H. Indole Derivatives: A Versatile Scaffold in Modern Drug Discovery—An Updated Review on Their Multifaceted Therapeutic Applications (2020–2024). Molecules 2024, 29, 4770. [Google Scholar] [CrossRef] [PubMed]
- Ramos-Molina, B.; Queipo-Ortuño, M.I.; Lambertos, A.; Tinahones, F.J.; Peñafiel, R. Dietary and Gut Microbiota Polyamines in Obesity- and Age-Related Diseases. Front. Nutr. 2019, 6, 24. [Google Scholar] [CrossRef]
- Figlia, G.; Willnow, P.; Teleman, A.A. Metabolites Regulate Cell Signaling and Growth via Covalent Modification of Proteins. Dev. Cell 2020, 54, 156–170. [Google Scholar] [CrossRef] [PubMed]
- Bui, T.I.; Britt, E.A.; Muthukrishnan, G.; Gill, S.R. Probiotic Induced Synthesis of Microbiota Polyamine as a Nutraceutical for Metabolic Syndrome and Obesity-Related Type 2 Diabetes. Front. Endocrinol. 2023, 13, 1094258. [Google Scholar] [CrossRef]
- Krysenko, S.; Wohlleben, W. Polyamine and Ethanolamine Metabolism in Bacteria as an Important Component of Nitrogen Assimilation for Survival and Pathogenicity. Med. Sci. 2022, 10, 40. [Google Scholar] [CrossRef]
- Casero, R.A.; Murray Stewart, T.; Pegg, A.E. Polyamine Metabolism and Cancer: Treatments, Challenges and Opportunities. Nat. Rev. Cancer 2018, 18, 681–695. [Google Scholar] [CrossRef]
- Lian, J.; Liang, Y.; Zhang, H.; Lan, M.; Ye, Z.; Lin, B.; Qiu, X.; Zeng, J. The Role of Polyamine Metabolism in Remodeling Immune Responses and Blocking Therapy within the Tumor Immune Microenvironment. Front. Immunol. 2022, 13, 912279. [Google Scholar] [CrossRef]
- Makletsova, M.G.; Rikhireva, G.T.; Kirichenko, E.Y.; Trinitatsky, I.Y.; Vakulenko, M.Y.; Ermakov, A.M. The Role of Polyamines in the Mechanisms of Cognitive Impairment. Neurochem. J. 2022, 16, 283–294. [Google Scholar] [CrossRef]
- Novita Sari, I.; Setiawan, T.; Seock Kim, K.; Toni Wijaya, Y.; Won Cho, K.; Young Kwon, H. Metabolism and Function of Polyamines in Cancer Progression. Cancer Lett. 2021, 519, 91–104. [Google Scholar] [CrossRef] [PubMed]
- Hezaveh, K.; Shinde, R.S.; Klötgen, A.; Halaby, M.J.; Lamorte, S.; Ciudad, M.T.; Quevedo, R.; Neufeld, L.; Liu, Z.Q.; Jin, R.; et al. Tryptophan-Derived Microbial Metabolites Activate the Aryl Hydrocarbon Receptor in Tumor-Associated Macrophages to Suppress Anti-Tumor Immunity. Immunity 2022, 55, 324–340.e8. [Google Scholar] [CrossRef]
- Li, W.; Chen, H.; Tang, J. Interplay between Bile Acids and Intestinal Microbiota: Regulatory Mechanisms and Therapeutic Potential for Infections. Pathogens 2024, 13, 702. [Google Scholar] [CrossRef] [PubMed]
- Mikołajczyk, M.; Złotkowska, D.; Mikołajczyk, A. Impact on Human Health of Salmonella Spp. and Their Lipopolysaccharides: Possible Therapeutic Role and Asymptomatic Presence Consequences. Int. J. Mol. Sci. 2024, 25, 11868. [Google Scholar] [CrossRef]
- Huang, F.-C. Therapeutic Potential of Nutritional Aryl Hydrocarbon Receptor Ligands in Gut-Related Inflammation and Diseases. Biomedicines 2024, 12, 2912. [Google Scholar] [CrossRef] [PubMed]
- Holbert, C.E.; Dunworth, M.; Foley, J.R.; Dunston, T.T.; Stewart, T.M.; Casero, R.A. Autophagy Induction by Exogenous Polyamines Is an Artifact of Bovine Serum Amine Oxidase Activity in Culture Serum. J. Biol. Chem. 2020, 295, 9061–9068. [Google Scholar] [CrossRef] [PubMed]
- Ortega-Hernández, A.; Martínez-Martínez, E.; Gómez-Gordo, R.; López-Andrés, N.; Fernández-Celis, A.; Gutiérrrez-Miranda, B.; Nieto, M.L.; Alarcón, T.; Alba, C.; Gómez-Garre, D.; et al. The Interaction between Mitochondrial Oxidative Stress and Gut Microbiota in the Cardiometabolic Consequences in Diet-Induced Obese Rats. Antioxidants 2020, 9, 640. [Google Scholar] [CrossRef] [PubMed]
- Chaudhry, T.S.; Senapati, S.G.; Gadam, S.; Mannam, H.P.S.S.; Voruganti, H.V.; Abbasi, Z.; Abhinav, T.; Challa, A.B.; Pallipamu, N.; Bheemisetty, N.; et al. The Impact of Microbiota on the Gut–Brain Axis: Examining the Complex Interplay and Implications. J. Clin. Med. 2023, 12, 5231. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Tan, Y.; Cheng, H.; Zhang, D.; Feng, W.; Peng, C. Functions of Gut Microbiota Metabolites, Current Status and Future Perspectives. Aging Dis. 2022, 13, 1106. [Google Scholar] [CrossRef] [PubMed]
- Kumar, R.; Mishra, A.; Gautam, P.; Feroz, Z.; Vijayaraghavalu, S.; Likos, E.; Shukla, G.; Kumar, M. Metabolic Pathways, Enzymes, and Metabolites: Opportunities in Cancer Therapy. Cancers 2022, 14, 5268. [Google Scholar] [CrossRef]
- Gong, Y.; Liu, Z.; Zhou, P.; Li, J.; Miao, Y.-B. Biomimetic Nanocarriers Harnessing Microbial Metabolites Usher the Path for Brain Disease Therapy. Nano TransMed 2023, 2, 100020. [Google Scholar] [CrossRef]
- Brandl, S.; Reindl, M. Blood–Brain Barrier Breakdown in Neuroinflammation: Current In Vitro Models. Int. J. Mol. Sci. 2023, 24, 12699. [Google Scholar] [CrossRef] [PubMed]
- Silva, Y.P.; Bernardi, A.; Frozza, R.L. The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. 2020, 11, 25. [Google Scholar] [CrossRef] [PubMed]
- Qu, S.; Gao, Y.; Ma, J.; Yan, Q. Microbiota-Derived Short-Chain Fatty Acids Functions in the Biology of B Lymphocytes: From Differentiation to Antibody Formation. Biomed. Pharmacother. 2023, 168, 115773. [Google Scholar] [CrossRef] [PubMed]
- Coccia, C.; Bonomi, F.; Lo Cricchio, A.; Russo, E.; Peretti, S.; Bandini, G.; Lepri, G.; Bartoli, F.; Moggi-Pignone, A.; Guiducci, S.; et al. The Potential Role of Butyrate in the Pathogenesis and Treatment of Autoimmune Rheumatic Diseases. Biomedicines 2024, 12, 1760. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Liang, Y.; Meng, H.; Zhang, A.; Zhao, J.; Zhang, C. Metabolic Controls on Epigenetic Reprogramming in Regulatory T Cells. Front. Immunol. 2021, 12, 728783. [Google Scholar] [CrossRef]
- Kölliker-Frers, R.; Udovin, L.; Otero-Losada, M.; Kobiec, T.; Herrera, M.I.; Palacios, J.; Razzitte, G.; Capani, F. Neuroinflammation: An Integrating Overview of Reactive-Neuroimmune Cell Interactions in Health and Disease. Mediat. Inflamm. 2021, 2021, 9999146. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Vitetta, L. The Role of Butyrate in Attenuating Pathobiont-Induced Hyperinflammation. Immune Netw. 2020, 20, e15. [Google Scholar] [CrossRef]
- Zhang, W.; Xiao, D.; Mao, Q.; Xia, H. Role of Neuroinflammation in Neurodegeneration Development. Signal Transduct. Target. Ther. 2023, 8, 267. [Google Scholar] [CrossRef] [PubMed]
- Hochuli, N.; Kadyan, S.; Park, G.; Patoine, C.; Nagpal, R. Pathways Linking Microbiota-Gut-Brain Axis with Neuroinflammatory Mechanisms in Alzheimer’s Pathophysiology. Microbiome Res. Rep. 2023, 3, 9. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Chen, S.; Zang, D.; Sun, H.; Sun, Y.; Chen, J. Butyrate as a Promising Therapeutic Target in Cancer: From Pathogenesis to Clinic (Review). Int. J. Oncol. 2024, 64, 44. [Google Scholar] [CrossRef]
- Al-Qadami, G.H.; Secombe, K.R.; Subramaniam, C.B.; Wardill, H.R.; Bowen, J.M. Gut Microbiota-Derived Short-Chain Fatty Acids: Impact on Cancer Treatment Response and Toxicities. Microorganisms 2022, 10, 2048. [Google Scholar] [CrossRef]
- Anshory, M.; Effendi, R.M.R.A.; Kalim, H.; Dwiyana, R.F.; Suwarsa, O.; Nijsten, T.E.C.; Nouwen, J.L.; Thio, H.B. Butyrate Properties in Immune-Related Diseases: Friend or Foe? Fermentation 2023, 9, 205. [Google Scholar] [CrossRef]
- Parolisi, S.; Montanari, C.; Borghi, E.; Cazzorla, C.; Zuvadelli, J.; Tosi, M.; Barone, R.; Bensi, G.; Bonfanti, C.; Dionisi Vici, C.; et al. Possible Role of Tryptophan Metabolism along the Microbiota-Gut-Brain Axis on Cognitive & Behavioral Aspects in Phenylketonuria. Pharmacol. Res. 2023, 197, 106952. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Vyavahare, S.; Duchesne Blanes, I.L.; Berger, F.; Isales, C.; Fulzele, S. Microbiota-Derived Tryptophan Metabolism: Impacts on Health, Aging, and Disease. Exp. Gerontol. 2023, 183, 112319. [Google Scholar] [CrossRef] [PubMed]
- Mravec, B. Neurobiology of Cancer: Definition, Historical Overview, and Clinical Implications. Cancer Med. 2022, 11, 903–921. [Google Scholar] [CrossRef]
- Tsuji, A.; Ikeda, Y.; Yoshikawa, S.; Taniguchi, K.; Sawamura, H.; Morikawa, S.; Nakashima, M.; Asai, T.; Matsuda, S. The Tryptophan and Kynurenine Pathway Involved in the Development of Immune-Related Diseases. Int. J. Mol. Sci. 2023, 24, 5742. [Google Scholar] [CrossRef]
- Liu, X.; Yang, M.; Xu, P.; Du, M.; Li, S.; Shi, J.; Li, Q.; Yuan, J.; Pang, Y. Kynurenine-AhR Reduces T-Cell Infiltration and Induces a Delayed T-Cell Immune Response by Suppressing the STAT1-CXCL9/CXCL10 Axis in Tuberculosis. Cell. Mol. Immunol. 2024, 21, 1426–1440. [Google Scholar] [CrossRef]
- Zhang, A.; Fan, T.; Liu, Y.; Yu, G.; Li, C.; Jiang, Z. Regulatory T Cells in Immune Checkpoint Blockade Antitumor Therapy. Mol. Cancer 2024, 23, 251. [Google Scholar] [CrossRef] [PubMed]
- D’Ambrosio, M.; Gil, J. Reshaping of the Tumor Microenvironment by Cellular Senescence: An Opportunity for Senotherapies. Dev. Cell 2023, 58, 1007–1021. [Google Scholar] [CrossRef] [PubMed]
- Sapienza, J.; Agostoni, G.; Comai, S.; Nasini, S.; Dall’Acqua, S.; Sut, S.; Spangaro, M.; Martini, F.; Bechi, M.; Buonocore, M.; et al. Neuroinflammation and Kynurenines in Schizophrenia: Impact on Cognition Depending on Cognitive Functioning and Modulatory Properties in Relation to Cognitive Remediation and Aerobic Exercise. Schizophr. Res. Cogn. 2024, 38, 100328. [Google Scholar] [CrossRef] [PubMed]
- Pathak, S.; Nadar, R.; Kim, S.; Liu, K.; Govindarajulu, M.; Cook, P.; Watts Alexander, C.S.; Dhanasekaran, M.; Moore, T. The Influence of Kynurenine Metabolites on Neurodegenerative Pathologies. Int. J. Mol. Sci. 2024, 25, 853. [Google Scholar] [CrossRef] [PubMed]
- Missiego-Beltrán, J.; Beltrán-Velasco, A.I. The Role of Microbial Metabolites in the Progression of Neurodegenerative Diseases—Therapeutic Approaches: A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 10041. [Google Scholar] [CrossRef]
- Warren, A.; Nyavor, Y.; Zarabian, N.; Mahoney, A.; Frame, L.A. The Microbiota-Gut-Brain-Immune Interface in the Pathogenesis of Neuroinflammatory Diseases: A Narrative Review of the Emerging Literature. Front. Immunol. 2024, 15, 1365673. [Google Scholar] [CrossRef] [PubMed]
- Basson, C.; Serem, J.C.; Hlophe, Y.N.; Bipath, P. The Tryptophan–Kynurenine Pathway in Immunomodulation and Cancer Metastasis. Cancer Med. 2023, 12, 18691–18701. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Li, S.; Wang, D.; Liu, S.; Xiao, T.; Gu, W.; Yang, H.; Wang, H.; Yang, M.; Chen, P. Metabolic Reprogramming and Immune Evasion: The Interplay in the Tumor Microenvironment. Biomark. Res. 2024, 12, 96. [Google Scholar] [CrossRef] [PubMed]
- Platten, M.; Friedrich, M.; Wainwright, D.A.; Panitz, V.; Opitz, C.A. Tryptophan Metabolism in Brain Tumors—IDO and Beyond. Curr. Opin. Immunol. 2021, 70, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, A.; Kurihara, S.; Takahashi, D.; Ohashi, W.; Nakamura, Y.; Kimura, S.; Onuki, M.; Kume, A.; Sasazawa, Y.; Furusawa, Y.; et al. Symbiotic Polyamine Metabolism Regulates Epithelial Proliferation and Macrophage Differentiation in the Colon. Nat. Commun. 2021, 12, 2105. [Google Scholar] [CrossRef]
- Zhao, M.; Chu, J.; Feng, S.; Guo, C.; Xue, B.; He, K.; Li, L. Immunological Mechanisms of Inflammatory Diseases Caused by Gut Microbiota Dysbiosis: A Review. Biomed. Pharmacother. 2023, 164, 114985. [Google Scholar] [CrossRef] [PubMed]
- Sagar, N.A.; Tarafdar, S.; Agarwal, S.; Tarafdar, A.; Sharma, S. Polyamines: Functions, Metabolism, and Role in Human Disease Management. Med. Sci. 2021, 9, 44. [Google Scholar] [CrossRef]
- Zhao, Q.; Huang, J.-F.; Cheng, Y.; Dai, M.-Y.; Zhu, W.-F.; Yang, X.-W.; Gonzalez, F.J.; Li, F. Polyamine Metabolism Links Gut Microbiota and Testicular Dysfunction. Microbiome 2021, 9, 224. [Google Scholar] [CrossRef] [PubMed]
- Xuan, M.; Gu, X.; Li, J.; Huang, D.; Xue, C.; He, Y. Polyamines: Their Significance for Maintaining Health and Contributing to Diseases. Cell Commun. Signal. 2023, 21, 348. [Google Scholar] [CrossRef] [PubMed]
- Rebeaud, J.; Peter, B.; Pot, C. How Microbiota-Derived Metabolites Link the Gut to the Brain during Neuroinflammation. Int. J. Mol. Sci. 2022, 23, 10128. [Google Scholar] [CrossRef]
- Holbert, C.E.; Casero, R.A.; Stewart, T.M. Polyamines: The Pivotal Amines in Influencing the Tumor Microenvironment. Discov. Oncol. 2024, 15, 173. [Google Scholar] [CrossRef]
- Hanus, M.; Parada-Venegas, D.; Landskron, G.; Wielandt, A.M.; Hurtado, C.; Alvarez, K.; Hermoso, M.A.; López-Köstner, F.; De la Fuente, M. Immune System, Microbiota, and Microbial Metabolites: The Unresolved Triad in Colorectal Cancer Microenvironment. Front. Immunol. 2021, 12, 612826. [Google Scholar] [CrossRef] [PubMed]
- Gebrayel, P.; Nicco, C.; Al Khodor, S.; Bilinski, J.; Caselli, E.; Comelli, E.M.; Egert, M.; Giaroni, C.; Karpinski, T.M.; Loniewski, I.; et al. Microbiota Medicine: Towards Clinical Revolution. J. Transl. Med. 2022, 20, 111. [Google Scholar] [CrossRef]
- Zhou, M.; Yin, X.; Chen, B.; Hu, S.; Zhou, W. A PET Probe Targeting Polyamine Transport System for Precise Tumor Diagnosis and Therapy. Asian J. Pharm. Sci. 2024, 19, 100924. [Google Scholar] [CrossRef] [PubMed]
- Lin, B.; Ye, Z.; Ye, Z.; Wang, M.; Cao, Z.; Gao, R.; Zhang, Y. Gut Microbiota in Brain Tumors: An Emerging Crucial Player. CNS Neurosci. Ther. 2023, 29, 84–97. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Ke, X.; Zuo, D.; Wang, Z.; Fang, F.; Li, B. New Insights into the Relationship between Gut Microbiota and Radiotherapy for Cancer. Nutrients 2022, 15, 48. [Google Scholar] [CrossRef] [PubMed]
- Kandpal, M.; Indari, O.; Baral, B.; Jakhmola, S.; Tiwari, D.; Bhandari, V.; Pandey, R.K.; Bala, K.; Sonawane, A.; Jha, H.C. Dysbiosis of Gut Microbiota from the Perspective of the Gut–Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites 2022, 12, 1064. [Google Scholar] [CrossRef]
- Nakhal, M.M.; Yassin, L.K.; Alyaqoubi, R.; Saeed, S.; Alderei, A.; Alhammadi, A.; Alshehhi, M.; Almehairbi, A.; Al Houqani, S.; BaniYas, S.; et al. The Microbiota–Gut–Brain Axis and Neurological Disorders: A Comprehensive Review. Life 2024, 14, 1234. [Google Scholar] [CrossRef] [PubMed]
- Solanki, R.; Karande, A.; Ranganathan, P. Emerging Role of Gut Microbiota Dysbiosis in Neuroinflammation and Neurodegeneration. Front. Neurol. 2023, 14, 1149618. [Google Scholar] [CrossRef]
- You, M.; Chen, N.; Yang, Y.; Cheng, L.; He, H.; Cai, Y.; Liu, Y.; Liu, H.; Hong, G. The Gut Microbiota–Brain Axis in Neurological Disorders. MedComm 2024, 5, e656. [Google Scholar] [CrossRef]
- Singh, M.P.; Chakrabarty, R.; Shabir, S.; Yousuf, S.; Obaid, A.A.; Moustafa, M.; Al-Shehri, M.; Al-Emam, A.; Alamri, A.S.; Alsanie, W.F.; et al. Influence of the Gut Microbiota on the Development of Neurodegenerative Diseases. Mediat. Inflamm. 2022, 2022, 3300903. [Google Scholar] [CrossRef]
- Liu, Q.; Yang, Y.; Pan, M.; Yang, F.; Yu, Y.; Qian, Z. Role of the Gut Microbiota in Tumorigenesis and Treatment. Theranostics 2024, 14, 2304–2328. [Google Scholar] [CrossRef]
- Jiang, H.; Yang, F.; Zhang, X.; Fang, H.; Qiu, T.; Li, Y.; Peng, A. Dysbiosis of the Gut Microbiota in Glioblastoma Patients and Potential Biomarkers for Risk Assessment. Microb. Pathog. 2024, 195, 106888. [Google Scholar] [CrossRef]
- Maciel-Fiuza, M.F.; Muller, G.C.; Campos, D.M.S.; do Socorro Silva Costa, P.; Peruzzo, J.; Bonamigo, R.R.; Veit, T.; Vianna, F.S.L. Role of Gut Microbiota in Infectious and Inflammatory Diseases. Front. Microbiol. 2023, 14, 1098386. [Google Scholar] [CrossRef]
- Shandilya, S.; Kumar, S.; Kumar Jha, N.; Kumar Kesari, K.; Ruokolainen, J. Interplay of Gut Microbiota and Oxidative Stress: Perspective on Neurodegeneration and Neuroprotection. J. Adv. Res. 2022, 38, 223–244. [Google Scholar] [CrossRef]
- Ishaq, H.M.; Yasin, R.; Mohammad, I.S.; Fan, Y.; Li, H.; Shahzad, M.; Xu, J. The Gut-Brain-Axis: A Positive Relationship between Gut Microbial Dysbiosis and Glioblastoma Brain Tumour. Heliyon 2024, 10, e30494. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Ou, Z.; Huang, X.; Wang, J.; Li, Q.; Wen, M.; Zheng, L. Microbiota and Glioma: A New Perspective from Association to Clinical Translation. Gut Microbes 2024, 16, 2394166. [Google Scholar] [CrossRef] [PubMed]
- Anand, N.; Gorantla, V.R.; Chidambaram, S.B. The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells 2022, 12, 54. [Google Scholar] [CrossRef]
- Arner, E.N.; Rathmell, J.C. Metabolic Programming and Immune Suppression in the Tumor Microenvironment. Cancer Cell 2023, 41, 421–433. [Google Scholar] [CrossRef]
- Zhang, H.; Hong, Y.; Wu, T.; Ben, E.; Li, S.; Hu, L.; Xie, T. Role of Gut Microbiota in Regulating Immune Checkpoint Inhibitor Therapy for Glioblastoma. Front. Immunol. 2024, 15, 1401967. [Google Scholar] [CrossRef] [PubMed]
- Mafe, A.N.; Iruoghene Edo, G.; Akpoghelie, P.O.; Gaaz, T.S.; Yousif, E.; Zainulabdeen, K.; Isoje, E.F.; Igbuku, U.A.; Opiti, R.A.; Garba, Y.; et al. Probiotics and Food Bioactives: Unraveling Their Impact on Gut Microbiome, Inflammation, and Metabolic Health. Probiotics Antimicrob. Proteins 2025. [Google Scholar] [CrossRef] [PubMed]
- Jiang, S.; Ma, W.; Ma, C.; Zhang, Z.; Zhang, W.; Zhang, J. An Emerging Strategy: Probiotics Enhance the Effectiveness of Tumor Immunotherapy via Mediating the Gut Microbiome. Gut Microbes 2024, 16, 2341717. [Google Scholar] [CrossRef]
- Jiang, H.; Zeng, W.; Zhang, X.; Pei, Y.; Zhang, H.; Li, Y. The Role of Gut Microbiota in Patients with Benign and Malignant Brain Tumors: A Pilot Study. Bioengineered 2022, 13, 7846–7858. [Google Scholar] [CrossRef] [PubMed]
- Herrera-Quintana, L.; Vázquez-Lorente, H.; Lopez-Garzon, M.; Cortés-Martín, A.; Plaza-Diaz, J. Cancer and the Microbiome of the Human Body. Nutrients 2024, 16, 2790. [Google Scholar] [CrossRef]
- Hamilton, A.M.; Krout, I.N.; White, A.C.; Sampson, T.R. Microbiome-Based Therapeutics for Parkinson’s Disease. Neurotherapeutics 2024, 21, e00462. [Google Scholar] [CrossRef]
- Ahn, J.; Hayes, R.B. Environmental Influences on the Human Microbiome and Implications for Noncommunicable Disease. Annu. Rev. Public Health 2021, 42, 277–292. [Google Scholar] [CrossRef] [PubMed]
- Juarez, V.M.; Montalbine, A.N.; Singh, A. Microbiome as an Immune Regulator in Health, Disease, and Therapeutics. Adv. Drug Deliv. Rev. 2022, 188, 114400. [Google Scholar] [CrossRef] [PubMed]
- Mincic, A.M.; Antal, M.; Filip, L.; Miere, D. Modulation of Gut Microbiome in the Treatment of Neurodegenerative Diseases: A Systematic Review. Clin. Nutr. 2024, 43, 1832–1849. [Google Scholar] [CrossRef]
- Liu, X.; Li, B.; Liang, L.; Han, J.; Mai, S.; Liu, L. From Microbes to Medicine: Harnessing the Power of the Microbiome in Esophageal Cancer. Front. Immunol. 2024, 15, 1450927. [Google Scholar] [CrossRef] [PubMed]
- Mafe, A.N.; Büsselberg, D. Impact of Metabolites from Foodborne Pathogens on Cancer. Foods 2024, 13, 3886. [Google Scholar] [CrossRef]
- Ojeda, J.; Ávila, A.; Vidal, P.M. Gut Microbiota Interaction with the Central Nervous System throughout Life. J. Clin. Med. 2021, 10, 1299. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yin, F.; Guo, Z.; Li, R.; Sun, W.; Wang, Y.; Geng, Y.; Sun, C.; Sun, D. Association between Gut Microbiota and Glioblastoma: A Mendelian Randomization Study. Front. Genet. 2024, 14, 1308263. [Google Scholar] [CrossRef]
- Singh, A.; Alexander, S.G.; Martin, S. Gut Microbiome Homeostasis and the Future of Probiotics in Cancer Immunotherapy. Front. Immunol. 2023, 14, 1114499. [Google Scholar] [CrossRef] [PubMed]
- Dash, S.; Syed, Y.A.; Khan, M.R. Understanding the Role of the Gut Microbiome in Brain Development and Its Association With Neurodevelopmental Psychiatric Disorders. Front. Cell Dev. Biol. 2022, 10, 880544. [Google Scholar] [CrossRef]
- Olmo, R.; Wetzels, S.U.; Armanhi, J.S.L.; Arruda, P.; Berg, G.; Cernava, T.; Cotter, P.D.; Araujo, S.C.; de Souza, R.S.C.; Ferrocino, I.; et al. Microbiome Research as an Effective Driver of Success Stories in Agrifood Systems—A Selection of Case Studies. Front. Microbiol. 2022, 13, 834622. [Google Scholar] [CrossRef]
- Cryan, J.F.; O’Riordan, K.J.; Cowan, C.S.M.; Sandhu, K.V.; Bastiaanssen, T.F.S.; Boehme, M.; Codagnone, M.G.; Cussotto, S.; Fulling, C.; Golubeva, A.V.; et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019, 99, 1877–2013. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Li, X.; Zhang, S. The Role of Bacteria in Central Nervous System Tumors: Opportunities and Challenges. Microorganisms 2024, 12, 1053. [Google Scholar] [CrossRef]
- Soto Chervin, C.; Gajewski, T.F. Microbiome-Based Interventions: Therapeutic Strategies in Cancer Immunotherapy. Immuno-Oncol. Technol. 2020, 8, 12–20. [Google Scholar] [CrossRef]
- Horn, J.; Mayer, D.E.; Chen, S.; Mayer, E.A. Role of Diet and Its Effects on the Gut Microbiome in the Pathophysiology of Mental Disorders. Transl. Psychiatry 2022, 12, 164. [Google Scholar] [CrossRef] [PubMed]
- Xing, Y.; Huang, M.; Olovo, C.V.; Mgbechidinma, C.L.; Yang, Y.; Liu, J.; Li, B.; Zhu, M.; Yu, K.; Zhu, H.; et al. Traditional Fermented Foods: Challenges, Sources, and Health Benefits of Fatty Acids. Fermentation 2023, 9, 110. [Google Scholar] [CrossRef]
- Valerio, J.; Borro, M.; Proietti, E.; Pisciotta, L.; Olarinde, I.O.; Fernandez Gomez, M.; Alvarez Pinzon, A.M. Systematic Review and Clinical Insights: The Role of the Ketogenic Diet in Managing Glioblastoma in Cancer Neuroscience. J. Pers. Med. 2024, 14, 929. [Google Scholar] [CrossRef] [PubMed]
- Ng, C.M.; Kaur, S.; Koo, H.C.; Mukhtar, F. Examining the Long-Term Effectiveness of a Culinary Nutrition Education Intervention on Children’s Dietary Practices and Variety. Hum. Nutr. Metab. 2024, 36, 200266. [Google Scholar] [CrossRef]
- Zikou, E.; Koliaki, C.; Makrilakis, K. The Role of Fecal Microbiota Transplantation (FMT) in the Management of Metabolic Diseases in Humans: A Narrative Review. Biomedicines 2024, 12, 1871. [Google Scholar] [CrossRef]
- Porcari, S.; Benech, N.; Valles-Colomer, M.; Segata, N.; Gasbarrini, A.; Cammarota, G.; Sokol, H.; Ianiro, G. Key Determinants of Success in Fecal Microbiota Transplantation: From Microbiome to Clinic. Cell Host Microbe 2023, 31, 712–733. [Google Scholar] [CrossRef] [PubMed]
- Lekshmi Priya, K.S.; Maheswary, D.; Ravi, S.S.S.; Leela, K.V.; Lathakumari, R.H.; Malavika, G. The Impact of Probiotics on Oral Cancer: Mechanistic Insights and Therapeutic Strategies. Oral Oncol. Rep. 2025, 13, 100715. [Google Scholar] [CrossRef]
- Yoshikawa, S.; Taniguchi, K.; Sawamura, H.; Ikeda, Y.; Tsuji, A.; Matsuda, S. Encouraging Probiotics for the Prevention and Treatment of Immune-Related Adverse Events in Novel Immunotherapies against Malignant Glioma. Explor. Target. Anti-Tumor Ther. 2022, 3, 817–827. [Google Scholar] [CrossRef] [PubMed]
- Mirzaei, R.; Afaghi, A.; Babakhani, S.; Sohrabi, M.R.; Hosseini-Fard, S.R.; Babolhavaeji, K.; Khani Ali Akbari, S.; Yousefimashouf, R.; Karampoor, S. Role of Microbiota-Derived Short-Chain Fatty Acids in Cancer Development and Prevention. Biomed. Pharmacother. 2021, 139, 111619. [Google Scholar] [CrossRef] [PubMed]
- Belloni, S.; Caruso, R.; Giacon, C.; Baroni, I.; Conte, G.; Magon, A.; Arrigoni, C. Microbiome-Modifiers for Cancer-Related Fatigue Management: A Systematic Review. Semin. Oncol. Nurs. 2024, 40, 151619. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.; Yang, C.; Ren, K.; Xu, M.; Pan, C.; Ye, X.; Li, L. Modulation of Gut Microbiota by Probiotics to Improve the Efficacy of Immunotherapy in Hepatocellular Carcinoma. Front. Immunol. 2024, 15, 1504948. [Google Scholar] [CrossRef]
- Tang, S.; Borlak, J. Genomics of Human NAFLD: Lack of Data Reproducibility and High Interpatient Variability in Drug Target Expression as Major Causes of Drug Failures. Hepatology 2024, 80, 901–915. [Google Scholar] [CrossRef]
- Schupack, D.A.; Mars, R.A.T.; Voelker, D.H.; Abeykoon, J.P.; Kashyap, P.C. The Promise of the Gut Microbiome as Part of Individualized Treatment Strategies. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 7–25. [Google Scholar] [CrossRef]
- Meléndez-Vázquez, N.M.; Nguyen, T.T.; Fan, X.; López-Rivas, A.R.; Fueyo, J.; Gomez-Manzano, C.; Godoy-Vitorino, F. Gut Microbiota Composition Is Associated with the Efficacy of Delta-24-RGDOX in Malignant Gliomas. Mol. Ther. Oncol. 2024, 32, 200787. [Google Scholar] [CrossRef] [PubMed]
- Lombardo, C.; Fazio, R.; Sinagra, M.; Gattuso, G.; Longo, F.; Lombardo, C.; Salmeri, M.; Zanghì, G.N.; Loreto, C.A.E. Intratumoral Microbiota: Insights from Anatomical, Molecular, and Clinical Perspectives. J. Pers. Med. 2024, 14, 1083. [Google Scholar] [CrossRef] [PubMed]
- Abeltino, A.; Hatem, D.; Serantoni, C.; Riente, A.; De Giulio, M.M.; De Spirito, M.; De Maio, F.; Maulucci, G. Unraveling the Gut Microbiota: Implications for Precision Nutrition and Personalized Medicine. Nutrients 2024, 16, 3806. [Google Scholar] [CrossRef]
- Lyu, R.; Qu, Y.; Divaris, K.; Wu, D. Methodological Considerations in Longitudinal Analyses of Microbiome Data: A Comprehensive Review. Genes 2023, 15, 51. [Google Scholar] [CrossRef]
- Zhang, P. Influence of Foods and Nutrition on the Gut Microbiome and Implications for Intestinal Health. Int. J. Mol. Sci. 2022, 23, 9588. [Google Scholar] [CrossRef]
- Pertz, M.; Schlegel, U.; Thoma, P. Sociocognitive Functioning and Psychosocial Burden in Patients with Brain Tumors. Cancers 2022, 14, 767. [Google Scholar] [CrossRef]
- Nigam, M.; Panwar, A.S.; Singh, R.K. Orchestrating the Fecal Microbiota Transplantation: Current Technological Advancements and Potential Biomedical Application. Front. Med. Technol. 2022, 4, 961569. [Google Scholar] [CrossRef]
- Hradicka, P.; Adamkova, P.; Lenhardt, L.; Gancarcikova, S.; Iannaccone, S.F.; Demeckova, V. Addressing Safety Concerns of Long-Term Probiotic Use: In Vivo Evidence from a Rat Model. J. Funct. Foods 2023, 104, 105521. [Google Scholar] [CrossRef]
- Luu, M.; Schütz, B.; Lauth, M.; Visekruna, A. The Impact of Gut Microbiota-Derived Metabolites on the Tumor Immune Microenvironment. Cancers 2023, 15, 1588. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zeng, Y.; Chen, X.; Lu, A.; Jia, W.; Cheung, K.C. Gut Microbiota Modulation through Traditional Chinese Medicine (TCM)—Improving Outcomes in Gastrointestinal (GI) Cancer Prevention and Management. Pharmacol. Res. Mod. Chin. Med. 2024, 13, 100528. [Google Scholar] [CrossRef]
- Munteanu, C.; Schwartz, B. Interactions between Dietary Antioxidants, Dietary Fiber and the Gut Microbiome: Their Putative Role in Inflammation and Cancer. Int. J. Mol. Sci. 2024, 25, 8250. [Google Scholar] [CrossRef] [PubMed]
- Aljarrah, D.; Chalour, N.; Zorgani, A.; Nissan, T.; Pranjol, M.Z.I. Exploring the Gut Microbiota and Its Potential as a Biomarker in Gliomas. Biomed. Pharmacother. 2024, 173, 116420. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Arrastia, M.; Martinez-Ortigosa, A.; Rueda-Ruzafa, L.; Folch Ayora, A.; Ropero-Padilla, C. Probiotic Supplements on Oncology Patients’ Treatment-Related Side Effects: A Systematic Review of Randomized Controlled Trials. Int. J. Environ. Res. Public Health 2021, 18, 4265. [Google Scholar] [CrossRef] [PubMed]
- Thangaleela, S.; Sivamaruthi, B.S.; Kesika, P.; Chaiyasut, C. Role of Probiotics and Diet in the Management of Neurological Diseases and Mood States: A Review. Microorganisms 2022, 10, 2268. [Google Scholar] [CrossRef]
- Li, S.; Townes, T.; Na’ara, S. Current Advances and Challenges in the Management of Cutaneous Squamous Cell Carcinoma in Immunosuppressed Patients. Cancers 2024, 16, 3118. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Tong, F.; Wu, B.; Dong, X. Radiation-Induced Brain Injury: Mechanistic Insights and the Promise of Gut–Brain Axis Therapies. Brain Sci. 2024, 14, 1295. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, N.; Kitano, S.; Puah, G.R.Y.; Kittelmann, S.; Hwang, I.Y.; Chang, M.W. Microbiome and Human Health: Current Understanding, Engineering, and Enabling Technologies. Chem. Rev. 2023, 123, 31–72. [Google Scholar] [CrossRef]
- Pedroza Matute, S.; Iyavoo, S. Exploring the Gut Microbiota: Lifestyle Choices, Disease Associations, and Personal Genomics. Front. Nutr. 2023, 10, 1225120. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.M.; Islam, M.R.; Shohag, S.; Ahasan, M.T.; Sarkar, N.; Khan, H.; Hasan, A.M.; Cavalu, S.; Rauf, A. Microbiome in Cancer: Role in Carcinogenesis and Impact in Therapeutic Strategies. Biomed. Pharmacother. 2022, 149, 112898. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.; Mook-Jung, I. Functional Effects of Gut Microbiota-Derived Metabolites in Alzheimer’s Disease. Curr. Opin. Neurobiol. 2023, 81, 102730. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tang, N.; Zhou, H.; Zhu, Y. The Role of Microbial Metabolites in Endocrine Tumorigenesis: From the Mechanistic Insights to Potential Therapeutic Biomarkers. Biomed. Pharmacother. 2024, 172, 116218. [Google Scholar] [CrossRef]
- Shi, X.; Wang, X.; Yao, W.; Shi, D.; Shao, X.; Lu, Z.; Chai, Y.; Song, J.; Tang, W.; Wang, X. Mechanism Insights and Therapeutic Intervention of Tumor Metastasis: Latest Developments and Perspectives. Signal Transduct. Target. Ther. 2024, 9, 192. [Google Scholar] [CrossRef]
- Zhang, Y.; Thomas, J.P.; Korcsmaros, T.; Gul, L. Integrating Multi-Omics to Unravel Host-Microbiome Interactions in Inflammatory Bowel Disease. Cell Rep. Med. 2024, 5, 101738. [Google Scholar] [CrossRef] [PubMed]
- Sen, P.; Orešič, M. Integrating Omics Data in Genome-Scale Metabolic Modeling: A Methodological Perspective for Precision Medicine. Metabolites 2023, 13, 855. [Google Scholar] [CrossRef] [PubMed]
- Ciernikova, S.; Sevcikova, A.; Novisedlakova, M.; Mego, M. Insights into the Relationship Between the Gut Microbiome and Immune Checkpoint Inhibitors in Solid Tumors. Cancers 2024, 16, 4271. [Google Scholar] [CrossRef]
- Molla, G.; Bitew, M. Revolutionizing Personalized Medicine: Synergy with Multi-Omics Data Generation, Main Hurdles, and Future Perspectives. Biomedicines 2024, 12, 2750. [Google Scholar] [CrossRef] [PubMed]
- Al-Habsi, N.; Al-Khalili, M.; Haque, S.A.; Elias, M.; Al Olqi, N.; Al Uraimi, T. Health Benefits of Prebiotics, Probiotics, Synbiotics, and Postbiotics. Nutrients 2024, 16, 3955. [Google Scholar] [CrossRef] [PubMed]
- Balendra, V.; Rosenfeld, R.; Amoroso, C.; Castagnone, C.; Rossino, M.G.; Garrone, O.; Ghidini, M. Postbiotics as Adjuvant Therapy in Cancer Care. Nutrients 2024, 16, 2400. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Singleton, S.S.; Bhuiyan, U.; Krammer, L.; Mazumder, R. Multi-Omics Approaches to Studying Gastrointestinal Microbiome in the Context of Precision Medicine and Machine Learning. Front. Mol. Biosci. 2024, 10, 1337373. [Google Scholar] [CrossRef] [PubMed]
- Palkovsky, M.; Modrackova, N.; Neuzil-Bunesova, V.; Liberko, M.; Soumarova, R. The Bidirectional Impact of Cancer Radiotherapy and Human Microbiome: Microbiome as Potential Anti-Tumor Treatment Efficacy and Toxicity Modulator. Vivo 2025, 39, 37–54. [Google Scholar] [CrossRef]
- Hemmati, M.A.; Monemi, M.; Asli, S.; Mohammadi, S.; Foroozanmehr, B.; Haghmorad, D.; Oksenych, V.; Eslami, M. Using New Technologies to Analyze Gut Microbiota and Predict Cancer Risk. Cells 2024, 13, 1987. [Google Scholar] [CrossRef]
- Ma, Q.; Xing, C.; Long, W.; Wang, H.Y.; Liu, Q.; Wang, R.-F. Impact of Microbiota on Central Nervous System and Neurological Diseases: The Gut-Brain Axis. J. Neuroinflamm. 2019, 16, 53. [Google Scholar] [CrossRef]
- Feunteun, J.; Ostyn, P.; Delaloge, S. Tumor Cell Malignancy: A Complex Trait Built through Reciprocal Interactions between Tumors and Tissue-Body System. iScience 2022, 25, 104217. [Google Scholar] [CrossRef] [PubMed]
Metabolite | Gut Microbiota Genera | Neurobiological Effects | Cancer Pathway Effects | Knowledge Gaps and Research Opportunities |
---|---|---|---|---|
SCFAs | Bacteroides, Lactobacillus, Clostridium | Improve blood–brain barrier (BBB) integrity; modulate neurotransmitter release; and reduce neuroinflammation | Suppress tumor growth via apoptosis; regulate immune checkpoints; and inhibit angiogenesis | Mechanisms linking SCFAs to both neuroprotection and cancer suppression remain underexplored [7] |
Tryptophan Metabolites | Lactobacillus, Clostridium | Modulate serotonin pathways; interact with the AhR for anti-inflammatory effects | Influence estrogen metabolism; exhibit anti-tumor activity through AhR-mediated pathways | Role in the neuro–cancer connection and their therapeutic potential require deeper investigation [84] |
Secondary Bile Acids | Bacteroides, Clostridium, Enterococcus | Reduce neuroinflammation via farnesoid X receptor (FXR) signaling; enhance neuronal protection | Promote or suppress carcinogenesis depending on context; influence DNA damage and repair mechanisms | Dual roles in neuroprotection and oncogenesis are poorly understood [85] |
LPS | Escherichia coli, Salmonella | Trigger neuroinflammation via microglial activation; impair BBB function | Drive tumor-promoting inflammation; inhibit anti-tumor immunity | How chronic low-grade LPS exposure links gut, brain, and cancer remains unclear [86] |
Indoles | Clostridium, Escherichia coli | Enhance BBB function; reduce neuroinflammation through AhR signaling | Induce apoptosis in cancer cells; modulate estrogen metabolism | Limited acumen of their systemic signaling pathways in the neuro–cancer axis [87] |
Polyamines | Enterobacteriaceae, Bifidobacterium | Neuroprotective effects via autophagy modulation; regulate synaptic plasticity | Support tumor growth by promoting angiogenesis and cellular proliferation; potential anti-tumor effects in specific contexts | Context-dependent roles in neuroprotection versus cancer promotion require detailed examination [88] |
Emerging Metabolites (e.g., Phenolics, Sphingolipids) | Firmicutes, Bacteroides | Potential to modulate oxidative stress and mitochondrial function in neurons | Understudied effects on DNA repair and immune modulation in cancer | Novel mechanisms connecting these metabolites to the gut–brain–cancer axis remain largely unexplored [89] |
Study Type | Study Focus/Objective | Key Findings | Limitations | Research Gaps |
---|---|---|---|---|
Preclinical | Rodent models of gut dysbiosis and cancer | Gut dysbiosis is linked to neuroinflammation and tumor progression. Gut-derived SCFAs (e.g., butyrate) are shown to modulate immune responses and tumor microenvironment. | Limited to rodent models; cannot directly translate to humans. Variability in results based on rodent strain. | In-depth exploration of how specific microbial taxa contribute to neuro-cancer progression. Lack of mechanistic concept of how SCFAs and other metabolites regulate brain–cancer cross-talk. |
Preclinical | Rodent models of gut microbiota modulation in neurobehavioral changes | Dysbiosis leads to altered behaviors (e.g., anxiety and depression). Gut microbiota affects blood–brain barrier permeability and neuroinflammation. | Results are dependent on specific microbiota interventions. Lack of longitudinal studies in rodents. | Need for in vivo studies focusing on the long-term effects of gut microbiota interventions on brain function. Investigating the role of gut-derived metabolites in neurobehavioral changes [156]. |
Clinical | Clinical trials on gut microbiota and glioma | Altered microbiome composition found in glioma patients, including decreased microbial diversity. Probiotics and FMT show potential for improving immune response in cancer patients. | Small sample sizes. Variability in patient microbiomes. | Larger, randomized controlled trials are needed. Studies on microbiome interventions as adjunctive therapies in glioma treatment [142]. |
Clinical | Studies on microbiome alterations in gliobastoma patients | Dysbiosis observed in patients with brain cancers. Correlation between specific microbiota profiles and poor prognosis in brain cancer. | Lack of consistency in study results. Limited studies on microbiome and brain cancer specifically. | Further studies needed on the role of gut-derived metabolites in brain cancer progression and therapy. More robust clinical data linking gut microbiota to glioblastoma outcomes [157]. |
Clinical | Human trials on probiotics and prebiotics in cancer patients | Some improvement in immune response and tumor progression in early-phase trials with probiotics. | Early-phase trials with small cohorts. Long-term outcomes and effects on overall survival are not established. | Longitudinal, large-scale trials examining the long-term effects of microbiome-based interventions in cancer treatment. Clarifying the mechanisms by which microbiome modulation impacts cancer and neurodegenerative diseases [158]. |
Study | Intervention Type | Outcomes | Limitations |
---|---|---|---|
Dietary Intervention in Brain Cancer Patients | High-fiber and fermented food diet | Increased production of SCFAs (e.g., butyrate); improved immune responses; and reduced systemic inflammation | Small sample size; short duration; and no control group [187] |
FMT in Glioma Patients | FMT from healthy donors | Improved gut microbiota diversity; enhanced immune responses; and reduced tumor growth | Microbial variability among individuals; no long-term follow-up data; and heterogeneity in clinical outcomes [188] |
Probiotics in Brain Cancer Patients | Probiotic supplementation (specific strains) | Reduction in treatment-related side effects; enhanced immune function; and increased SCFA production | Variability in probiotic strains; inconsistent response among patients; and limited long-term data [189] |
Dietary and Probiotic Intervention in Brain Cancer | Combined dietary changes (fiber-rich diet) and probiotic supplementation | Decreased neuroinflammation; improved tumor response in preclinical models | Animal model-based study; limited human data; and lack of standardized probiotic strain [190] |
FMT in Combination with Chemotherapy in Cancers | FMT combined with conventional chemotherapy | Increased efficacy of chemotherapy; altered tumor microenvironment; and improved gut health | Small patient cohort; potential safety concerns in immunocompromised patients; and no detailed microbial profiling [191] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mafe, A.N.; Büsselberg, D. Modulation of the Neuro–Cancer Connection by Metabolites of Gut Microbiota. Biomolecules 2025, 15, 270. https://doi.org/10.3390/biom15020270
Mafe AN, Büsselberg D. Modulation of the Neuro–Cancer Connection by Metabolites of Gut Microbiota. Biomolecules. 2025; 15(2):270. https://doi.org/10.3390/biom15020270
Chicago/Turabian StyleMafe, Alice N., and Dietrich Büsselberg. 2025. "Modulation of the Neuro–Cancer Connection by Metabolites of Gut Microbiota" Biomolecules 15, no. 2: 270. https://doi.org/10.3390/biom15020270
APA StyleMafe, A. N., & Büsselberg, D. (2025). Modulation of the Neuro–Cancer Connection by Metabolites of Gut Microbiota. Biomolecules, 15(2), 270. https://doi.org/10.3390/biom15020270