GC-MS Based Identification of the Volatile Components of Six Astragalus Species from Uzbekistan and Their Biological Activity
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemical Composition of Volatile Compounds
2.2. Chemometric Analysis Based on GC-MS
2.3. Antioxidant Activity of Astragalus Species
2.4. Enzyme Inhibitory Activity of Astragalus Species
3. Materials and Methods
3.1. Plant Materials
3.2. Essential Oil Isolation
3.3. GC-MS Analysis
3.4. Chemometric Analysis
3.5. Antioxidant and Enzyme Inhibitory Assays
3.6. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Amiri, M.S.; Joharchi, M.R.; Nadaf, M.; Nasseh, Y. Ethnobotanical knowledge of Astragalus spp.: The world’s largest genus of vascular plants. Avicenna J. Phytomed. 2020, 10, 128–142. [Google Scholar] [PubMed]
- Khassanov, F. Lectotypifications in the genus Astragalus L. s.l. (Fabaceae) in the flora of Uzbekistan. Stapfia 2015, 103, 67–73. [Google Scholar]
- Li, X.; Qu, L.; Dong, Y.; Han, L.; Liu, E.; Fang, S.; Zhang, Y.; Wang, T. A review of recent research progress on the Astragalus genus. Molecules 2014, 19, 18850–18880. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Carneiro, J.N.P.; Rocha, J.E.; Coutinho, H.D.M.; Morais Braga, M.F.B.; Sharifi-Rad, J.; Semwal, P.; Painuli, S.; Moujir, L.M.; de Zarate Machado, V.; et al. Astragalus species: Insights on its chemical composition toward pharmacological applications. Phytother. Res. 2020. [Google Scholar] [CrossRef]
- Yang, L.P.; Shen, J.G.; Xu, W.C.; Li, J.; Jiang, J.Q. Secondary Metabolites of the Genus Astragalus: Structure and Biological-Activity Update. Chem. Biodiver. 2013, 10, 1004–1054. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H.; Cheng, Q. Astragalus and Chrysanthemum for Sustainable Life; LAP LAMBERT Academic Publishing: Rīgā, Latvia, 2019. [Google Scholar]
- Rezaee, M.B.; Jaimand, K.; Karimi, M. Chemical Constituents of the Essential Oil from Astragalus microcephalus Willd. J. Essent. Oil Res. 2006, 18, 84–85. [Google Scholar] [CrossRef]
- Akhlaghi, H. Chemical Composition of the Essential Oil from Aerial Parts of Astragalus schahrudensis Bge. from Northeast of Iran. J. Essent. Oil Bear. Plants 2009, 12, 59–63. [Google Scholar] [CrossRef]
- Akhlaghi, H.; Rustaiyan, A.; Larijani, K.; Shafaghat, A.; Masnabadi, N.; Masoudi, S. Chemical Composition of the Essential Oil from Flower, Stem and Leaves of Astragalus schahrudensis Bge. from Iran. J. Essent. Oil Res. 2007, 19, 269–270. [Google Scholar] [CrossRef]
- Naghiloo, S.; Movafeghi, A.; Delazar, A.; Nazemiyeh, H.; Asnaashari, S.; Dadpour, M.R. Ontogenetic variation of volatiles and antioxidant activity in leaves of Astragalus compactus Lam. (Fabaceae). EXCLI J. 2012, 11, 436–443. [Google Scholar]
- Movafeghi, A.; Delazar, A.; Amini, M.; Asnaashari, S.; Nazifi, E. Composition of volatile organic compounds in flowers of Astragalus sahendi. Nat. Prod. Res. 2010, 24, 1330–1336. [Google Scholar] [CrossRef]
- Movafeghi, A.; Djozan, D.; Razeghi, J.A.; Baheri, T. Identification of volatile organic compounds in leaves, roots and gum of Astragalus compactus Lam. using solid phase microextraction followed by GC-MS analysis. Nat. Prod. Res. 2010, 24, 703–709. [Google Scholar] [CrossRef] [PubMed]
- Teyeb, H.; Zouari, S.; Douki, W.; Najjar, M.F.; Neffati, M. Variation in volatiles of Astragalus gombiformis Pomel. Z. Naturforsch. C 2011, 66, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Teyeb, H.; Zouari, S.; Douki, W.; Najjar, M.F.; Neffati, M. Essential Oils of Leaves, Flowers and Fruits of Astragalus gombiformis Pomel (Fabaceae). Acta Hortic. 2010, 853, 263–268. [Google Scholar] [CrossRef]
- Iskender, N.; Kahriman, N.; Tosun, G.; Terzioğlu, S.; Alpay Karaoğlu, Ş.; Yayli, N. Chemical Composition and Antimicrobial Activity of the Essential Oils from the Aerial Parts of Astragalus hamzaoglui Extracted by Hydrodistillation and Microwave Distillation. Rec. Nat. Prod. 2013, 7, 177–183. [Google Scholar]
- Li, J.K.; Li, F.; Xu, Y.; Yang, W.J.; Qu, L.L.; Xiang, Q.; Liu, C.; Li, D.P. Chemical Composition and Synergistic Antioxidant Activities of Essential Oils from Atractylodes macrocephala and Astragalus membranaceus. Nat. Prod. Commun. 2013, 8, 1321–1324. [Google Scholar] [CrossRef] [Green Version]
- Gecibesler, I.H.; Behcet, L.; Erdogan, M.K.; Askin, H. Antioxidant potencies and chemical compositions of essential oils of two endemic species grow in Turkey: Astragalus oocephalus subsp stachyophorus and Astragalus sericans. Prog. Nutr. 2017, 19, 60–67. [Google Scholar] [CrossRef]
- Ghasemian-Yadegari, J.; Nazemiyeh, H.; Asnaashari, S.; Fathiazad, F. Chemical Characterization of the Essential Oil from Aerial Parts of Astragalus maximus from Northwest of Iran. Adv. Biosci. Clin. Med. 2015, 3, 32–39. [Google Scholar]
- Sahin Yaglioglu, A.; Temirturk, M.; Ugur, E.; Dolarslan, M.; Demirtas, I. Metabolomics of endemic six Astragalus species by combined NMR and GC-MS analysis. Phytochem. Anal. 2020, 31, 306–313. [Google Scholar] [CrossRef]
- El Bishbishy, M.H.; Gad, H.A.; Aborehab, N.M. Chemometric discrimination of three Pistacia species via their metabolic profiling and their possible in vitro effects on memory functions. J. Pharm. Biomed. Anal. 2020, 177, 112840. [Google Scholar] [CrossRef]
- Gad, H.A.; El-Ahmady, S.H.; Abou-Shoer, M.I.; Al-Azizi, M.M. Application of Chemometrics in Authentication of Herbal Medicines: A Review. Phytochem. Anal. 2012, 24, 1–24. [Google Scholar] [CrossRef]
- Ghahari, S.; Alinezhad, H.; Nematzadeh, G.A.; Tajbakhsh, M.; Baharfar, R. Phytochemical, Antioxidant and Biological Activities of the Essential Oil of Astragalus alopecurus Pall. Fruits from Northern Iran. J. Essent. Oil Bear. Plants 2018, 21, 103–115. [Google Scholar] [CrossRef]
- López, M.D.; Pascual-Villalobos, M.J. Mode of inhibition of acetylcholinesterase by monoterpenoids and implications for pest control. Ind. Crops Prod. 2010, 31, 284–288. [Google Scholar] [CrossRef]
- Miyazawa, M.; Yamafuji, C. Inhibition of acetylcholinesterase activity by bicyclic monoterpenoids. J. Agric. Food Chem. 2005, 53, 1765–1768. [Google Scholar] [CrossRef] [PubMed]
- Bonesi, M.; Menichini, F.; Tundis, R.; Loizzo, M.R.; Conforti, F.; Passalacqua, N.G.; Statti, G.A.; Menichini, F. Acetylcholinesterase and butyrylcholinesterase inhibitory activity of Pinus species essential oils and their constituents. J. Enzyme Inhib. Med. Chem. 2010, 25, 622–628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wojtunik-Kulesza, K.A.; Targowska-Duda, K.; Klimek, K.; Ginalska, G.; Jóźwiak, K.; Waksmundzka-Hajnos, M.; Cieśla, Ł. Volatile terpenoids as potential drug leads in Alzheimer’s disease. Open Chem. 2017, 15, 332–343. [Google Scholar] [CrossRef] [Green Version]
- Sarikurkcu, C.; Zengin, G. Polyphenol Profile and Biological Activity Comparisons of Different Parts of Astragalus macrocephalus subsp. finitimus from Turkey. Biology 2020, 9. [Google Scholar] [CrossRef]
- Sekeroglu, N.; Gezici, S. Astragalus neurocarpus Bioss. as a potential source of natural enzyme inhibitor associated with Alzheime’ s and Parkinson diseases along with its rich polyphenolic content and antioxidant activities. Ann. Phytomed. 2019, 8, 82–87. [Google Scholar] [CrossRef]
- Santoro, V.; Parisi, V.; D’Ambola, M.; Sinisgalli, C.; Monné, M.; Milella, L.; Russo, R.; Severino, L.; Braca, A.; Tommasi, N.D. Chemical Profiling of Astragalus membranaceus Roots (Fish.) Bunge Herbal Preparation and Evaluation of Its Bioactivity. Nat. Prod. Commun. 2020, 15, 1934578X20924152. [Google Scholar] [CrossRef]
- Youssef, F.S.; Mamatkhanova, M.A.; Mamadalieva, N.Z.; Zengin, G.; Aripova, S.F.; Alshammari, E.; Ashour, M.L. Chemical Profiling and Discrimination of Essential Oils from Six Ferula Species Using GC Analyses Coupled with Chemometrics and Evaluation of Their Antioxidant and Enzyme Inhibitory Potential. Antibiotics 2020, 9. [Google Scholar] [CrossRef]
- Mamadalieva, N.Z.; Abdullaeva, N.S.; Rosenau, T.; Fakhrutdinova, M.; Azimova, S.S.; Bohmdorfer, S. Composition of essential oils from four Apiaceae and Asteraceae species growing in Uzbekistan. Nat. Prod. Res. 2018, 32, 1118–1122. [Google Scholar] [CrossRef]
- Brereton, R.G. Applied Chemometrics for Scientists; John Wiley & Sons: Chichester, UK, 2007; p. 379. [Google Scholar]
- Mamadalieva, N.Z.; Böhmdorfer, S.; Zengin, G.; Bacher, M.; Potthast, A.; Akramov, D.K.; Janibekov, A.; Rosenau, T. Phytochemical and biological activities of Silene viridiflora extractives. Development and validation of a HPTLC method for quantification of 20-hydroxyecdysone. Ind. Crops Prod. 2019, 129, 542–548. [Google Scholar] [CrossRef]
- Zengin, G.; Aktumsek, A. Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci: An endemic plant to Turkey. Afr. J. Tradit. Complement. Altern. Med. 2014, 11, 481–488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zengin, G. A study on in vitro enzyme inhibitory properties of Asphodeline anatolica: New sources of natural inhibitors for public health problems. Ind. Crops Prod. 2016, 83, 39–43. [Google Scholar] [CrossRef]
Rt | Compound | RI | Content (%) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Rep. | Cal. | Aca | Ach | Ale | Ama | Amu | Asi | |||
1. | 8.49 | β-Phellandrene | 1205 | 1203 | - | - | - | - | 0.25 | - |
2. | 8.91 | Sylvestrene | 1205 | 1204 | - | - | 5.56 | 10.63 | 14.14 | 64.64 |
3. | 9.42 | 1,8-Cineole | 1208 | 1208 | - | - | - | 3.19 | 3.11 | 1.30 |
4. | 9.58 | Unidentified | 1212 | - | 3.69 | 2.50 | - | - | 0.53 | |
5. | 9.81 | (E)-2-Hexenal | 1219 | 1219 | - | 10.1 | 9.97 | 4.57 | 4.42 | - |
6. | 10.13 | Unidentified | 1230 | - | - | 1.32 | - | - | 0.50 | |
7. | 10.49 | (Z)-4-Heptenal | 1242 | 1242 | - | - | 1.22 | - | - | - |
8. | 10.75 | n-Pentanol | 1250 | 1250 | - | - | - | - | 0.47 | - |
9. | 11.3 | o-Cymene | 1268 | 1268 | - | - | - | - | 1.14 | - |
10. | 11.89 | n-Octanal | 1287 | 1287 | - | - | 2.73 | - | - | - |
11. | 13.37 | 6-Methyl-5-hepten-2-one | 1335 | 1335 | - | - | 1.18 | - | - | - |
12. | 13.76 | 1-Hexanol | 1350 | 1350 | - | 5.27 | 3.09 | 1.12 | 2.07 | 2.13 |
13. | 14.59 | cis-3-Hexenol | 1379 | 1379 | - | - | 0.63 | 1.58 | 0.72 | 0.48 |
14. | 14.89 | Nonanal | 1389 | 1389 | 3.29 | 0.90 | 0.54 | 4.71 | 1.04 | 1.22 |
15. | 15.04 | 2,4-Hexadienal | 1395 | 1395 | - | - | 1.95 | 0.55 | 0.92 | - |
16. | 15.22 | (E)-2-Hexen-1-ol | 1402 | 1401 | - | - | 0.92 | - | - | - |
17. | 15.46 | Butyl hexanoate | 1410 | 1410 | - | 6.76 | 0.73 | - | - | - |
18. | 15.8 | trans-2-Octenal | 1423 | 1423 | - | - | - | - | 0.42 | - |
19. | 16.03 | Unidentified | 1430 | - | - | 0.73 | - | - | - | |
20. | 16.13 | cis-Linalool oxide | 1435 | 1435 | - | - | - | 0.55 | 0.50 | 0.31 |
21. | 16.44 | 1-Octen-3-ol | 1445 | 1446 | 6.89 | - | - | 0.39 | 1.11 | - |
22. | 16.56 | 1-Heptanol | 1452 | 1451 | - | - | 1.65 | 0.48 | 0.56 | 1.82 |
23. | 16.74 | 1-Octen-5-ol | 1458 | 1458 | - | - | 1.48 | 1.75 | 1.27 | 0.28 |
24. | 16.91 | trans-Linalool oxide | 1466 | 1464 | - | 6.81 | 0.98 | - | - | - |
25. | 17.3 | Unidentified | 1478 | - | 4.64 | 4.17 | - | 0.5 | - | |
26. | 17.49 | (E,E)-2,4-Heptadienal | 1486 | 1486 | - | - | - | 0.83 | 1.07 | 0.48 |
27. | 17.7 | Decanal | 1494 | 1493 | - | - | 0.66 | - | 0.65 | - |
28. | 17.96 | Camphor | 1505 | 1503 | - | - | 0.5 | 1.16 | 0.55 | 0.44 |
29. | 18.04 | 2-Ethyl-1-hexanol | 1509 | 1509 | - | - | - | - | 0.41 | - |
30. | 18.2 | Benzaldehyde | 1513 | 1513 | 2.68 | 3.11 | 5.54 | 2.25 | 1.97 | 1.14 |
31. | 18.58 | (Z)-2-Nonenal | 1530 | 1530 | - | - | 0.57 | 0.35 | 0.40 | - |
32. | 18.94 | β-Linalool | 1542 | 1542 | - | 2.50 | 3.52 | 1.10 | 1.17 | 3.83 |
33. | 19.17 | n-Octanol | 1552 | 1552 | - | - | - | 2.68 | 0.52 | - |
34. | 19.43 | (E,E)-3,5-Octadien-2-one | 1562 | 1562 | - | - | 1.12 | 0.34 | 0.63 | 0.25 |
35. | 19.87 | Bornyl acetate | 1579 | 1579 | - | - | 0.48 | 0.84 | 0.93 | - |
36. | 19.98 | (E)-6-Methyl-3,5-heptadien-2-one, | 1582 | 1584 | - | - | 0.61 | 0.75 | 0.74 | - |
37. | 20.22 | 4-Terpineol | 1597 | 1594 | - | - | 0.35 | - | 0.91 | 0.25 |
38. | 20.33 | Undecanal | 1598 | 1598 | - | 2.20 | 1.35 | - | 0.45 | - |
39. | 20.56 | Butyl octanoate | 1610 | 1608 | - | - | 0.45 | - | - | - |
40. | 20.61 | β-Cyclocitral | 1611 | 1610 | 1.98 | - | - | 1.43 | 1.02 | - |
41. | 20.83 | 1-Terpineol | 1621 | 1619 | - | - | - | - | 0.44 | - |
42. | 21.06 | Unidentified | 1629 | - | 1.52 | 0.91 | - | - | - | |
43. | 21.16 | Benzene acetaldehyde | 1633 | 1634 | 5.78 | - | 1.40 | 3.45 | 2.8 | 1.11 |
44. | 21.65 | 1-Nonanol | 1655 | 1654 | - | - | 0.31 | - | 0.96 | - |
45. | 21.98 | 4-Vinylanisole | 1670 | 1668 | - | - | - | 1.02 | 0.6 | - |
46. | 22.3 | 2,6,6-Trimethyl-2-cyclohexene-1,4-dione | 1677 | 1682 | - | - | - | 0.48 | - | - |
47. | 22.46 | α-Terpineol | 1688 | 1688 | - | - | 0.92 | 0.20 | 0.64 | 0.72 |
48. | 22.52 | endo-Borneol | 1691 | 1691 | - | - | - | - | 0.82 | 0.67 |
49. | 22.81 | Dodecanal | 1704 | 1703 | - | - | - | - | 0.36 | - |
50. | 22.96 | Butyl nonanoate | 1714 | 1710 | - | 2.71 | 0.84 | - | - | - |
51. | 23.66 | 3,6-Nonadien-1-ol, (E,Z)- | 1731 | 1731 | - | - | 1.23 | - | - | - |
52. | 23.78 | Unidentified | 1743 | - | - | 1.16 | 0.42 | 0.44 | - | |
53. | 23.97 | 1-Decanol | 1756 | 1755 | - | - | - | - | 0.41 | - |
54. | 24.98 | 2,4-Decadienal | 1806 | 1800 | - | - | 0.49 | - | - | |
55. | 25.17 | β-Damascenone | 1815 | 1809 | - | - | - | 0.51 | - | |
56. | 25.21 | Butyl decanoate | 1821 | 1821 | - | - | 0.71 | - | - | - |
57. | 25.75 | Geraniol | 1836 | 1836 | - | - | - | - | - | 0.45 |
58. | 25.82 | n-Hexanoic acid | 1840 | 1840 | - | - | 1.28 | 0.16 | 1.75 | |
59. | 25.96 | (Z) -Geranyl acetone | 1838 | 1846 | - | - | - | - | 0.34 | 0.46 |
60. | 26.34 | Benzyl Alcohol | 1864 | 1864 | 2.80 | - | - | 1.13 | 1.21 | 0.49 |
61. | 27.42 | Tetradecanal | 1911 | 1915 | - | - | - | 0.82 | - | - |
62. | 27.49 | Neophytadiene | 1922 | 1922 | 2.38 | - | - | 0.98 | 0.62 | 0.78 |
63. | 27.64 | trans-β-Ionone | 1926 | 1927 | 3.34 | 0.42 | 0.42 | 1.73 | 1.76 | 0.38 |
64. | 27.96 | 2-Ethyl-hexanoic acid | 1950 | 1943 | - | 0.63 | - | - | - | - |
65. | 28.73 | β-Ionone epoxide | 1977 | 1980 | 2.32 | - | - | 0.96 | 0.98 | 0.5 |
66. | 29.03 | Eicosane | 2000 | 1992 | - | - | - | - | 1.99 | - |
67. | 29.17 | Methyl eugenol | 2002 | 2002 | - | - | - | 1.98 | 0.89 | 0.38 |
68. | 29.54 | Pentadecanal | 2024 | 2021 | - | - | 3.40 | 0.87 | - | - |
69. | 30.14 | Octanoic acid | 2052 | 2052 | - | - | 0.46 | - | 0.5 | - |
70. | 30.34 | 4-Hydroxy-2-nonenoic acid lactone | 2068 | 2062 | - | - | - | - | 0.36 | - |
71. | 31.4 | Hexahydrofarnesyl acetone | 2114 | 2118 | 1.54 | - | 2.23 | 0.96 | 0.84 | 1.72 |
72. | 31.62 | 2-Hydroxy-4-methoxy-benzaldehyde | 2135 | 2130 | - | - | 0.56 | 0.52 | 1.79 | - |
73. | 31.79 | Unidentified | 2139 | 1.57 | - | - | 0.70 | 0.96 | 0.63 | |
74. | 32.06 | Eugenol | 2151 | 2151 | - | - | - | 1.87 | - | - |
75. | 32.15 | Nonanoic acid | 2158 | 2158 | - | - | 0.92 | 0.45 | 0.63 | - |
76. | 32.25 | 4-ethyl- Phenol | 2164 | 2164 | - | - | - | 1.03 | - | - |
77. | 32.59 | 2-Methoxy-4-vinylphenol | 2181 | 2182 | 2.92 | - | - | - | - | - |
78. | 32.65 | Unidentified | 2154 | 4.56 | - | - | 0.58 | 0.71 | - | |
79. | 33.11 | Methyl hexadecanoate | 2208 | 2208 | 2.57 | - | - | 0.46 | - | - |
80. | 33.21 | Elemicin | 2215 | 2215 | - | - | - | 0.36 | 1.84 | - |
81. | 33.31 | Butyl myristate | 2229 | 2221 | - | - | 0.41 | - | - | - |
82. | 33.78 | Ethyl hexadecanoate | 2246 | 2247 | - | 1.72 | - | - | - | - |
83. | 34.07 | n-Decanoic acid | 2264 | 2264 | - | - | 0.58 | - | 0.55 | - |
84. | 34.41 | Unidentified | 2283 | 3.44 | - | - | 0.42 | 0.46 | - | |
85. | 34.68 | n-Tricosane | 2300 | 2298 | - | 2.72 | - | 0.98 | 0.54 | 0.33 |
86. | 35.12 | Dihydroactinidiolide | 2324 | 2322 | 1.6 | - | 0.73 | 0.66 | 0.52 | 0.34 |
87. | 35.4 | Octadecanal | 2343 | 2340 | - | - | - | 0.32 | - | - |
88. | 38.9 | 1-Hexadecanol | 2365 | 2369 | - | - | - | 3.48 | - | - |
89. | 36.08 | 4-Vinylphenol | 2379 | 2379 | 3 | - | - | 1.37 | 1.25 | - |
90. | 36.21 | Isoelemicin | 2390 | 2387 | 2.59 | - | - | - | 1.16 | - |
91. | 36.37 | n-Tetracosane | 2396 | - | 3.81 | - | - | 1.08 | 0.28 | |
92. | 36.86 | Butyl hexadecanoate | 2419 | 2428 | - | 7.21 | 3.29 | 0.59 | - | 0.37 |
93. | 37.67 | Dodecanoic acid | 2451 | 2453 | - | - | - | 0.43 | 1.57 | - |
94. | 38.02 | n-Pentacosane | 2469 | - | 4.86 | 0.52 | 0.82 | 1.77 | 0.51 | |
95. | 38.81 | Vanillin | 2545 | 2544 | 1.61 | - | - | - | - | - |
96. | 38.91 | Methyl linolenate | 2550 | 2551 | - | - | - | 0.97 | - | - |
97. | 39.40 | 1-Octadecanol | 2581 | 2585 | - | - | - | 7.89 | - | - |
98. | 39.65 | n-Hexacosane | 2597 | - | 4.71 | 0.46 | 0.41 | 1.97 | 0.34 | |
99. | 39.74 | Phytol | 2603 | 2603 | 7.49 | - | - | 3.15 | 0.88 | - |
100. | 40.20 | n-Butyl octadecanoate | 2632 | - | 2.13 | - | - | - | - | |
101. | 41.19 | Tetradecanoic acid | 2698 | 2697 | 9.92 | 4.53 | 1.47 | 0.15 | 1.95 | 1.72 |
102. | 42.68 | n-Octacosane | 2794 | - | 5.32 | 0.87 | 1.09 | - | 0.56 | |
103. | 44.13 | n-Hexadecanoic acid | 2899 | 2898 | - | 3.61 | 0.47 | 0.65 | 1.67 | 0.29 |
104. | 45.53 | n-Triacontane | 3000 | 2999 | 8.58 | 3.14 | 2.63 | 4.29 | 2.86 | 0.42 |
105. | 46.80 | n-Hentriacontane | 3100 | 3099 | - | 1.86 | - | - | 0.92 | - |
Total | 82.85 | 96.88 | 85.17 | 90.05 | 88.9 | 93.05 | ||||
Monoterpene hydrocarbons | - | 2.50 | 9.08 | 11.73 | 15.56 | 68.47 | ||||
Oxygenated monoterpene | 11.83 | 7.23 | 4.38 | 14.93 | 18.06 | 6.20 | ||||
Sesquiterpene hydrocarbons | 1.54 | - | 2.23 | 0.96 | 0.84 | 1.72 | ||||
Oxygenated sesquiterpene | - | - | - | - | - | - | ||||
Alcohols | 12.49 | 5.27 | 12.04 | 22.90 | 8.62 | 2.38 | ||||
Aldehydes and ketones | 15.61 | 16.31 | 30.56 | 20.81 | 11.38 | 5.20 | ||||
Fatty acids and their esters | 13.36 | 29.30 | 11.61 | 3.86 | 17.60 | 4.20 | ||||
Others | 69.48 | 87.15 | 69.48 | 62.43 | 53.90 | 16.66 |
Samples | PM (mmol TE/g Oil) | DPPH (mg TE/g Oil) | ABTS (mg TE/g Oil) | CUPRAC (mg TE/g Oil) | FRAP (mg TE/g Oil) | FIC (mg EDTAE/g Oil) |
---|---|---|---|---|---|---|
A. sieversianus | 0.85 ± 0.09 b | 9.11 ± 0.33 d | 51.66 ± 2.42 e | 56.80 ± 0.25 c | 30.65 ± 2.08 c | 36.01 ± 0.46 b |
A. mucidus | 1.57 ± 0.08 a | 15.95 ± 0.25 c | 91.54 ± 1.97 a | 72.46 ± 2.29 b | 38.11 ± 1.19 b | 18.11 ± 0.22 c |
A. macronyx | 0.95 ± 0.04 b | 24.12 ± 2.24 a | 82.65 ± 4.94 b | 80.28 ± 2.65 a | 49.02 ± 2.32 a | 38.00 ± 0.88 b |
A. lehmannianus | 1.31 ± 0.12 a | 21.90 ± 0.76 ab | 69.58 ± 5.04 c | 84.06 ± 0.57 a | 49.47 ± 0.13 a | 4.03 ± 0.41 d |
A. chiwensis | 0.97 ± 0.17 b | 18.62 ± 1.36 bc | 57.84 ± 0.15 de | 70.73 ± 2.22 b | 39.03 ± 1.63 b | 11.74 ± 0.97 c |
A. campylotrichus | 0.81 ± 0.07 b | 15.19 ± 1.53 c | 64.61 ± 1.74 cd | 67.78 ± 0.83 b | 39.27 ± 0.75 b | 51.69 ± 5.94 a |
Samples | AChE Inhibition (mg GALAE/g Oil) | BChE Inhibition (mg GALAE/g Oil) | Tyrosinase Inhibition (mg KAE/g Oil) | Amylase Inhibition (mmol ACAE/g Oil) |
---|---|---|---|---|
A. sieversianus | 4.55 ± 0.09 a | 3.61 ± 0.33 a | 118.20 ± 3.53 d | 0.84 ± 0.04 a,b |
A. mucidus | 4.48 ± 0.04 a | 3.61 ± 0.33 a | 124.75 ± 1.23 c | 0.90 ± 0.02 a |
A. macronyx | 4.01 ± 0.13 b | 1.04 ± 0.09 d | 132.14 ± 0.81 b | 0.89 ± 0.04 a,b |
A. lehmannianus | 4.51 ± 0.07 a | 3.12 ± 0.36 a,b | 138.42 ± 0.66 a | 0.95 ± 0.09 a |
A. chiwensis | 4.52 ± 0.07a | 2.79 ± 0.25 b,c | 132.79 ± 1.04 b | 0.76 ± 0.04 b |
A. campylotrichus | 4.11 ± 0.15 b | 2.08 ± 0.34 c | 131.80 ± 1.11 b | 0.85 ± 0.09 a,b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gad, H.A.; Mamadalieva, N.Z.; Böhmdorfer, S.; Rosenau, T.; Zengin, G.; Mamadalieva, R.Z.; Al Musayeib, N.M.; Ashour, M.L. GC-MS Based Identification of the Volatile Components of Six Astragalus Species from Uzbekistan and Their Biological Activity. Plants 2021, 10, 124. https://doi.org/10.3390/plants10010124
Gad HA, Mamadalieva NZ, Böhmdorfer S, Rosenau T, Zengin G, Mamadalieva RZ, Al Musayeib NM, Ashour ML. GC-MS Based Identification of the Volatile Components of Six Astragalus Species from Uzbekistan and Their Biological Activity. Plants. 2021; 10(1):124. https://doi.org/10.3390/plants10010124
Chicago/Turabian StyleGad, Haidy A., Nilufar Z. Mamadalieva, Stefan Böhmdorfer, Thomas Rosenau, Gokhan Zengin, Rano Z. Mamadalieva, Nawal M. Al Musayeib, and Mohamed L. Ashour. 2021. "GC-MS Based Identification of the Volatile Components of Six Astragalus Species from Uzbekistan and Their Biological Activity" Plants 10, no. 1: 124. https://doi.org/10.3390/plants10010124
APA StyleGad, H. A., Mamadalieva, N. Z., Böhmdorfer, S., Rosenau, T., Zengin, G., Mamadalieva, R. Z., Al Musayeib, N. M., & Ashour, M. L. (2021). GC-MS Based Identification of the Volatile Components of Six Astragalus Species from Uzbekistan and Their Biological Activity. Plants, 10(1), 124. https://doi.org/10.3390/plants10010124