Anacyclus pyrethrum var. pyrethrum (L.) and Anacyclus pyrethrum var. depressus (Ball) Maire: Correlation between Total Phenolic and Flavonoid Contents with Antioxidant and Antimicrobial Activities of Chemically Characterized Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction Yield
2.2. Phytochemical Characterization of Plant Extracts
2.3. Mineral Analysis
2.4. Antioxidant Content
2.5. Antioxidant Activity
2.6. Antibacterial Activity
2.7. Multivariable Analysis
3. Materials and Methods
3.1. Plant Material
3.2. Preparation of Extracts
3.3. Extraction Yield
3.4. Phytochemical Characterization
3.5. Mineral Analysis
3.6. Determination of Total Content of Phenolic Compounds
3.7. Determination of Flavonoid Contents
3.8. Estimation of Antioxidant Capacity by Phosphomolybdate Assay (TAC)
3.9. Evaluation of Antioxidant Activity
3.10. Evaluation of Antibacterial Activities
3.10.1. The Agar Diffusion Method
3.10.2. The Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
3.11. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviation
A. P var. pyrethrum | Anacyclus pyrethrum var. pyrethrum (L.) |
A. P var. depressus | Anacyclus pyrethrum var. depressus (Ball) |
Rm | Anacyclus pyrethrum var. pyrethrum roots |
Gm | Anacyclus pyrethrum var. pyrethrum seeds |
Fm | Anacyclus pyrethrum var. pyrethrum leaves |
Cm | Anacyclus pyrethrum var. pyrethrum capitula |
Rm | Anacyclus pyrethrum var. depressus roots |
Gm | Anacyclus pyrethrum var. depressus seeds |
Fm | Anacyclus pyrethrum var. depressus leaves |
Cm | Anacyclus pyrethrum var. depressus capitula |
MIC | Minimum Inhibitory Concentration |
MBC | Minimum Bactericidal Concentration |
References
- Dias, D.A.; Urban, S.; Roessner, U. A Historical Overview of Natural Products in Drug Discovery. Metabolites 2012, 2, 303–336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mushtaq, S.; Abbasi, B.H.; Uzair, B.; Abbasi, R. Natural products as reservoirs of novel therapeutic agents. EXCLI J. 2018, 17, 420–451. Available online: https://www.excli.de/vol17/Abbasi_04052018_proof.pdf (accessed on 5 October 2020). [PubMed]
- Cole, L.; Kramer, P.R. Bacteria, Virus, Fungi, and Infectious Diseases. In Human Physiology, Biochemistry and Basic Medicine; Elsevier: Amsterdam, The Netherlands, 2016; pp. 193–196. Available online: https://linkinghub.elsevier.com/retrieve/pii/B9780128036990000402 (accessed on 5 October 2020).
- Liguori, I.; Russo, G.; Curcio, F.; Bulli, G.; Aran, L.; Della-Morte, D.; Gargiulo, G.; Testa, G.; Cacciatore, F.; Bonaduce, D.; et al. Oxidative stress, aging, and diseases. Clin. Interv. Aging 2018, 13, 757–772. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Angiolella, L.; Sacchetti, G.; Efferth, T. Antimicrobial and Antioxidant Activities of Natural Compounds. Evid. Based Complement. Altern. Med. 2018, 2018, 1945179. [Google Scholar] [CrossRef] [PubMed]
- Faleiro, M.L.; Miguel, G. Antimicrobial and Antioxidant Activities of Natural Compounds: Enhance the Safety and Quality of Food. Foods 2020, 9, 1145. [Google Scholar] [CrossRef] [PubMed]
- Humphries, C.J. A revision of the genus Anacyclus L. (Compositae: Anthemideae). Bull Br. Mus. Nat. Hist 1979, 7, 83–142. [Google Scholar]
- Ouarghidi, A.; Powell, B.; Martin, G.J.; Abbad, A. Traditional Sustainable Harvesting Knowledge and Distribution of a Vulnerable Wild Medicinal Root (A. pyrethrum var. pyrethrum) in Ait M’hamed Valley, Morocco. Econ. Bot. 2017, 71, 83–95. [Google Scholar] [CrossRef]
- Fennane, M. Eléments Pour un Livre Rouge de la Flore Vasculaire du Maroc. Fasc. 3. Asteraceae Version 1; Tela-Botanica: Montpellier, France, 2017; Volume 3, pp. 1–48. [Google Scholar]
- Fennane, M.; Ibn Tattou, M.; El Oualidi, J. Flore Pratique du Maroc—Volume 3; Institut Scientifique: Rabat, Morocco, 2014; Volume 40, p. 793. Available online: https://www.amazon.fr/Flore-pratique-du-Maroc-3/dp/2366621000 (accessed on 21 August 2019).
- Mohammadi, A.; Mansoori, B.; Baradaran, P.C.; Baradaran, S.C.; Baradaran, B. Anacyclus Pyrethrum Extract Exerts Anticancer Activities on the Human Colorectal Cancer Cell Line (HCT) by Targeting Apoptosis, Metastasis and Cell Cycle Arrest. J. Gastrointest. Cancer 2016, 48, 333–340. [Google Scholar] [CrossRef]
- Sharma, V.; Boonen, J.; De Spiegeleer, B.; Dixit, V.K. Androgenic and Spermatogenic Activity of Alkylamide-Rich Ethanol Solution Extract ofAnacyclus pyrethrumDC. Phytother. Res. 2012, 27, 99–106. [Google Scholar] [CrossRef]
- Boonen, J.; Sharma, V.; Dixit, V.K.; Burvenich, C.; De Spiegeleer, B. LC-MS N-alkylamide Profiling of an Ethanolic Anacyclus pyrethrum Root Extract. Planta Medica 2012, 78, 1787–1795. [Google Scholar] [CrossRef] [Green Version]
- Sujith, K.; Darwin, C.R.; Suba, V. Antioxidant Activity of Ethanolic Root Extract of Anacyclus pyrethrum. Int. Res. J. Pharm. 2011, 2, 222–226. [Google Scholar]
- Pahuja, M.; Mehla, J.; Reeta, K.H.; Tripathi, M.; Gupta, Y.K. Effect of Anacyclus pyrethrum on Pentylenetetrazole-Induced Kindling, Spatial Memory, Oxidative Stress and Rho-Kinase II Expression in Mice. Neurochem. Res. 2013, 38, 547–556. [Google Scholar] [CrossRef]
- Sharma, V.; Thakur, M.; Chauhan, N.S.; Dixit, V.K. Immunomodulatory activity of petroleum ether extract of Anacyclus pyrethrum. Pharm. Biol. 2010, 48, 1247–1254. [Google Scholar] [CrossRef] [PubMed]
- Doudach, L.; Meddah, B.; Alnamer, R.; Chibani, F.; Cherrah, Y. In vitro antibacterial activity of the methanolic and aqueous extracts of Anacyclus pyrethrum used in moroccan traditional medicine. Int. J. Pharm. Pharm. Sci. 2012, 4, 402–405. [Google Scholar]
- Kushwaha, M.; Vijay, S. Plant Anacyclus pyrethrum—A Review. Res. J. Pharmacogn. Phytochem. 2012, 4, 164–170. [Google Scholar]
- Pahuja, M.; Mehla, J.; Reeta, K.; Joshi, S.; Gupta, Y.K. Root extract of Anacyclus pyrethrum ameliorates seizures, seizure-induced oxidative stress and cognitive impairment in experimental animals. Epilepsy Res. 2012, 98, 157–165. [Google Scholar] [CrossRef]
- Selles, C.; Benali, O.; Tabti, B.; Larabi, L.; Harek, Y. Green corrosion inhibitor: Inhibitive action of aqueous extract of Anacyclus pyrethrum L. for the corrosion of mild steel in 0.5 M H2SO4. J. Mater. Environ. Sci. 2012, 3, 206–219. [Google Scholar]
- Tyagi, S.; Mansoori, M.H.; Singh, N.K.; Shivhare, M.K.; Bhardwaj, P.; Singh, R.K. Antidiabetic Effect of Anacyclus pyrethrum DC in Alloxan Induced Diabetic Rats. Eur. J. Biol. Sci. 2011, 3, 117–120. [Google Scholar]
- Bendjeddou, D.; Lalaoui, K.; Satta, D. Immunostimulating activity of the hot water-soluble polysaccharide extracts of Anacyclus pyrethrum, Alpinia galanga and Citrullus colocynthis. J. Ethnopharmacol. 2003, 88, 155–160. [Google Scholar] [CrossRef]
- Bellakhdar, J. Plantes Médicinales au Maghreb et Soins de Base: Précis de Phytothérapie Moderne; Éditions le Fennec: Casablanca, Morocco, 2006. [Google Scholar]
- Hamimed, S. Caractérisation Chimique Des Principes à Effet Antidermatophyte Des Racines d’Anacyclus pyrethrum L. Bachelor’s Thesis, Universite Mentouri Constantine Faculte Des Sciences Exactes Departement De Chimie, Constantine, Algeria, 2009. [Google Scholar]
- Ku, S.-K.; Lee, I.-C.; Kim, J.A.; Bae, J. Antithrombotic activities of pellitorine in vitro and in vivo. Fitoterapia 2013, 91, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Ee, G.C.L.; Lim, C.M.; Rahmani, M.; Shaari, K.; Bong, C.F.J. Pellitorine, a Potential Anti-Cancer Lead Compound against HL60 and MCT-7 Cell Lines and Microbial Transformation of Piperine from Piper Nigrum. Molecules 2010, 15, 2398–2404. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.; Ku, S.-K.; Min, B.-W.; Lee, S.; Jee, J.-G.; Kim, J.A.; Bae, J.-S. Vascular barrier protective effects of pellitorine in LPS-induced inflammation in vitro and in vivo. Fitoterapia 2014, 92, 177–187. [Google Scholar] [CrossRef]
- Elufioye, T.O.; Habtemariam, S.; Adejare, A. Chemistry and Pharmacology of Alkylamides from Natural Origin. Rev. Bras. Farm. 2020, 30, 622–640. [Google Scholar] [CrossRef] [PubMed]
- Rajendran, R.; Narashimman, B.S.; Trivedi, V.; Chaturvedi, R. Isolation and quantification of antimalarial N-alkylamides from flower-head derived in vitro callus cultures of Spilanthes paniculata. J. Biosci. Bioeng. 2017, 124, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Jiang, K.; Xing, Y.; Quan, Q.; Sun, Q.; Tian, J.; Liu, C.; Song, X.; Wang, X.; Liu, Y. Synthesis and biological evaluation of N-Alkylamide derivatives as anti-tumor agents. J. Tradit. Chin. Med Sci. 2020, 7, 393–403. [Google Scholar] [CrossRef]
- Katariya, D.; Ashid, M.; Sharma, B.K.; Joshi, A. Synthesis, Characterization and Biological Activity of Some Indole Substituted Propanoic Acid. J. Chem. Chem. Sci. 2019, 9, 206–213. [Google Scholar] [CrossRef]
- Rao, P.V.; Gan, S.H. Cinnamon: A Multifaceted Medicinal Plant. Evid. Based Complement. Altern. Med. 2014, 2014, 24817901. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mollazadeh, H.; Hosseinzadeh, H. Cinnamon effects on metabolic syndrome: A review based on its mechanisms. Iran. J. Basic Med. Sci. 2016, 19, 1258–1270. [Google Scholar] [PubMed]
- Sahib, A.S. Antidiabetic and Antioxidant Effect of Cinnamon in poorly Controlled Type-2 Diabetic Iraqi Patients: A Randomized, Placebo-Controlled Clinical Trial. J. Intercult. Ethnopharmacol. 2016, 5, 108–113. [Google Scholar] [CrossRef]
- Hafizur, R.M.; Hameed, A.; Shukrana, M.; Raza, S.A.; Chishti, S.; Kabir, N.; Siddiqui, R.A. Cinnamic acid exerts anti-diabetic activity by improving glucose tolerance in vivo and by stimulating insulin secretion in vitro. Phytomedicine 2015, 22, 297–300. [Google Scholar] [CrossRef]
- Yilmaz, S.; Sova, M.; Ergün, S. Antimicrobial activity of trans -cinnamic acid and commonly used antibiotics against important fish pathogens and nonpathogenic isolates. J. Appl. Microbiol. 2018, 125, 1714–1727. [Google Scholar] [CrossRef] [PubMed]
- Rackemann, D.; Doherty, W.O. The conversion of lignocellulosics to levulinic acid. Biofuels Bioprod. Biorefining 2011, 5, 198–214. [Google Scholar] [CrossRef] [Green Version]
- Aggarwal, N.; Mishra, P. Synthesis and evaluation of 4-substituted semicarbazones of levulinic acid for anticonvulsant activity. J. Zhejiang Univ. Sci. B 2005, 6, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Licursi, D.; Antonetti, C.; Mattonai, M.; Pérez-Armada, L.; Rivas, S.; Ribechini, E.; Galletti, A.M.R. Multi-valorisation of giant reed (Arundo donax L.) to give levulinic acid and valuable phenolic antioxidants. Ind. Crops Prod. 2018, 112, 6–17. [Google Scholar] [CrossRef]
- Adeleye, A.T.; Louis, H.; Akakuru, O.U.; Joseph, I.; Enudi, O.C.; Michael, D.P. A Review on the conversion of levulinic acid and its esters to various useful chemicals. AIMS Energy 2019, 7, 165–185. [Google Scholar] [CrossRef]
- Zhou, M.; Doyle, M.P.; Chen, D. Combination of levulinic acid and sodium dodecyl sulfate on inactivation of foodborne microorganisms: A review. Crit. Rev. Food Sci. Nutr. 2019, 60, 2526–2531. [Google Scholar] [CrossRef]
- Verpoorte, R.; Fleurentin, J.; Pelt, J.-M.; Mazars, G. La pharmacognosie du nouveau millénaire: Pistes et biotechnologie. In Des Sources du Savoir Aux Médicaments du Futur; OpenEdition: Marseille, France, 2002; pp. 263–274. [Google Scholar]
- Kislay Awasthi, R.C. Gupta, Abbas Ali Mahdi. An Investigation into Anti-Dyslipidemic Activity of Isovaleric Acid in Wistar Rats Fed Fructose-Rich High Fat Diet. J. Med. Sci. Clin. Res. 2019, 7. Available online: http://jmscr.igmpublication.org/v7-i5/20%20jmscr.pdf (accessed on 18 October 2020).
- Eadie, M.J. Could Valerian Have Been the First Anticonvulsant? Epilepsia 2004, 45, 1338–1343. [Google Scholar] [CrossRef]
- David, L.L.; Michael, P.K. Analgesic Narcotic Antagonists. 4,7-Methyl-N-(cycloalkylmet hyl)-3-hydroxymorp hinan-6-ones and -isomorphinan-6-ones. J. Med. Chem. 1980, 23, 1427–1431. [Google Scholar]
- Ben Haddou, T.; Malfacini, D.; Calo’, G.; Aceto, M.D.; Harris, L.S.; Traynor, J.R.; Coop, A.; Schmidhammer, H.; Spetea, M. Exploring Pharmacological Activities and Signaling of Morphinans Substituted in Position 6 as Potent Agonists Interacting with the μ Opioid Receptor. Mol. Pain 2014, 10, 48. [Google Scholar] [CrossRef] [Green Version]
- Donadu, M.G.; Le, N.T.; Ho, D.V.; Doan, T.Q.; Le, A.T.; Raal, A.; Usai, M.; Marchetti, M.; Sanna, G.; Madeddu, S.; et al. Phytochemical Compositions and Biological Activities of Essential Oils from the Leaves, Rhizomes and Whole Plant of Hornstedtia bella Škorničk. Antibiotics 2020, 9, 334. [Google Scholar] [CrossRef] [PubMed]
- Hmamouchi, M. Les plantes Médicinales et Aromatiques Marocaines: Utilisation, Biologie, Écologie, Chimie, Pharmacologie, Toxicologie, Lexiques. Bibliographie du Patrimoine Culturel Immatériel. 1999. Available online: http://www.idpc.ma/view/documentation/bibliopci:35?titleinitial=h&num=3 (accessed on 23 August 2019).
- Cherrat, A.; Amalich, S.; Regragui, M.; Bouzoubae, A.; Elamrani, M.; Mahjoubi, M.; Bourakhouadar, M.; Zair, T. Polyphenols content and evaluation of antioxidant activity of Anacyclus pyrethrum (L.) lag. from timahdite a moroccan middle atlas region. Int. J. Adv. Res. 2017, 5, 569–577. [Google Scholar] [CrossRef] [Green Version]
- Amine, D.; Mohamed, B.; Jamal, I.; Laila, N. Antibacterial Activity of Aqueous Extracts of Anacyclus pyrethrum (L.) Link and Corrigiola Telephiifolia Pourr. From the Middle Atlas Region-Morocco. Eur. Sci. J. ESJ 2017, 13, 13. [Google Scholar] [CrossRef] [Green Version]
- Bellakhdar, J. Contribution à l’étude de la pharmacopée traditionnelle au maroc: La situation actuelle, les produits’ les sources du savoir. Ph.D. Thesis, University of Lorraine, Lorraine, France, 1997. [Google Scholar]
- Elazzouzi, H.; Soro, A.; Elhilali, F.; Bentayeb, A.; Belghiti, M.A.E. Phytochemical study of Anacyclus pyrethrum (L.) of Middle Atlas (Morocco), and in vitro study of antibacterial activity of pyrethrum. Adv. Nat. Appl. Sci. 2014, 8, 131. [Google Scholar]
- Canlı, K.; Yetgin, A.; Akata, I.; Altuner, E.M. Antimicrobial Activity and Chemical Composition Screening of Anacyclus pyrethrum Root. Indian J. Pharm. Educ. Res. 2017, 51, s244–s248. [Google Scholar] [CrossRef]
- Jalayer Naderi, N.; Niakan, M.; Khodadadi, E. Determination of Antibacterial Activity of Anacyclus pyrethrum Extract against Some of the Oral Bacteria: An In Vitro Study. J. Dent. 2012, 13, 5. [Google Scholar]
- Selles, C.; Djabou, N.; Beddou, F.; Muselli, A.; Tabti, B.; Costa, J.; Hammouti, B.; Hammouti, B. Antimicrobial activity and evolution of the composition of essential oil from Algerian Anacyclus pyrethrum L. through the vegetative cycle. Nat. Prod. Res. 2013, 27, 2231–2234. [Google Scholar] [CrossRef] [PubMed]
- Singh, D.K. Antioxidant and Antibacterial Activities of Ethanolic Extract of Therapeutically Important Plant, Anacyclus pyrethrum. Botanica 2017, 67, 67–71. [Google Scholar]
- Kumar, V.K.; Lalitha, K.G. Acute Oral Toxicity Studies of Anacyclus Pyrethrum Dc Root in Albino Rats. Int. J. Pharm. Pharm. Sci. 2013, 5, 675–678. [Google Scholar]
- Imtara, H.; Elamine, Y.; Lyoussi, B. Physicochemical characterization and antioxidant activity of Palestinian honey samples. Food Sci. Nutr. 2018, 6, 2056–2065. [Google Scholar] [CrossRef]
- Falleh, H.; Ksouri, R.; Chaieb, K.; Karray-Bouraoui, N.; Trabelsi, N.; Boulaaba, M.; Abdelly, C. Phenolic composition of Cynara cardunculus L. organs, and their biological activities. C. R. Biol. 2008, 331, 372–379. [Google Scholar] [CrossRef]
- Kabran, G.R.; Mamyrbékova-Békro, J.A.; Pirat, J.; Bekro, Y.; Sommerer, N.; Verbaere, A.; Meudec, E. Identification de composés phénoliques extraits de deux plantes de la pharmacopée ivoirienne. J. Société Ouest Afr. Chim. 2014, 38, 57–63. [Google Scholar]
- el Hajaji, H.; Farah, A.; Ennabili, A.; Bousta, D.; Greche, H.; el Bali, B.; Lachkar, M. Etude comparative de la composition minérale des constituants de trois catégories de Ceratonia siliqua L. (Comparative study of the mineral composition of the constituents of three varieties of Ceratonia siliqua L.). J. Mater. Environ. Sci. 2013, 4, 165–170. [Google Scholar]
- Singleton, V.L.; Rossi, J.A., Jr. Colorimetry of total phenolics with phosphomolybdic phosphotungstic acid reagents. Am. J. Enol. Vitic. 1964, 16, 144–158. [Google Scholar]
- Miguel, M.G.; Nunes, S.; Dandlen, S.A.; Cavaco, A.M.; Antunes, M.D. Phenols and antioxidant activity of hydro-alcoholic extracts of propolis from Algarve, South of Portugal. Food Chem. Toxicol. 2010, 48, 3418–3423. [Google Scholar] [CrossRef] [PubMed]
- Imtara, H.; Al-Waili, N.S.; Bakour, M.; Al-Waili, W.; Lyoussi, B. Evaluation of antioxidant, diuretic, and wound healing effect of Tulkarm honey and its effect on kidney function in rats. Veter. World 2018, 11, 1491–1499. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Daraghmeh, J.; Imtara, H. In Vitro Evaluation of Palestinian Propolis as a Natural Product with Antioxidant Properties and Antimicrobial Activity against Multidrug-Resistant Clinical Isolates. J. Food Qual. 2020, 2020, 1–10. [Google Scholar] [CrossRef]
- Oyaizu, M. Studies on products of browning reaction. Antioxidative activities of products of browning reaction prepared from glucosamine. Jpn. J. Nutr. Diet. 1986, 44, 307–315. [Google Scholar] [CrossRef] [Green Version]
- Imtara, H.; Elamine, Y.; Lyoussi, B. Honey Antibacterial Effect Boosting Using Origanum vulgare L. Essential Oil. Evid. Based Complement. Altern. Med. 2018, 2018, 7842583. [Google Scholar] [CrossRef]
A. P var. pyrethrum | |||
---|---|---|---|
Parts | Aspects | Colors | Yield |
Roots | Pasty | Brown | 16% |
Leaves | Pasty | Green | 14% |
Seeds | Pasty | Brown | 10% |
Capitula | Pasty | Brown | 14% |
A. P var. depressus | |||
Parts | Aspects | Colors | Yield |
Roots | Pasty | Brown | 13% |
Leaves | Pasty | Green | 11% |
Seeds | Pasty | Brown | 10% |
Capitula | Pasty | Brown | 6% |
N° | RT | m/z Quasi-Molecular Peak | Structural Formula | Compounds | % Area | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A. P var. pyrethrum | A. P var. depressus | |||||||||||
Roots (Rm) | Seeds (Gm) | Leaves (Fm) | Capitula (Cm) | Roots (Rf) | Seeds (Gf) | Leaves (Ff) | Capitula (Cf) | |||||
1 | 4.35 | 231(M + H)+ | C15H19NO | (2,4)-N-isobutyl-2,4-undecadiene-8,10-diynamide | 0.97 | 0.76 | 2.29 | - | 4.84 | 2.20 | 7.07 | - |
2 | 4.92 | 246(M)+ | C16H25ON | N-isobutyl-dodeca-2,4,8,10-tetraenamide | 6.79 | 4.44 | 9.45 | 15.91 | 14.14 | 11.41 | 9.15 | 0.57 |
3 | 6.12 | 241(M)+ | C9H14F3NO3 | Sarcosine, N-(trifluoroacetyl)-, butyl ester | 2.65 | 0.65 | 4.26 | - | 6.08 | 4.88 | 11.99 | - |
4 | 6.44 | 153(M)+ | C4H3N5S | Thiadiazolo[5,4-d]pyrimidin-7-amine | - | - | - | - | 0.74 | - | - | - |
5 | 6.98 | 193(M + H)+ | C12H17ON | N-isobutyl-2,4-octadiene-6-monoynamide | 0.76 | 0.68 | 0.68 | 0.74 | 0.69 | 2.04 | 0.82 | - |
6 | 7.71 | 116(M)+ | C5H8O3 | Levulinic acid | 37.47 | 50.45 | 7.01 | 3.66 | 15.90 | 14.84 | 17.74 | 30.01 |
7 | 8.43 | 104(M)+ | C3H4O4 | Malonic Acid | 8.48 | 6.39 | 16.86 | 6.50 | 6.98 | 11.50 | 8.42 | - |
8 | 8.77 | 177(M)+ | C11H15ON | N-isobutyl-2,4-heptadiene-6-monoynamide | - | 1.52 | 6.29 | - | - | - | - | - |
9 | 9.38 | 256(M) | C16H32O2 | Palmitic Acid | 2.85 | 2.75 | 3.17 | 8.34 | 5.30 | 7.29 | 3.44 | 0.77 |
10 | 9.65 | 285(M)+ | C17H19NO3 | Morphinan-6-One, 4,5α-Epoxy-3-Hydroxy-17-Methyl | 2.17 | 1.31 | 2.86 | 4.93 | 2.21 | 2.00 | 1.65 | - |
11 | 10.62 | 147(M + H)+ | C9H8O2 | Cinnamic acid | - | - | 10.53 | - | - | - | - | - |
12 | 10.75 | 278(M + H)+ | C18H31NO | 2,4)-undecadiene-8,10-diyne-N-tyramide | 11.09 | 5.34 | 16.50 | 46.07 | 23.61 | 13.32 | 14.15 | 1.58 |
13 | 11.64 | 271(M)+ | C18H25NO | N-isobutyl-dodeca-2,4,8,10-tetraenamide (Anacycline) | 2.94 | 8.63 | - | - | - | 0.62 | 0.69 | 64.27 |
14 | 12.12 | 221(M)+ | C14H23NO | N-isobutyl-2,6,8-decatrienamide | 0.63 | - | 2.06 | - | 2.01 | - | 3.36 | - |
15 | 12.61 | 223(M)+ | C14H25NO | (2E,4E)-N-(2-methylpropyl)deca-2,4-dienamide (Pellitorine) | 1.16 | 6.04 | 0.78 | - | 2.73 | 13.21 | 2.49 | - |
16 | 12.94 | 274(M + H)+ | C18H27NO | Tetradeca-2E-diny-8,10-diynoic acid IBA | 0.77 | - | 0.59 | 2.72 | 3.61 | 1.28 | - | - |
17 | 13.39 | 270(M + H)+ | C18H23NO | Tetradeca-2E,4E, nE-trienoic-8,10-diynoic acid IBA | - | 2.85 | 1.86 | - | - | 6.61 | - | - |
18 | 13.67 | 102(M)+ | C5H10O2 | Isovaleric acid | 1.28 | 4.13 | 4.14 | - | 0.74 | 0.75 | 1.30 | - |
19 | 13.80 | 243(M)+ | C16H21NO | N-isobutyl-2,4-undecadiene-8,10-diynamide | - | - | - | - | 2.41 | - | 1.95 | - |
20 | 14.10 | 313(M)+ | C20H27NO2 | Dodeca-2E,4E, nE-trienoic acid 4-hydroxyphenylethylamide | 3.54 | 1.15 | 1.58 | 2.08 | 2.01 | 1.27 | 3.78 | - |
21 | 14.57 | 251(M)+ | C16H29NO | 2, 8)-N-isobutyl-2,8-dodecadienamide | 0.87 | - | 1.19 | 1.19 | 0.96 | - | 1.97 | 0.75 |
22 | 15.15 | 341(M)+ | C22H31NO2 | Tetradeca-2E,4E,8Etrienoic acid 4-hydroxyphenylethylamide | 0.61 | - | 0.82 | - | 1.06 | - | 2.06 | - |
Ca mg/kg | Cu mg/kg | Fe mg/kg | K mg/kg | Mg mg/kg | Mn mg/kg | Na mg/kg | P mg/kg | Bi mg/kg | Se mg/kg | Zn mg/kg | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|
A. P var. pyrethrum (L.) | Roots (Rm) | 38,643 | 96.36 | 5221.8 | 17,239 | 4956.66 | 129.12 | 610.88 | 31,577 | 1.19 | 20.45 | 487.45 |
Capitula (Cm) | 23,995 | 136.8 | 4071.9 | 18,709 | 4982.64 | 102.64 | 280.05 | 14,252 | <1 | 20.28 | 152.65 | |
Seeds (Gm) | 35,031 | 1490.6 | 34,645 | 14,908 | 4920.43 | 294.79 | 600.65 | 61,582 | <1 | <1 | 437.35 | |
Leaves (Fm) | 88,529 | 29.12 | 6948.2 | 12,955 | 4921.91 | 263.88 | 221.46 | 9411.7 | 2.97 | 20.58 | 185.52 | |
A. P var. depressus (Ball) Maire | Roots (Rf) | 88,515 | 42.84 | 5333.7 | 6893.4 | 4879.92 | 157.26 | 188.96 | 9554.2 | 4.64 | 19.76 | 180.87 |
Capitula (Cf) | 29,437 | 349.33 | 9476 | 16,266 | 4968.11 | 137.91 | 578.88 | 12,954 | 3.55 | 16,59 | 165.62 | |
Seeds (Gf) | 45,492 | 2171.4 | 38,371 | 6139.3 | 4921.92 | 305.8 | 507.49 | 36,385 | <1 | <1 | 377.98 | |
Leaves (Ff) | 88,533 | 302.7 | 12,414 | 7259.1 | 4888.24 | 236.3 | 191.17 | 5145.4 | <1 | 14.05 | 174.36 |
Samples | Total Phenolic (mg GAE/g) | Flavone and Flavanol Content (mg QE/g) | |
---|---|---|---|
A. P var. pyrethrum(L.) | Roots (Rm) | 25.96 ± 1.93 | 0.88 ± 0.02 |
Capitula (Cm) | 26.46 ± 1.19 | 5.47 ± 0.07 | |
Seeds (Gm) | 44.05 ± 1.84 | 2.40 ± 0.03 | |
Leaves (Fm) | 51.78 ± 0.49 | 13.53 ± 0.05 | |
A. P var. depressus (Ball) Maire | Roots (Rf) | 5.44 ± 0.21 | 2.40 ± 0.02 |
Capitula (Cf) | 15.21 ± 1.19 | 3.47 ± 0.07 | |
Seeds (Gf) | 38.44 ± 2.19 | 3.88 ± 0.24 | |
Leaves (Ff) | 38.75 ± 2.91 | 9.57 ± 0.02 |
Samples | TAC (mg AA/g) | DPPH (IC50 = mg/mL) | ABTS (IC50 = mg/mL) | Reducing Power (IC50 = mg/mL) | |
---|---|---|---|---|---|
A. P var. pyrethrum | Roots (Rm) | 708.74 ± 11.63 | 0.18 ± 0.005 | 0.14 ± 0.001 | 1.19 ± 0.005 |
Capitula (Cm) | 203.00 ± 3.84 | 0.16 ± 0.013 | 0.07 ± 0.001 | 1.08 ± 0.013 | |
Seeds (Gm) | 577.84 ± 4.65 | 0.05 ± 0.0003 | 0.05 ± 0.0008 | 0.49 ± 0.0004 | |
Leaves (Fm) | 508.45 ± 9.77 | 0.04 ± 0.001 | 0.03 ± 0.0004 | 0.38 ± 0.005 | |
A. P var. depressus | Roots (Rf) | 542.16 ± 4.88 | 0.07 ± 0.0007 | 0.05 ± 0.001 | 0.38 ± 0.005 |
Capitula (Cf) | 160.33 ± 10.23 | 0.08 ± 0.023 | 0.05 ± 0.0009 | 0.59 ± 0.007 | |
Seeds (Gf) | 521.77 ± 4.88 | 0.04 ± 0.001 | 0.05 ± 0.001 | 0.25 ± 0.008 | |
Leaves (Ff) | 238.77 ± 5.35 | 0.03 ± 0.0007 | 0.03 ± 0.0002 | 0.43 ± 0.010 | |
Standard | BHT | - | 0.009 ± 0.0001 | - | - |
Trolox | - | - | 0.019 ± 0.003 | - | |
Ascorbic acid | - | - | - | 0.003 ± 0.001 |
E. coli (ATB: 57) B6N | E. coli (ATB: 97) BGM | Staphylococcus aureus | Pseudomonas aeruginosa | Klebsiella pneumonia | |||
---|---|---|---|---|---|---|---|
A. P var. pyrethrum (L.) | Roots (Rm) | DI (mm) | ND | 6.6 ± 0.84 | ND | 5.5 ± 0.70 | 6.1 ± 0.14 |
MIC (mg/mL) | 50 | 25 | 0.78 | 50 | 25 | ||
MBC (mg/mL) | 200 | 100 | 6.25 | 200 | 100 | ||
Capitula (Cm) | DI (mm) | 7.5 ± 0.70 | 8.25 ± 0.35 | 15 ± 0 | 15.65 ± 0.91 | 8.5 ± 0.70 | |
MIC (mg/mL) | 25 | 100 | 1.56 | 50 | 50 | ||
MBC (mg/mL) | 100 | 200 | 6.25 | 200 | 200 | ||
Seeds (Gm) | DI (mm) | 9.3 ± 0.42 | 6.35 ± 0.49 | 7.5 ± 0.70 | 5.65 ± 0.91 | 10 ± 1.41 | |
MIC (mg/mL) | 50 | 50 | 50 | 50 | 50 | ||
MBC (mg/mL) | 100 | 200 | 200 | 200 | 200 | ||
Leaves (Fm) | DI (mm) | 11.85 ± 0.21 | 7.2 ± 0.28 | ND | 9.35 ± 0.49 | 15.3 ± 0.42 | |
MIC (mg/mL) | 25 | 50 | 12.5 | 25 | 25 | ||
MBC (mg/mL) | 200 | 200 | 100 | 100 | 100 | ||
A. P var. depressus (Ball) Maire | Roots(Rf) | DI (mm) | ND | ND | 7 ± 0 | 11 ± 0 | 5.75 ± 0.35 |
MIC (mg/mL) | 50 | 50 | 0.39 | 50 | 50 | ||
MBC (mg/mL) | 200 | 200 | 12.5 | 200 | 200 | ||
Capitula (Cf) | DI (mm) | ND | 9.5 ± 0.70 | 12.5 ± 0.70 | 11.1 ± 0.14 | 9 ± 0 | |
MIC (mg/mL) | 25 | 100 | 0.78 | 50 | 50 | ||
MBC (mg/mL) | 100 | 200 | 3.13 | 200 | 200 | ||
Seeds (Gf) | DI (mm) | ND | 8.5 ± 0.70 | 7 ± 0 | 7.8 ± 0.28 | 7.5 ± 0.70 | |
MIC (mg/mL) | 100 | 50 | 25 | 25 | 50 | ||
MBC (mg/mL) | 100 | 200 | 200 | 200 | 200 | ||
Leaves (Ff) | DI (mm) | ND | 5.5 ± 0.70 | ND | 8.25 ± 0.35 | 11 ± 0 | |
MIC (mg/mL) | 25 | 25 | 1.56 | 25 | 25 | ||
MBC (mg/mL) | 200 | 100 | 25 | 100 | 200 | ||
Control positive | Ampicillin | DI (mm) | ND | ND | ND | 8.5 ± 0.70 | ND |
MIC (mg/mL) | ND | ND | 0.001 | ND | ND | ||
MBC (mg/mL) | ND | ND | 0.001 | ND | ND | ||
Streptomycin | DI (mm) | 10.9 ± 0.14 | ND | 30.7 ± 0.98 | 16.65 ± 0.49 | 30.75 ± 1.06 | |
MIC (mg/mL) | 0.25 | 0.5 | 0.06 | ND | 0.003 | ||
MBC (mg/mL) | 0.5 | 0.5 | 0.06 | ND | 0.003 | ||
Control negative | Ethanol | DI, MIC and MBC | ND | ND | ND | ND | ND |
D.W | DI, MIC and MBC | ND | ND | ND | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jawhari, F.Z.; Moussaoui, A.E.L.; Bourhia, M.; Imtara, H.; Saghrouchni, H.; Ammor, K.; Ouassou, H.; Elamine, Y.; Ullah, R.; Ezzeldin, E.; et al. Anacyclus pyrethrum var. pyrethrum (L.) and Anacyclus pyrethrum var. depressus (Ball) Maire: Correlation between Total Phenolic and Flavonoid Contents with Antioxidant and Antimicrobial Activities of Chemically Characterized Extracts. Plants 2021, 10, 149. https://doi.org/10.3390/plants10010149
Jawhari FZ, Moussaoui AEL, Bourhia M, Imtara H, Saghrouchni H, Ammor K, Ouassou H, Elamine Y, Ullah R, Ezzeldin E, et al. Anacyclus pyrethrum var. pyrethrum (L.) and Anacyclus pyrethrum var. depressus (Ball) Maire: Correlation between Total Phenolic and Flavonoid Contents with Antioxidant and Antimicrobial Activities of Chemically Characterized Extracts. Plants. 2021; 10(1):149. https://doi.org/10.3390/plants10010149
Chicago/Turabian StyleJawhari, Fatima Zahra, Abdelfattah E. L. Moussaoui, Mohammed Bourhia, Hamada Imtara, Hamza Saghrouchni, Kenza Ammor, Hayat Ouassou, Youssef Elamine, Riaz Ullah, Essam Ezzeldin, and et al. 2021. "Anacyclus pyrethrum var. pyrethrum (L.) and Anacyclus pyrethrum var. depressus (Ball) Maire: Correlation between Total Phenolic and Flavonoid Contents with Antioxidant and Antimicrobial Activities of Chemically Characterized Extracts" Plants 10, no. 1: 149. https://doi.org/10.3390/plants10010149
APA StyleJawhari, F. Z., Moussaoui, A. E. L., Bourhia, M., Imtara, H., Saghrouchni, H., Ammor, K., Ouassou, H., Elamine, Y., Ullah, R., Ezzeldin, E., Mostafa, G. A. E., & Bari, A. (2021). Anacyclus pyrethrum var. pyrethrum (L.) and Anacyclus pyrethrum var. depressus (Ball) Maire: Correlation between Total Phenolic and Flavonoid Contents with Antioxidant and Antimicrobial Activities of Chemically Characterized Extracts. Plants, 10(1), 149. https://doi.org/10.3390/plants10010149