Pleiotropic Effects of Grm7/GRM7 in Shaping Neurodevelopmental Pathways and the Neural Substrate of Complex Behaviors and Disorders
Abstract
:1. Introduction
1.1. Review of Grm7
1.1.1. Metabotropic Glutamatergic Receptors
1.1.2. Dopamine System
2. Methods
2.1. Search Strategy
2.2. Search Resources
2.3. On Components of the Review: Grm7/GRM7 Contribution to “Neurological Condition” and “Neurological Disease”
3. Neurodevelopment
3.1. Brain Development, Neuroprotection and Apoptosis
3.2. Human GRM7 Gene Mutations and Consequences for Neurodevelopment and Behavioral Disorders
Developmental Delay/Intellectual Disability (DD/ID), Seizure
4. Neurological Conditions
4.1. Genetic Preclinical Models
4.1.1. Grm7 Pleiotropy in Preclinical Alcohol Drinking
The Recombinant QTL (Quantitative Trait Locus) Introgression (RQI) Approach and Identification of Grm7 as a QTG (Quantitative Trait Gene) in Alcohol-Drinking Preferences
Grm2 in Alcohol-Drinking Preference and Interaction with Grm7
The Grm7 Pleiotropy Hypothesis
Roles of the mGlu7 Receptor in Responses to Psychostimulants and Opioids
Monogenic View of the Role of Grm7 in Alcohol-Drinking Preference
4.1.2. Other Grm7-Associated Phenotypes in Preclinical Models
Defensive Behavior, Depression, and Anxiety
Pain
4.1.3. The Role of Grm7 in Cocaine, Opioid, Nicotine, and Methamphetamine Abuse
4.2. GRM7 in Human Neurological Conditions
4.2.1. Alcohol Use Disorder (AUD)
4.2.2. Mood Disorders and Attention Deficit Hyperactive Disorder
4.2.3. Age-Related Hearing Impairment (ARHI) (Presbycusis)
4.2.4. GRM7 Natural Variants in Human Physiology and Behavior
5. Neurological Disorders
5.1. Association of GRM7 with Other Human Phenotypes: General Cognitive Ability, Alzheimer’s Disease
5.2. Hypertension
5.3. Cancer
6. Psychiatric Disorders
Metabotropic Glutamate Receptor Genes in Schizophrenia (SCZ)
7. Conclusions
7.1. Basic Studies
7.2. Clinical Studies
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fisher, R.A. The correlation between relatives on the supposition of mendelian inheritance. Trans. R. Soc. Edinb. 1918, 53, 399–433. [Google Scholar] [CrossRef]
- Wright, S. Evolution and the Genetics of Populations: Genetics and Biometric Foundations New Edition; University of Chicago Press: Chicago, IL, USA, 1984. [Google Scholar]
- Visscher, P.M.; Goddard, M.E.; From, R.A. Fisher’s 1918 Paper to GWAS a Century Later. Genetics 2019, 211, 1125–1130. [Google Scholar] [CrossRef]
- Bonn, T. Ex-Drug Policy Adviser: Marijuana Legalization Push Is ‘About a Small Number of People Who Want to Get Rich’. Available online: https://thehill.com/hilltv/rising/440828-ex-drug-policy-advisor-marijuana-legalization-push-is-about-a-small-number-of/ (accessed on 7 March 2025).
- LoParco, C.R.; Rossheim, M.E.; Walters, S.T.; Zhou, Z.; Olsson, S.; Sussman, S.Y. Delta-8 tetrahydrocannabinol: A scoping review and commentary. Addiction 2023, 118, 1011–1028. [Google Scholar] [CrossRef]
- Wagner, F.A.; Anthony, J.C. Into the world of illegal drug use: Exposure opportunity and other mechanisms linking the use of alcohol, tobacco, marijuana, and cocaine. Am. J. Epidemiol. 2002, 155, 918–925. [Google Scholar] [CrossRef] [PubMed]
- Crean, R.D.; Crane, N.A.; Mason, B.J. An evidence based review of acute and long-term effects of cannabis use on executive cognitive functions. J. Addict. Med. 2011, 5, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Hatoum, A.S.; Colbert, S.M.C.; Johnson, E.C.; Huggett, S.B.; Deak, J.D.; Pathak, G.; Jennings, M.V.; Paul, S.E.; Karcher, N.R.; Hansen, I.; et al. Multivariate genome-wide association meta-analysis of over 1 million subjects identifies loci underlying multiple substance use disorders. Nat. Ment. Health 2023, 1, 210–223. [Google Scholar] [CrossRef]
- Poisson, C.L.; Engel, L.; Saunders, B.T. Dopamine Circuit Mechanisms of Addiction-Like Behaviors. Front. Neural Circuits 2021, 15, 752420. [Google Scholar] [CrossRef]
- NIAAA Press Office. Scientists Identify Gene That Influences Alcohol Consumption. Available online: https://www.niaaa.nih.gov/es/news-events/news-releases/scientists-identify-gene-influences-alcohol-consumption (accessed on 25 July 2024).
- Vadasz, C.; Saito, M.; Gyetvai, B.M.; Oros, M.; Szakall, I.; Kovacs, K.M.; Prasad, V.V.; Toth, R. Glutamate receptor metabotropic 7 is cis-regulated in the mouse brain and modulates alcohol drinking. Genomics 2007, 90, 690–702. [Google Scholar] [CrossRef]
- Reiner, A.; Levitz, J. Glutamatergic Signaling in the Central Nervous System: Ionotropic and Metabotropic Receptors in Concert. Neuron 2018, 98, 1080–1098. [Google Scholar] [CrossRef]
- Flor, P.J.; Van Der Putten, H.; Ruegg, D.; Lukic, S.; Leonhardt, T.; Bence, M.; Sansig, G.; Knopfel, T.; Kuhn, R. A novel splice variant of a metabotropic glutamate receptor, human mGluR7b. Neuropharmacology 1997, 36, 153–159. [Google Scholar] [CrossRef]
- Zhang, J.; Dong, B.; Yang, L. Molecular Characterization and Expression Analysis of Putative Class C (Glutamate Family) G Protein-Coupled Receptors in Ascidian Styela clava. Biology 2022, 11, 782. [Google Scholar] [CrossRef]
- Pin, J.P.; Galvez, T.; Prezeau, L. Evolution, structure, and activation mechanism of family 3/C G-protein-coupled receptors. Pharmacol. Ther. 2003, 98, 325–354. [Google Scholar] [CrossRef]
- Du, J.; Wang, D.; Fan, H.; Xu, C.; Tai, L.; Lin, S.; Han, S.; Tan, Q.; Wang, X.; Xu, T.; et al. Structures of human mGlu2 and mGlu7 homo- and heterodimers. Nature 2021, 594, 589–593. [Google Scholar] [CrossRef]
- Seven, A.B.; Barros-Alvarez, X.; de Lapeyriere, M.; Papasergi-Scott, M.M.; Robertson, M.J.; Zhang, C.; Nwokonko, R.M.; Gao, Y.; Meyerowitz, J.G.; Rocher, J.P.; et al. G-protein activation by a metabotropic glutamate receptor. Nature 2021, 595, 450–454. [Google Scholar] [CrossRef]
- Luscher, C. The Emergence of a Circuit Model for Addiction. Annu. Rev. Neurosci. 2016, 39, 257–276. [Google Scholar] [CrossRef] [PubMed]
- Ross, R.A.; Judd, A.B.; Pickel, V.M.; Joh, T.H.; Reis, D.J. Strain-dependent variations in number of midbrain dopaminergic neurones. Nature 1976, 264, 654–656. [Google Scholar] [CrossRef] [PubMed]
- Vadasz, C.; Baker, H.; Joh, T.H.; Lajtha, A.; Reis, D.J. The inheritance and genetic correlation of tyrosine hydroxylase activities in the substantia nigra and corpus striatum in the C × B recombinant inbred mouse strains. Brain Res. 1982, 234, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Vadasz, C. Development of congenic recombinant inbred neurological animal model lines. Mouse Genome 1990, 88, 16–18. [Google Scholar]
- Vadasz, C.; Sziraki, I.; Sasvari, M.; Kabai, P.; Murthy, L.R.; Saito, M.; Laszlovszky, I. Analysis of the mesotelencephalic dopamine system by quantitative-trait locus introgression. Neurochem. Res. 1998, 23, 1337–1354. [Google Scholar] [CrossRef]
- Vadasz, C.; Saito, M.; Gyetvai, B.M.; Oros, M.; Szakall, I.; Kovacs, K.M.; Prasad, V.V.; Morahan, G.; Toth, R. Mapping of QTLs for oral alcohol self-administration in B6.C and B6.I quasi-congenic RQI strains. Neurochem. Res. 2007, 32, 1099–1112. [Google Scholar] [CrossRef]
- Ikemoto, S. Dopamine reward circuitry: Two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res. Rev. 2007, 56, 27–78. [Google Scholar] [CrossRef]
- Ikemoto, S.; Bonci, A. Neurocircuitry of drug reward. Neuropharmacology 2014, 76 Pt B, 329–341. [Google Scholar] [CrossRef]
- Morzorati, S.L.; Marunde, R.L.; Downey, D. Limited access to ethanol increases the number of spontaneously active dopamine neurons in the posterior ventral tegmental area of nondependent P rats. Alcohol 2010, 44, 257–264. [Google Scholar] [CrossRef]
- Alasmari, F.; Goodwani, S.; McCullumsmith, R.E.; Sari, Y. Role of glutamatergic system and mesocorticolimbic circuits in alcohol dependence. Prog. Neurobiol. 2018, 171, 32–49. [Google Scholar] [CrossRef]
- Fendt, M.; Schmid, S.; Thakker, D.R.; Jacobson, L.H.; Yamamoto, R.; Mitsukawa, K.; Maier, R.; Natt, F.; Hüsken, D.; Kelly, P.H.; et al. mGluR7 facilitates extinction of aversive memories and controls amygdala plasticity. Mol. Psychiatry 2008, 13, 970–979. [Google Scholar] [CrossRef] [PubMed]
- Siegl, S.; Flor, P.J.; Fendt, M. Amygdaloid metabotropic glutamate receptor subtype 7 is involved in the acquisition of conditioned fear. Neuroreport 2008, 19, 1147–1150. [Google Scholar] [CrossRef]
- Gryksa, K.; Mittmann, L.; Bauer, A.; Peterlik, D.; Flor, P.J.; Uschold-Schmidt, N.; Bosch, O.J. Metabotropic glutamate receptor subtype 7 controls maternal care, maternal motivation and maternal aggression in mice. Genes. Brain Behav. 2020, 19, e12627. [Google Scholar] [CrossRef] [PubMed]
- Sansig, G.; Bushell, T.J.; Clarke, V.R.; Rozov, A.; Burnashev, N.; Portet, C.; Gasparini, F.; Schmutz, M.; Klebs, K.; Shigemoto, R.; et al. Increased seizure susceptibility in mice lacking metabotropic glutamate receptor 7. J. Neurosci. 2001, 21, 8734–8745. [Google Scholar] [CrossRef] [PubMed]
- Bevilacqua, L.; Goldman, D. Genes and addictions. Clin. Pharmacol. Ther. 2009, 85, 359–361. [Google Scholar] [CrossRef]
- Pascoli, V.; Hiver, A.; Van Zessen, R.; Loureiro, M.; Achargui, R.; Harada, M.; Flakowski, J.; Luscher, C. Stochastic synaptic plasticity underlying compulsion in a model of addiction. Nature 2018, 564, 366–371. [Google Scholar] [CrossRef]
- Lu, H.; Qiao, J.; Shao, Z.; Wang, T.; Huang, S.; Zeng, P. A comprehensive gene-centric pleiotropic association analysis for 14 psychiatric disorders with GWAS summary statistics. BMC Med. 2021, 19, 314. [Google Scholar] [CrossRef]
- Jantas, D.; Lech, T.; Gołda, S.; Pilc, A.; Lasoń, W. New evidences for a role of mGluR7 in astrocyte survival: Possible implications for neuroprotection. Neuropharmacology 2018, 141, 223–237. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Zhou, L.Q.; Zhang, S.L.; Liu, B.; Leng, Y.M.; Zhou, R.H.; Kong, W.J. The changes in mGluR2 and mGluR7 expression in rat medial vestibular nucleus and flocculus following unilateral labyrinthectomy. Int. J. Mol. Sci. 2013, 14, 22857–22875. [Google Scholar] [CrossRef]
- Friedman, R.A.; Van Laer, L.; Huentelman, M.J.; Sheth, S.S.; Van Eyken, E.; Corneveaux, J.J.; Tembe, W.D.; Halperin, R.F.; Thorburn, A.Q.; Thys, S.; et al. GRM7 variants confer susceptibility to age-related hearing impairment. Hum. Mol. Genet. 2009, 18, 785–796. [Google Scholar] [CrossRef] [PubMed]
- Jiang, C.; Arzua, T.; Yan, Y.; Bai, X. Expression Signature of lncRNAs and mRNAs in Sevoflurane-Induced Mouse Brain Injury: Implication of Involvement of Wide Molecular Networks and Pathways. Int. J. Mol. Sci. 2021, 22, 1389. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.Y.; Wu, X.M.; Jia, L.J.; Zhang, H.H.; Cai, F.; Mao, H.; Xu, W.C.; Chen, L.; Zhang, J.; Hu, S.F. Beta-arrestin1 and 2 differently modulate metabotropic glutamate receptor 7 signaling in rat developmental sevoflurane-induced neuronal apoptosis. Neuroscience 2016, 313, 199–212. [Google Scholar] [CrossRef]
- Kasatkina, L.A.; Tarasenko, A.S.; Krupko, O.O.; Kuchmerovska, T.M.; Lisakovska, O.O.; Trikash, I.O. Vitamin D deficiency induces the excitation/inhibition brain imbalance and the proinflammatory shift. Int. J. Biochem. Cell Biol. 2020, 119, 105665. [Google Scholar] [CrossRef]
- Masugi, M.; Yokoi, M.; Shigemoto, R.; Muguruma, K.; Watanabe, Y.; Sansig, G.; van der Putten, H.; Nakanishi, S. Metabotropic glutamate receptor subtype 7 ablation causes deficit in fear response and conditioned taste aversion. J. Neurosci. 1999, 19, 955–963. [Google Scholar] [CrossRef]
- Cryan, J.F.; Kelly, P.H.; Neijt, H.C.; Sansig, G.; Flor, P.J.; van Der Putten, H. Antidepressant and anxiolytic-like effects in mice lacking the group III metabotropic glutamate receptor mGluR7. Eur. J. Neurosci. 2003, 17, 2409–2417. [Google Scholar] [CrossRef]
- Holscher, C.; Schmid, S.; Pilz, P.K.; Sansig, G.; van der Putten, H.; Plappert, C.F. Lack of the metabotropic glutamate receptor subtype 7 selectively impairs short-term working memory but not long-term memory. Behav. Brain Res. 2004, 154, 473–481. [Google Scholar] [CrossRef]
- Gogliotti, R.G.; Senter, R.K.; Fisher, N.M.; Adams, J.; Zamorano, R.; Walker, A.G.; Blobaum, A.L.; Engers, D.W.; Hopkins, C.R.; Daniels, J.S.; et al. mGlu(7) potentiation rescues cognitive, social, and respiratory phenotypes in a mouse model of Rett syndrome. Sci. Transl. Med. 2017, 9, eaai7459. [Google Scholar] [CrossRef]
- Mick, E.; Neale, B.; Middleton, F.A.; McGough, J.J.; Faraone, S.V. Genome-wide association study of response to methylphenidate in 187 children with attention-deficit/hyperactivity disorder. Am. J. Med. Genet. Part B Neuropsychiatr. Genet. 2008, 147B, 1412–1418. [Google Scholar] [CrossRef]
- Tomioka, N.H.; Yasuda, H.; Miyamoto, H.; Hatayama, M.; Morimura, N.; Matsumoto, Y.; Suzuki, T.; Odagawa, M.; Odaka, Y.S.; Iwayama, Y.; et al. Elfn1 recruits presynaptic mGluR7 in trans and its loss results in seizures. Nat. Commun. 2014, 5, 4501. [Google Scholar] [CrossRef] [PubMed]
- Vadasz, C.; Laszlovszky, I.; Fleischer, A. Dopamine system-specific QTL introgressed lines: Response to cocaine. Mouse Genome 1994, 92, 699–701. [Google Scholar]
- Vadasz, C.; Gyetvai, B.M. Cocaine-Induced Sensitization is Linked to Distal Chromosome 6 Region in Congenic Mouse Model. Drug Alcohol. Depend. 2020, 215, 108185. [Google Scholar] [CrossRef] [PubMed]
- Vadasz, C.; Kobor, G.; Lajtha, A. Motor activity and the mesotelencephalic dopamine function. II. Multivariate analysis of genetically segregating generations. Behav. Brain Res. 1992, 48, 41–47. [Google Scholar] [CrossRef]
- Vadasz, C.; Kobor, G.; Lajtha, A. Motor activity and the mesotelencephalic dopamine function. I. High-resolution temporal and genetic analysis of open-field behavior. Behav. Brain Res. 1992, 48, 29–39. [Google Scholar] [CrossRef]
- Vadasz, C.; Zaborszky, L. Phenotypic QTL Introgression: Analysis of the midbrain dopamine system. In Proceedings of the Behavior Genetics Association 29th Annual Meeting, Vancouver, BC, Canada, 4–7 July 1999. [Google Scholar]
- Gyetvai, B.; Simonyi, A.; Oros, M.; Saito, M.; Smiley, J.; Vadász, C. mGluR7 genetics and alcohol: Intersection yields clues for addiction. Neurochem. Res. 2011, 36, 1087–1100. [Google Scholar] [CrossRef]
- Hong, S.I.; Kang, S.; Baker, M.; Choi, D.S. Astrocyte-neuron interaction in the dorsal striatum-pallidal circuits and alcohol-seeking behaviors. Neuropharmacology 2021, 198, 108759. [Google Scholar] [CrossRef]
- Freitas, G.A.; Niswender, C.M. GRM7 gene mutations and consequences for neurodevelopment. Pharmacol. Biochem. Behav. 2023, 225, 173546. [Google Scholar] [CrossRef]
- Charng, W.L.; Karaca, E.; Coban Akdemir, Z.; Gambin, T.; Atik, M.M.; Gu, S.; Posey, J.E.; Jhangiani, S.N.; Muzny, D.M.; Doddapaneni, H.; et al. Exome sequencing in mostly consanguineous Arab families with neurologic disease provides a high potential molecular diagnosis rate. BMC Med. Genom. 2016, 9, 42. [Google Scholar] [CrossRef] [PubMed]
- Fisher, N.M.; AlHashim, A.; Buch, A.B.; Badivuku, H.; Samman, M.M.; Weiss, K.M.; Cestero, G.I.; Does, M.D.; Rook, J.M.; Lindsley, C.W.; et al. A GRM7 mutation associated with developmental delay reduces mGlu7 expression and produces neurological phenotypes. JCI Insight 2021, 6, e143324. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Karlsson, C.; Liang, T.; Xiong, W.; Kimura, M.; Tapocik, J.D.; Yuan, Q.; Barbier, E.; Feng, A.; Flanigan, M.; et al. Loss of metabotropic glutamate receptor 2 escalates alcohol consumption. Proc. Natl. Acad. Sci. USA 2013, 110, 16963–16968. [Google Scholar] [CrossRef] [PubMed]
- Meinhardt, M.W.; Hansson, A.C.; Perreau-Lenz, S.; Bauder-Wenz, C.; Stahlin, O.; Heilig, M.; Harper, C.; Drescher, K.U.; Spanagel, R.; Sommer, W.H. Rescue of infralimbic mGluR2 deficit restores control over drug-seeking behavior in alcohol dependence. J. Neurosci. 2013, 33, 2794–2806. [Google Scholar] [CrossRef]
- Joffe, M.E.; Centanni, S.W.; Jaramillo, A.A.; Winder, D.G.; Conn, P.J. Metabotropic Glutamate Receptors in Alcohol Use Disorder: Physiology, Plasticity, and Promising Pharmacotherapies. ACS Chem. Neurosci. 2018, 9, 2188–2204. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Li, J.; Gardner, E.L.; Xi, Z.X. Activation of mGluR7s inhibits cocaine-induced reinstatement of drug-seeking behavior by a nucleus accumbens glutamate-mGluR2/3 mechanism in rats. J. Neurochem. 2010, 114, 1368–1380. [Google Scholar] [CrossRef]
- Goodwani, S.; Saternos, H.; Alasmari, F.; Sari, Y. Metabotropic and ionotropic glutamate receptors as potential targets for the treatment of alcohol use disorder. Neurosci. Biobehav. Rev. 2017, 77, 14–31. [Google Scholar] [CrossRef]
- Vadasz, C.; Gyetvai, B.M. Genetic association of nucleus accumbens 5-hydroxyindoleacetic acid level and alcohol preference drinking in a quasi-congenic male mice: Potential modulation by Grm7 gene polymorphism. Drug Alcohol. Depend. Rep. 2022, 2, 100012. [Google Scholar] [CrossRef]
- Hajasova, Z.; Canestrelli, C.; Acher, F.; Noble, F.; Marie, N. Role of mGlu7 receptor in morphine rewarding effects is uncovered by a novel orthosteric agonist. Neuropharmacology 2018, 131, 424–430. [Google Scholar] [CrossRef]
- Vatankhah, M.; Karimi-Haghighi, S.; Sarihi, A.; Haghparast, A. Intra-accumbal administration of AMN082, a metabotropic glutamate receptor type 7 allosteric agonist, inhibits the acquisition but not the expression of morphine-induced conditioned place preference in rats. Neurosci. Lett. 2018, 681, 56–61. [Google Scholar] [CrossRef]
- Vatankhah, M.; Sarihi, A.; Komaki, A.; Shahidi, S.; Haghparast, A. AMN082-a metabotropic glutamate receptor type 7 allosteric agonist in the NAc facilitates extinction and inhibits the reinstatement of morphine-induced conditioned place preference in male rats. Brain Res. Bull. 2018, 140, 28–33. [Google Scholar] [CrossRef] [PubMed]
- Heinsbroek, J.A.; De Vries, T.J.; Peters, J. Glutamatergic Systems and Memory Mechanisms Underlying Opioid Addiction. Cold Spring Harb. Perspect. Med. 2021, 11, a039602. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Markou, A. Metabotropic Glutamate Receptor 7 (mGluR7) as a Target for the Treatment of Psychostimulant Dependence. CNS Neurol. Disord. Drug Targets 2015, 14, 738–744. [Google Scholar] [CrossRef]
- Mozafari, R.; Karimi-Haghighi, S.; Fattahi, M.; Kalivas, P.; Haghparast, A. A review on the role of metabotropic glutamate receptors in neuroplasticity following psychostimulant use disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2023, 124, 110735. [Google Scholar] [CrossRef] [PubMed]
- Mitsukawa, K.; Yamamoto, R.; Ofner, S.; Nozulak, J.; Pescott, O.; Lukic, S.; Stoehr, N.; Mombereau, C.; Kuhn, R.; McAllister, K.H.; et al. A selective metabotropic glutamate receptor 7 agonist: Activation of receptor signaling via an allosteric site modulates stress parameters in vivo. Proc. Natl. Acad. Sci. USA 2005, 102, 18712–18717. [Google Scholar] [CrossRef]
- Hikichi, H.; Murai, T.; Okuda, S.; Maehara, S.; Satow, A.; Ise, S.; Nishino, M.; Suzuki, G.; Takehana, H.; Hata, M.; et al. Effects of a novel metabotropic glutamate receptor 7 negative allosteric modulator, 6-(4-methoxyphenyl)-5-methyl-3-pyridin-4-ylisoxazonolo[4,5-c]pyridin-4(5H) -one (MMPIP), on the central nervous system in rodents. Eur. J. Pharmacol. 2010, 639, 106–114. [Google Scholar] [CrossRef]
- Dickson, L.; Teall, M.; Chevalier, E.; Cheung, T.; Liwicki, G.M.; Mack, S.; Stephenson, A.; White, K.; Fosbeary, R.; Harrison, D.C.; et al. Discovery of CVN636: A Highly Potent, Selective, and CNS Penetrant mGluR(7) Allosteric Agonist. ACS Med. Chem. Lett. 2023, 14, 442–449. [Google Scholar] [CrossRef]
- Holmes, A.; Spanagel, R.; Krystal, J.H. Glutamatergic targets for new alcohol medications. Psychopharmacology 2013, 229, 539–554. [Google Scholar] [CrossRef]
- Fisher, R.A. The Possible Modification of the Response of the Wild Type to Recurrent Mutations. Am. Nat. 1928, 62, 115–126. [Google Scholar] [CrossRef]
- Wright, S. Physiological and Evolutionary Theories of Dominance. Am. Nat. 1934, 68, 24–53. [Google Scholar] [CrossRef]
- Zschocke, J.; Byers, P.H.; Wilkie, A.O.M. Mendelian inheritance revisited: Dominance and recessiveness in medical genetics. Nat. Rev. Genet. 2023, 24, 442–463. [Google Scholar] [CrossRef]
- Kristiansson, K.; Naukkarinen, J.; Peltonen, L. Isolated populations and complex disease gene identification. Genome Biol. 2008, 9, 109. [Google Scholar] [CrossRef]
- Misslin, R. The defense system of fear: Behavior and neurocircuitry. Neurophysiol. Clin. 2003, 33, 55–66. [Google Scholar] [CrossRef]
- Simic, G.; Tkalcic, M.; Vukic, V.; Mulc, D.; Spanic, E.; Sagud, M.; Olucha-Bordonau, F.E.; Vuksic, M.; R. Hof, P. Understanding Emotions: Origins and Roles of the Amygdala. Biomolecules 2021, 11, 823. [Google Scholar] [CrossRef]
- Ohishi, H.; Akazawa, C.; Shigemoto, R.; Nakanishi, S.; Mizuno, N. Distributions of the mRNAs for L-2-amino-4-phosphonobutyrate-sensitive metabotropic glutamate receptors, mGluR4 and mGluR7, in the rat brain. J. Comp. Neurol. 1995, 360, 555–570. [Google Scholar] [CrossRef] [PubMed]
- McFarland, D. Animal Behavior Psychobiology, Ethology and Evolution; The Benjamin Cummings Publishing Company, Inc.: Menlo Park, CA, USA, 1985. [Google Scholar]
- Bertaso, F.; Zhang, C.; Scheschonka, A.; de Bock, F.; Fontanaud, P.; Marin, P.; Huganir, R.L.; Betz, H.; Bockaert, J.; Fagni, L.; et al. PICK1 uncoupling from mGluR7a causes absence-like seizures. Nat. Neurosci. 2008, 11, 940–948. [Google Scholar] [CrossRef] [PubMed]
- Ennaceur, A.; Chazot, P.L. Preclinical animal anxiety research—Flaws and prejudices. Pharmacol. Res. Perspect. 2016, 4, e00223. [Google Scholar] [CrossRef]
- Holscher, C.; Schmid, S.; Pilz, P.K.; Sansig, G.; van der Putten, H.; Plappert, C.F. Lack of the metabotropic glutamate receptor subtype 7 selectively modulates Theta rhythm and working memory. Learn. Mem. 2005, 12, 450–455. [Google Scholar] [CrossRef]
- Goddyn, H.; Callaerts-Vegh, Z.; Stroobants, S.; Dirikx, T.; Vansteenwegen, D.; Hermans, D.; van der Putten, H.; D’Hooge, R. Deficits in acquisition and extinction of conditioned responses in mGluR7 knockout mice. Neurobiol. Learn. Mem. 2008, 90, 103–111. [Google Scholar] [CrossRef]
- Rochet, M.; El-Hage, W.; Richa, S.; Kazour, F.; Atanasova, B. Depression, Olfaction, and Quality of Life: A Mutual Relationship. Brain Sci. 2018, 8, 80. [Google Scholar] [CrossRef] [PubMed]
- Wieronska, J.M.; Legutko, B.; Dudys, D.; Pilc, A. Olfactory bulbectomy and amitriptyline treatment influences mGlu receptors expression in the mouse brain hippocampus. Pharmacol. Rep. 2008, 60, 844–855. [Google Scholar]
- Slawek, D.E.; Syed, M.; Cunningham, C.O.; Zhang, C.; Ross, J.; Herman, M.; Sohler, N.; Minami, H.; Levin, F.R.; Arnsten, J.H.; et al. Pain catastrophizing and mental health phenotypes in adults with refractory chronic pain: A latent class analysis. J. Psychiatr. Res. 2021, 145, 102–110. [Google Scholar] [CrossRef] [PubMed]
- Asztély, K.; Kopp, S.; Gillberg, C.; Waern, M.; Bergman, S. Chronic Pain and Health-Related Quality of Life in Women with Autism and/or ADHD: A Prospective Longitudinal Study. J. Pain Res. 2019, 12, 2925–2932. [Google Scholar] [CrossRef]
- Neto, F.L.; Schadrack, J.; Platzer, S.; Zieglgänsberger, W.; Tölle, T.R.; Castro-Lopes, J.M. Expression of metabotropic glutamate receptors mRNA in the thalamus and brainstem of monoarthritic rats. Mol. Brain Res. 2000, 81, 140–154. [Google Scholar] [CrossRef] [PubMed]
- Dolan, S.; Gunn, M.D.; Biddlestone, L.; Nolan, A.M. The selective metabotropic glutamate receptor 7 allosteric agonist AMN082 inhibits inflammatory pain-induced and incision-induced hypersensitivity in rat. Behav. Pharmacol. 2009, 20, 596–604. [Google Scholar] [CrossRef]
- Dolan, S.; Gunn, M.D.; Crossan, C.; Nolan, A.M. Activation of metabotropic glutamate receptor 7 in spinal cord inhibits pain and hyperalgesia in a novel formalin model in sheep. Behav. Pharmacol. 2011, 22, 582–588. [Google Scholar] [CrossRef]
- Osikowicz, M.; Mika, J.; Makuch, W.; Przewlocka, B. Glutamate receptor ligands attenuate allodynia and hyperalgesia and potentiate morphine effects in a mouse model of neuropathic pain. PAIN® 2008, 139, 117–126. [Google Scholar] [CrossRef]
- G, S.; Suvarna, P.; Hadigal, S.; Kamath, P.; Prabhu, N.; K, A.S.; LC, P. Can Metabotropic Glutamate Receptor 7 (mGluR 7) be a Novel Target for Analgesia? J. Clin. Diagn. Res. 2014, 8, HC16–HC18. [Google Scholar] [CrossRef]
- Palazzo, E.; Romano, R.; Luongo, L.; Boccella, S.; De Gregorio, D.; Giordano, M.E.; Rossi, F.; Marabese, I.; Scafuro, M.A.; de Novellis, V.; et al. MMPIP, an mGluR7-selective negative allosteric modulator, alleviates pain and normalizes affective and cognitive behavior in neuropathic mice. Pain 2015, 156, 1060–1073. [Google Scholar] [CrossRef]
- Palazzo, E.; Marabese, I.; Luongo, L.; Guida, F.; de Novellis, V.; Maione, S. Nociception modulation by supraspinal group III metabotropic glutamate receptors. J. Neurochem. 2017, 141, 507–519. [Google Scholar] [CrossRef]
- Mazzitelli, M.; Presto, P.; Antenucci, N.; Meltan, S.; Neugebauer, V. Recent Advances in the Modulation of Pain by the Metabotropic Glutamate Receptors. Cells 2022, 11, 2608. [Google Scholar] [CrossRef] [PubMed]
- Chiamulera, C.; Epping-Jordan, M.P.; Zocchi, A.; Marcon, C.; Cottiny, C.; Tacconi, S.; Corsi, M.; Orzi, F.; Conquet, F. Reinforcing and locomotor stimulant effects of cocaine are absent in mGluR5 null mutant mice. Nat. Neurosci. 2001, 4, 873–874. [Google Scholar] [CrossRef]
- Kenny, P.J.; Markou, A. The ups and downs of addiction: Role of metabotropic glutamate receptors. Trends Pharmacol. Sci. 2004, 25, 265–272. [Google Scholar] [CrossRef] [PubMed]
- Melroy-Greif, W.E.; Vadasz, C.; Kamens, H.M.; McQueen, M.B.; Corley, R.P.; Stallings, M.C.; Hopfer, C.J.; Krauter, K.S.; Brown, S.A.; Hewitt, J.K.; et al. Test for association of common variants in GRM7 with alcohol consumption. Alcohol 2016, 55, 43–50. [Google Scholar] [CrossRef] [PubMed]
- Bierut, L.J.; Agrawal, A.; Bucholz, K.K.; Doheny, K.F.; Laurie, C.; Pugh, E.; Fisher, S.; Fox, L.; Howells, W.; Bertelsen, S.; et al. A genome-wide association study of alcohol dependence. Proc. Natl. Acad. Sci. USA 2010, 107, 5082–5087. [Google Scholar] [CrossRef]
- Edenberg, H.J.; Koller, D.L.; Xuei, X.; Wetherill, L.; McClintick, J.N.; Almasy, L.; Bierut, L.J.; Bucholz, K.K.; Goate, A.; Aliev, F.; et al. Genome-Wide Association Study of Alcohol Dependence Implicates a Region on Chromosome 11. Alcohol. Clin. Exp. Res. 2010, 34, 840–852. [Google Scholar] [CrossRef]
- Porjesz, B.; Almasy, L.; Edenberg, H.J.; Wang, K.; Chorlian, D.B.; Foroud, T.; Goate, A.; Rice, J.P.; O’Connor, S.J.; Rohrbaugh, J.; et al. Linkage disequilibrium between the beta frequency of the human EEG and a GABA A receptor gene locus. Proc. Natl. Acad. Sci. USA 2002, 99, 3729–3733. [Google Scholar] [CrossRef]
- Song, J.; Koller, D.L.; Foroud, T.; Carr, K.; Zhao, J.; Rice, J.; Nurnberger, J.I.; Begleiter, H.; Porjesz, B.; Smith, T.L.; et al. Association of GABAA receptors and alcohol dependence and the effects of genetic imprinting. Am. J. Med Genet. Part B Neuropsychiatr. Genet. 2002, 117B, 39–45. [Google Scholar] [CrossRef]
- Edenberg, H.J.; Dick, D.M.; Xuei, X.; Tian, H.; Almasy, L.; Bauer, L.O.; Crowe, R.R.; Goate, A.; Hesselbrock, V.; Jones, K.; et al. Variations in GABRA2, Encoding the α2 Subunit of the GABAA Receptor, Are Associated with Alcohol Dependence and with Brain Oscillations. Am. J. Hum. Genet. 2004, 74, 705–714. [Google Scholar] [CrossRef]
- Johnson, E.C.; Salvatore, J.E.; Lai, D.; Merikangas, A.K.; Nurnberger, J.I.; Tischfield, J.A.; Xuei, X.; Kamarajan, C.; Wetherill, L.; Collaborators, C.; et al. The collaborative study on the genetics of alcoholism: Genetics. Genes Brain Behav. 2023, 22, e12856. [Google Scholar] [CrossRef] [PubMed]
- Meyers, J.L.; Brislin, S.J.; Kamarajan, C.; Plawecki, M.H.; Chorlian, D.; Anohkin, A.; Kuperman, S.; Merikangas, A.; Pandey, G.; Kinreich, S.; et al. The collaborative study on the genetics of alcoholism: Brain function. Genes Brain Behav. 2023, 22, e12862. [Google Scholar] [CrossRef] [PubMed]
- Gameiro-Ros, I.; Popova, D.; Prytkova, I.; Pang, Z.P.; Liu, Y.; Dick, D.; Bucholz, K.K.; Agrawal, A.; Porjesz, B.; Goate, A.M.; et al. 5. Collaborative Study on the Genetics of Alcoholism: Functional genomics. Genes Brain Behav. 2023, 22, e12855. [Google Scholar] [CrossRef]
- Shyn, S.I.; Shi, J.; Kraft, J.B.; Potash, J.B.; Knowles, J.A.; Weissman, M.M.; Garriock, H.A.; Yokoyama, J.S.; McGrath, P.J.; Peters, E.J.; et al. Novel loci for major depression identified by genome-wide association study of Sequenced Treatment Alternatives to Relieve Depression and meta-analysis of three studies. Mol. Psychiatry 2011, 16, 202–215. [Google Scholar] [CrossRef] [PubMed]
- Kandaswamy, R.; McQuillin, A.; Curtis, D.; Gurling, H. Allelic association, DNA resequencing and copy number variation at the metabotropic glutamate receptor GRM7 gene locus in bipolar disorder. Am. J. Med Genet. Part B Neuropsychiatr. Genet. 2014, 165, 365–372. [Google Scholar] [CrossRef]
- Zhou, R.; Yuan, P.; Wang, Y.; Hunsberger, J.G.; Elkahloun, A.; Wei, Y.; Damschroder-Williams, P.; Du, J.; Chen, G.; Manji, H.K. Evidence for Selective microRNAs and Their Effectors as Common Long-Term Targets for the Actions of Mood Stabilizers. Neuropsychopharmacology 2008, 34, 1395–1405. [Google Scholar] [CrossRef]
- Wang, L.; Tang, X.; Liang, P.; Zhou, C.; Sun, Y.; Liang, Y. Correlation between variants of the CREB1 and GRM7 genes and risk of depression. BMC Psychiatry 2023, 23, 3. [Google Scholar] [CrossRef]
- Noroozi, R.; Taheri, M.; Omrani, M.D.; Ghafouri-Fard, S. Glutamate receptor metabotropic 7 (GRM7) gene polymorphisms in mood disorders and attention deficit hyperactive disorder. Neurochem. Int. 2019, 129, 104483. [Google Scholar] [CrossRef]
- Wells, H.R.R.; Newman, T.A.; Williams, F.M.K. Genetics of age-related hearing loss. J. Neurosci. Res. 2020, 98, 1698–1704. [Google Scholar] [CrossRef]
- Morris-Rosendahl, D.J.; Crocq, M.-A. Neurodevelopmental disorders—The history and future of a diagnosticconcept. Dialogues Clin. Neurosci. 2020, 22, 65–72. [Google Scholar] [CrossRef]
- Nygaard, M.; Dowsett, J.; McGue, M.; Christensen, K.; Christiansen, L.; Tan, Q.; Mengel-From, J. Genome-wide association analysis of cognitive function in Danish long-lived individuals. Mech. Ageing Dev. 2021, 195, 111463. [Google Scholar] [CrossRef] [PubMed]
- Squillario, M.; Abate, G.; Tomasi, F.; Tozzo, V.; Barla, A.; Uberti, D. A telescope GWAS analysis strategy, based on SNPs-genes-pathways ensamble and on multivariate algorithms, to characterize late onset Alzheimer’s disease. Sci. Rep. 2020, 10, 12063. [Google Scholar] [CrossRef]
- Chiu, Y.-F.; Justice, A.E.; Melton, P.E. Longitudinal analytical approaches to genetic data. BMC Genet. 2016, 17, 25–32. [Google Scholar] [CrossRef] [PubMed]
- Creighton, C.J.; Zhang, F.; Zhang, Y.; Castro, P.; Hu, R.; Islam; Ghosh, S.; Ittmann, M.; Kwabi-Addo, B. Comparative and integrative analysis of transcriptomic and epigenomic-wide DNA methylation changes in African American prostate cancer. Epigenetics 2023, 18, 2180585. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, I.P.; Esteves, L.; Caramelo, F.; Carreira, I.M.; Melo, J.B. Integrated Multi-Omics Signature Predicts Survival in Head and Neck Cancer. Cells 2022, 11, 2536. [Google Scholar] [CrossRef]
- Belotti, Y.; Tolomeo, S.; Yu, R.; Lim, W.-T.; Lim, C.T. Prognostic Neurotransmitter Receptors Genes Are Associated with Immune Response, Inflammation and Cancer Hallmarks in Brain Tumors. Cancers 2022, 14, 2544. [Google Scholar] [CrossRef]
- Chesworth, R.; Visini, G.; Karl, T. Impaired extinction of operant cocaine in a genetic mouse model of schizophrenia risk. Psychopharmacology 2023, 240, 1531–1546. [Google Scholar] [CrossRef]
- Maj, C.; Minelli, A.; Giacopuzzi, E.; Sacchetti, E.; Gennarelli, M. The Role of Metabotropic Glutamate Receptor Genes in Schizophrenia. Curr. Neuropharmacol. 2016, 14, 540–550. [Google Scholar] [CrossRef]
- Khoury, M.J.; Bowen, S.; Dotson, W.D.; Drzymalla, E.; Green, R.F.; Goldstein, R.; Kolor, K.; Liburd, L.C.; Sperling, L.S.; Bunnell, R. Health equity in the implementation of genomics and precision medicine: A public health imperative. Genet. Med. 2022, 24, 1630–1639. [Google Scholar]
- Evans, D.M.; Smith, G.D. Mendelian Randomization: New Applications in the Coming Age of Hypothesis-Free Causality. Annu. Rev. Genom. Hum. Genet. 2015, 16, 327–350. [Google Scholar] [CrossRef]
- BRAIN Initiative Cell Census Network (BICCN). A multimodal cell census and atlas of the mammalian primary motor cortex. Nature 2021, 598, 86–102. [Google Scholar] [CrossRef] [PubMed]
- Ohtsuki, T.; Koga, M.; Ishiguro, H.; Horiuchi, Y.; Arai, M.; Niizato, K.; Itokawa, M.; Inada, T.; Iwata, N.; Iritani, S.; et al. A polymorphism of the metabotropic glutamate receptor mGluR7 (GRM7) gene is associated with schizophrenia. Schizophr. Res. 2008, 101, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Shibata, H.; Tani, A.; Chikuhara, T.; Kikuta, R.; Sakai, M.; Ninomiya, H.; Tashiro, N.; Iwata, N.; Ozaki, N.; Fukumaki, Y. Association study of polymorphisms in the group III metabotropic glutamate receptor genes, GRM4 and GRM7, with schizophrenia. Psychiatry Res. 2009, 167, 88–96. [Google Scholar] [CrossRef]
- Niu, W.; Huang, X.; Yu, T.; Chen, S.; Li, X.; Wu, X.; Cao, Y.; Zhang, R.; Bi, Y.; Yang, F.; et al. Association study of GRM7 polymorphisms and schizophrenia in the Chinese Han population. Neurosci. Lett. 2015, 604, 109–112. [Google Scholar] [CrossRef]
- Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature 2014, 511, 421–427. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Ju, K.; Li, Z.; He, K.; Chen, J.; Wang, Q.; Yang, B.; An, L.; Feng, G.; Sun, W.; et al. Significant association of GRM7 and GRM8 genes with schizophrenia and major depressive disorder in the Han Chinese population. Eur. Neuropsychopharmacol. 2016, 26, 136–146. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Zhang, K.R.; Xu, Q.; Shen, Y. Association between copy number variants within metabotropic glutamate receptors 7 gene and schizophrenia. Zhongguo Yi Xue Ke Xue Yuan Xue Bao 2009, 31, 664–668. [Google Scholar]
- Levinson, D.F.; Duan, J.; Oh, S.; Wang, K.; Sanders, A.R.; Shi, J.; Zhang, N.; Mowry, B.J.; Olincy, A.; Amin, F.; et al. Copy Number Variants in Schizophrenia: Confirmation of Five Previous Findings and New Evidence for 3q29 Microdeletions and VIPR2 Duplications. Am. J. Psychiatry 2011, 168, 302–316. [Google Scholar] [CrossRef]
- Liang, W.; Yu, H.; Su, Y.; Lu, T.; Yan, H.; Yue, W.; Zhang, D. Variants of GRM7 as risk factor and response to antipsychotic therapy in schizophrenia. Transl. Psychiatry 2020, 10, 83. [Google Scholar] [CrossRef]
- Zhao, M.; Ma, J.; Li, M.; Zhu, W.; Zhou, W.; Shen, L.; Wu, H.; Zhang, N.; Wu, S.; Fu, C.; et al. Different responses to risperidone treatment in Schizophrenia: A multicenter genome-wide association and whole exome sequencing joint study. Transl. Psychiatry 2022, 12, 173. [Google Scholar] [CrossRef]
- Ohno, S. So much “junk” DNA in our genome. Brookhaven Symp. Biol. 1972, 23, 366–370. [Google Scholar] [PubMed]
- Wang, H.; Moyano, A.L.; Ma, Z.; Deng, Y.; Lin, Y.; Zhao, C.; Zhang, L.; Jiang, M.; He, X.; Ma, Z.; et al. miR-219 Cooperates with miR-338 in Myelination and Promotes Myelin Repair in the CNS. Dev. Cell 2017, 40, 566–582.e5. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gyetvai, B.M.; Vadasz, C. Pleiotropic Effects of Grm7/GRM7 in Shaping Neurodevelopmental Pathways and the Neural Substrate of Complex Behaviors and Disorders. Biomolecules 2025, 15, 392. https://doi.org/10.3390/biom15030392
Gyetvai BM, Vadasz C. Pleiotropic Effects of Grm7/GRM7 in Shaping Neurodevelopmental Pathways and the Neural Substrate of Complex Behaviors and Disorders. Biomolecules. 2025; 15(3):392. https://doi.org/10.3390/biom15030392
Chicago/Turabian StyleGyetvai, Beatrix M., and Csaba Vadasz. 2025. "Pleiotropic Effects of Grm7/GRM7 in Shaping Neurodevelopmental Pathways and the Neural Substrate of Complex Behaviors and Disorders" Biomolecules 15, no. 3: 392. https://doi.org/10.3390/biom15030392
APA StyleGyetvai, B. M., & Vadasz, C. (2025). Pleiotropic Effects of Grm7/GRM7 in Shaping Neurodevelopmental Pathways and the Neural Substrate of Complex Behaviors and Disorders. Biomolecules, 15(3), 392. https://doi.org/10.3390/biom15030392