Rational Introduction of Electrostatic Interactions at Crystal Contacts to Enhance Protein Crystallization of an Ene Reductase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site-Directed Mutagenesis
2.2. Heterologous Protein Production and Processing
2.3. Static and Dynamic Protein Crystallization
2.4. Protein Analytics
2.5. X-Ray Diffraction, Data Refinement, and Structure Analysis
3. Results
3.1. Semirational Selection of Mutants by Evaluation of the NspER1-L1,5 Wild Type’s X-Ray Structure
3.2. Static µL-Batch Crystallization of the Purified NspER1-L1,5 Variants
3.3. NspER1-L1,5 Mutant Q204K: Scaling to Dynamic Crystallization in a 5 mL Crystallizer
3.4. NspER1-L1,5 Mutant Q204K: Crystallization Studies with Increasing Concentrations of Host Cell Protein (HCP)
3.5. X-Ray Structure Analysis of Selected NspER1-L1,5 Mutants
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kocevska, S.; Burcham, C.L.; Nordstrom, F.; Maggioni, G.M. A changing paradigm in industrial pharmaceutical crystallization. Nat. Chem. Eng. 2024, 1, 327–329. [Google Scholar] [CrossRef]
- dos Santos, R.; Carvalho, A.L.; Roque, A.C.A. Renaissance of protein crystallization and precipitation in biopharmaceuticals purification. Biotechnol. Adv. 2017, 35, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Pu, S.; Hadinoto, K. Continuous crystallization as a downstream processing step of pharmaceutical proteins: A review. Chem. Eng. Res. Des. 2020, 160, 89–104. [Google Scholar] [CrossRef]
- Hubbuch, J.; Kind, M.; Nirschl, H. Preparative protein crystallization. Chem. Eng. Technol. 2019, 42, 2275–2281. [Google Scholar] [CrossRef]
- Schmidt, S.; Havekost, D.; Kaiser, K.; Kauling, J.; Henzler, H.-J. Crystallization for the downstream processing of proteins. Eng. Life Sci. 2005, 5, 273–276. [Google Scholar] [CrossRef]
- Nordstrom, F.L.; Sirota, E.; Hartmanshenn, C.; Kwok, T.T.; Paolello, M.; Li, H.; Abeyta, V.; Bramante, T.; Madrigal, E.; Behre, T.; et al. Prevalence of impurity retention mechanisms in pharmaceutical crystallizations. Org. Process Res. Dev. 2023, 27, 723–741. [Google Scholar] [CrossRef]
- Simon, L.L.; Simone, E.; Abbou Oucherif, K. Chapter 9—Crystallization process monitoring and control using process analytical technology. In Computer Aided Chemical Engineering; Singh, R., Yuan, Z., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 41, pp. 215–242. [Google Scholar]
- Gao, Y.; Zhang, T.; Ma, Y.; Xue, F.; Gao, Z.; Hou, B.; Gong, J. Application of pat-based feedback control approaches in pharmaceutical crystallization. Crystals 2021, 11, 221. [Google Scholar] [CrossRef]
- Szilagyi, B.; Nagy, Z.K. Optimization-based process synthesis for integrated crystallizer-wet mill system for improved crystal shape control. In Computer Aided Chemical Engineering; Friedl, A., Klemeš, J.J., Radl, S., Varbanov, P.S., Wallek, T., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 43, pp. 681–686. [Google Scholar]
- Nagy, Z.K.; Fujiwara, M.; Braatz, R.D. Monitoring and advanced control of crystallization processes. In Handbook of Industrial Crystallization, 3rd ed.; Lee, A.Y., Myerson, A.S., Erdemir, D., Eds.; Cambridge University Press: Cambridge, UK, 2019; pp. 313–345. [Google Scholar] [CrossRef]
- Shenoy, B.; Wang, Y.; Shan, W.; Margolin, A.L. Stability of crystalline proteins. Biotechnol. Bioeng. 2001, 73, 358–369. [Google Scholar] [CrossRef]
- Zhou, R.; Qu, J.; Liu, X.; Lin, F.; Ohulchanskyy, T.Y.; Alifu, N.; Qu, J.; Yin, D.-C. Biopharmaceutical drug delivery and phototherapy using protein crystals. Adv. Drug Deliv. Rev. 2025, 216, 115480. [Google Scholar] [CrossRef]
- Chen, W.; Li, X.; Guo, M.; Link, F.J.; Ramli, S.S.; Ouyang, J.; Rosbottom, I.; Heng, J.Y.Y. Biopurification of monoclonal antibody (mab) through crystallisation. Sep. Purif. Technol. 2021, 263, 118358. [Google Scholar] [CrossRef]
- Basu, S.K.; Govardhan, C.P.; Jung, C.W.; Margolin, A.L. Protein crystals for the delivery of biopharmaceuticals. Expert. Opin. Biol. Ther. 2004, 4, 301–317. [Google Scholar] [CrossRef] [PubMed]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with alphafold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef]
- Abramson, J.; Adler, J.; Dunger, J.; Evans, R.; Green, T.; Pritzel, A.; Ronneberger, O.; Willmore, L.; Ballard, A.J.; Bambrick, J.; et al. Accurate structure prediction of biomolecular interactions with alphafold 3. Nature 2024, 630, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Hermann, J.; Bischoff, D.; Grob, P.; Janowski, R.; Hekmat, D.; Niessing, D.; Zacharias, M.; Weuster-Botz, D. Controlling protein crystallization by free energy guided design of interactions at crystal contacts. Crystals 2021, 11, 588. [Google Scholar] [CrossRef]
- Nowotny, P.; Hermann, J.; Li, J.; Krautenbacher, A.; Klöpfer, K.; Hekmat, D.; Weuster-Botz, D. Rational crystal contact engineering of lactobacillus brevis alcohol dehydrogenase to promote technical protein crystallization. Cryst. Growth Des. 2019, 19, 2380–2387. [Google Scholar] [CrossRef]
- Grob, P.; Huber, M.; Walla, B.; Hermann, J.; Janowski, R.; Niessing, D.; Hekmat, D.; Weuster-Botz, D. Crystal contact engineering Enables efficient capture and purification of an oxidoreductase by technical crystallization. Biotechnol. J. 2020, 15, e2000010. [Google Scholar] [CrossRef]
- Walla, B.; Bischoff, D.; Janowski, R.; von den Eichen, N.; Niessing, D.; Weuster-Botz, D. Transfer of a rational crystal contact engineering strategy between diverse alcohol dehydrogenases. Crystals 2021, 11, 975. [Google Scholar] [CrossRef]
- Derewenda, Z.S. Rational protein crystallization by mutational surface engineering. Structure 2004, 12, 529–535. [Google Scholar] [CrossRef]
- Cooper, D.R.; Boczek, T.; Grelewska, K.; Pinkowska, M.; Sikorska, M.; Zawadzki, M.; Derewenda, Z. Protein crystallization by surface entropy reduction: Optimization of the ser strategy. Acta Crystallogr. Sect. D Biol. Crystallogr. 2007, 63, 636–645. [Google Scholar] [CrossRef]
- Derewenda, Z.S.; Vekilov, P.G. Entropy and surface engineering in protein crystallization. Acta Crystallogr. Sect. D Biol. Crystallogr. 2006, 62, 116–124. [Google Scholar] [CrossRef]
- Hekmat, D. Large-scale crystallization of proteins for purification and formulation. Bioprocess. Biosyst. Eng. 2015, 38, 1209–1231. [Google Scholar] [CrossRef] [PubMed]
- Grob, P. Crystal Contact Engineering to Enhance Protein Crystallization Processes; Technical University of Munich: Munich, Germany, 2020. [Google Scholar]
- Toogood, H.S.; Gardiner, J.M.; Scrutton, N.S. Biocatalytic reductions and chemical versatility of the old yellow enzyme family of flavoprotein oxidoreductases. ChemCatChem 2010, 2, 892–914. [Google Scholar] [CrossRef]
- Toogood, H.S.; Scrutton, N.S. New developments in ‘ene’-reductase catalysed biological hydrogenations. Curr. Opin. Chem. Biol. 2014, 19, 107–115. [Google Scholar] [CrossRef]
- Mähler, C.; Burger, C.; Kratzl, F.; Weuster-Botz, D.; Castiglione, K. Asymmetric whole-cell bio-reductions of (r)-carvone using optimized ene reductases. Molecules 2019, 24, 2550. [Google Scholar] [CrossRef] [PubMed]
- Toogood, H.S.; Scrutton, N.S. Discovery, characterisation, engineering and applications of ene reductases for industrial biocatalysis. ACS Catal. 2019, 8, 3532–3549. [Google Scholar] [CrossRef]
- Winkler, C.K.; Tasnádi, G.; Clay, D.; Hall, M.; Faber, K. Asymmetric bioreduction of activated alkenes to industrially relevant optically active compounds. J. Biotechnol. 2012, 162, 381–389. [Google Scholar] [CrossRef]
- Scholtissek, A.; Tischler, D.; Westphal, A.H.; Van Berkel, W.J.H.; Paul, C.E. Old yellow enzyme-catalysed asymmetric hydrogenation: Linking family roots with improved catalysis. Catalysts 2017, 7, 130. [Google Scholar] [CrossRef]
- You, C.; Huang, R.; Wei, X.; Zhu, Z.; Zhang, Y.-H.P. Protein engineering of oxidoreductases utilizing nicotinamide-based coenzymes, with applications in synthetic biology. Synth. Syst. Biotechnol. 2017, 2, 208–218. [Google Scholar] [CrossRef]
- Wang, H.B.; Pei, X.Q.; Wu, Z.L. An enoate reductase achr-oye4 from Achromobacter sp. Ja81: Characterization and application in asymmetric bioreduction of c=c bonds. Appl. Microbiol. Biotechnol. 2014, 98, 705–715. [Google Scholar] [CrossRef]
- Mähler, C.; Kratzl, F.; Vogel, M.; Vinnenberg, S.; Weuster-Botz, D.; Castiglione, K. Loop swapping as a potent approach to increase ene reductase activity with nicotinamide adenine dinucleotide (nadh). Adv. Synth. Catal. 2019, 361, 2505–2513. [Google Scholar] [CrossRef]
- Nakano, Y.; Black, M.J.; Meichan, A.J.; Sandoval, B.A.; Chung, M.M.; Biegasiewicz, K.F.; Zhu, T.; Hyster, T.K. Photoenzymatic hydrogenation of heteroaromatic olefins using ‘ene’-reductases with photoredox catalysts. Angew. Chem. Int. Ed. 2020, 59, 10484–10488. [Google Scholar] [CrossRef]
- Gibson, D.G.; Young, L.; Chuang, R.-Y.; Venter, J.C.; Hutchison, C.A.; Smith, H.O. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 2009, 6, 343–345. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Baumann, U.; Reymond, J.L. An efficient one-step site-directed and site-saturation mutagenesis protocol. Nucleic Acids Res. 2004, 32, e115. [Google Scholar] [CrossRef]
- Gasteiger, E.H.C.; Gattiker, A.; Duvaud, S.; Wilkins, M.R.; Appel, R.D.; Bairoch, A. Protein identification and analysis tools on the expasy server. In The Proteomics Protocols Handbook; Walker, J.M., Ed.; Humana Press: Totowa, NJ, USA, 2005; pp. 571–607. [Google Scholar]
- Smejkal, B.; Helk, B.; Rondeau, J.M.; Anton, S.; Wilke, A.; Scheyerer, P.; Fries, J.; Hekmat, D.; Weuster-Botz, D. Protein crystallization in stirred systems--scale-up via the maximum local energy dissipation. Biotechnol. Bioeng. 2013, 110, 1956–1963. [Google Scholar] [CrossRef]
- Laemmli, U.K. Cleavage of sturctural proteins during the assembly of the head of bacteriophage t4. Nature 1970, 227, 680–685. [Google Scholar] [CrossRef] [PubMed]
- Fairbanks, G.; Steck, T.L.; Wallach, D.F.H. Electrophoretic analysis of the major polypeptides of the human erythrocyte membrane. Biochemistry 1971, 10, 2606–2617. [Google Scholar] [CrossRef] [PubMed]
- McCoy, A.J.; Grosse-Kunstleve, R.W.; Adams, P.D.; Winn, M.D.; Storoni, L.C.; Read, R.J. Phaser crystallographic software. J. Appl. Crystallogr. 2007, 40, 658–674. [Google Scholar] [CrossRef]
- Emsley, P.; Lohkamp, B.; Scott, W.G.; Cowtan, K. Features and development of coot. Acta Crystallogr. Sect. D 2010, 66, 486–501. [Google Scholar] [CrossRef]
- Murshudov, G.N.; Vagin, A.A.; Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. Sect. D 1997, 53, 240–255. [Google Scholar] [CrossRef]
- Schrödinger, L.; DeLano, W. Pymol, Version 2.3. 2020. Available online: http://www.pymol.org/pymol (accessed on 12 January 2025).
- Zhang, C.; Shine, M.; Pyle, A.M.; Zhang, Y. US-align: Universal structure alignments of proteins, nucleic acids, and macromolecular complexes. Nat. Methods 2022, 19, 1109–1115. [Google Scholar] [CrossRef]
- Dasgupta, S.; Iyer, G.H.; Bryant, S.H.; Lawrence, C.E.; Bell, J.A. Extent and nature of contacts between protein molecules in crystal lattices and between subunits of protein oligomers. Proteins Struct. Funct. Bioinform. 1997, 28, 494–514. [Google Scholar] [CrossRef]
- Zhou, H.X.; Pang, X. Electrostatic interactions in protein structure, folding, binding, and condensation. Chem. Rev. 2018, 118, 1691–1741. [Google Scholar] [CrossRef] [PubMed]
- Hekmat, D.; Breitschwerdt, P.; Weuster-Botz, D. Purification of proteins from solutions containing residual host cell proteins via preparative crystallization. Biotechnol. Lett. 2015, 37, 1791–1801. [Google Scholar] [CrossRef] [PubMed]
- Roque, A.C.A.; Pina, A.S.; Azevedo, A.M.; Aires-Barros, R.; Jungbauer, A.; Di Profio, G.; Heng, J.Y.Y.; Haigh, J.; Ottens, M. Anything but conventional chromatography approaches in bioseparation. Biotechnol. J. 2020, 15, e1900274. [Google Scholar] [CrossRef]
- Lalor, F.; Fitzpatrick, J.; Sage, C.; Byrne, E. Sustainability in the biopharmaceutical industry: Seeking a holistic perspective. Biotechnol. Adv. 2019, 37, 698–707. [Google Scholar] [CrossRef]
- Ho, S.V.; McLaughlin, J.M.; Cue, B.W.; Dunn, P.J. Environmental considerations in biologics manufacturing. Green Chem. 2010, 12, 755–766. [Google Scholar] [CrossRef]
- Liu, Y.; Hou, H.; Li, J.; Cheng, Q.-D.; Zhang, X.; Zeng, X.-B.; Fiaz, A.; Wang, B.; Zhang, C.-Y.; Lu, Q.-Q.; et al. Direct Crystallization of proteins from impure sources. Cryst. Growth Des. 2020, 20, 1694–1705. [Google Scholar] [CrossRef]
- Smejkal, B.; Agrawal, N.J.; Helk, B.; Schulz, H.; Giffard, M.; Mechelke, M.; Ortner, F.; Heckmeier, P.; Trout, B.L.; Hekmat, D. Fast and scalable purification of a therapeutic full-length antibody based on process crystallization. Biotechnol. Bioeng. 2013, 110, 2452–2461. [Google Scholar] [CrossRef]
Mutant | Potential Interaction Partner | Distance (In Silico), Å |
---|---|---|
Q171E | K139 | 4.6 |
Q204K | E89 | 5.2 |
Q263K | E44 | 8.5 |
A264K | E44 | 3.1 |
D280K | E340 | 5.3 |
V344E | K139 | 5.4 |
Q350K | E25 | 5.2 |
D352K | E27 | 5.3 |
T354K | E27 | 3.8 |
Mutant | Crystallization Start t0, Mut/WT, h (at*) | Crystallization Equilibrium, h (at*) | Lowest Protein + PEG 6000 Concentration for Mut/WT, g L−1 | +/0/− WT |
---|---|---|---|---|
Q171E | 6.5/2.5 | 50/>50 | 5 + 150 | – |
Q204K | 0.5/30 | 6.5/>50 | 3.75 + 150 | ++ |
Q263K | 0/0.5 | 30/>30 | 10 + 150/5 + 150 | 0 |
A264K | / | / | / | / |
D280K | 35/2 | >50/>50 | 5 + 150 | − |
V344E | / | / | / | / |
Q350K | 0.5/2.5 | 45/>50 | 5 + 150 | + |
D352K | 2.5/5.5 | 45/>50 | 5 + 150 | + |
T354K | 2/2 | 45/>50 | 5 + 150; 10 + 100/5 + 150 | + |
Lysate Proportion, % | PEG 6000 Concentration, g L−1 | Crystallization Start t0, h | Crystallization Equilibrium, h |
---|---|---|---|
0 | 150 | 2.0 | 30.0 |
5 | 150 | 0.5 | >40 |
10 | 150 | 0.5 | >40 |
15 | 150 | 0.5 | >40 |
20 | 150 | / | / |
0 | 250 | 1.0 | 1.5 |
25 | 250 | 1.5 | 18.0 |
30 | 250 | 2.5 | 35.5 |
35 | 250 | 4.0 | >40 |
40 | 250 | / | / |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walla, B.; Maslakova, A.; Bischoff, D.; Janowski, R.; Niessing, D.; Weuster-Botz, D. Rational Introduction of Electrostatic Interactions at Crystal Contacts to Enhance Protein Crystallization of an Ene Reductase. Biomolecules 2025, 15, 467. https://doi.org/10.3390/biom15040467
Walla B, Maslakova A, Bischoff D, Janowski R, Niessing D, Weuster-Botz D. Rational Introduction of Electrostatic Interactions at Crystal Contacts to Enhance Protein Crystallization of an Ene Reductase. Biomolecules. 2025; 15(4):467. https://doi.org/10.3390/biom15040467
Chicago/Turabian StyleWalla, Brigitte, Anna Maslakova, Daniel Bischoff, Robert Janowski, Dierk Niessing, and Dirk Weuster-Botz. 2025. "Rational Introduction of Electrostatic Interactions at Crystal Contacts to Enhance Protein Crystallization of an Ene Reductase" Biomolecules 15, no. 4: 467. https://doi.org/10.3390/biom15040467
APA StyleWalla, B., Maslakova, A., Bischoff, D., Janowski, R., Niessing, D., & Weuster-Botz, D. (2025). Rational Introduction of Electrostatic Interactions at Crystal Contacts to Enhance Protein Crystallization of an Ene Reductase. Biomolecules, 15(4), 467. https://doi.org/10.3390/biom15040467