The Distribution and Sustainable Utilization of Buckwheat Resources under Climate Change in China
Abstract
:1. Introduction
2. Results
2.1. Wild Buckwheat Distribution: Current and Future
2.2. Cultivated Buckwheat: History, Development, and Future Distribution
3. Discussion
3.1. Buckwheat Distribution and Place of Origin
3.2. Development of Cultivated Buckwheat
3.3. Wild Resources Protection under Climate Change
3.4. Wild Buckwheat Utilization
4. Materials and Methods
4.1. Buckwheat Resources by Field Investigation
4.2. Data Collection
4.3. The Sustainability of the Buckwheat Yield
4.4. MaxEnt Model
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tang, Y.; Shao., J.R.; Zhou, M.L. A Taxonomic Revision of Fagopyrum Mill from China. J. Plant Genet. Resour. 2019, 20, 646–653. (In Chinese) [Google Scholar]
- Tsuji, K.; Ohnishi, O. Origin of cultivated Tatary buckwheat (Fagopyrum tataricum Gaertn.) revealed by RAPD analyses. Genet. Resour. Crop. Evol. 2000, 47, 431–438. [Google Scholar] [CrossRef]
- Ohnishi, O. Search for the wild ancestor of buckwheat III. The wild ancestor of cultivated common buckwheat, and of tatary buckwheat. Econ. Bot. 1998, 52, 123–133. [Google Scholar] [CrossRef]
- Tsuji, K.; Ohnishi, O. Phylogenetic relationships among wild and cultivated Tartary buckwheat (Fagopyrum tataricum Gaert.) populations revealed by AFLP analyses. Gens. Genet. Syst. 2001, 76, 47–52. [Google Scholar] [CrossRef] [Green Version]
- Zhou, M.L.; Kreft, I.; Suvorova, G.; Tang, Y.; Sun, H.W. Buckwheat Germplasm in the World; Academic Press: Cambridge, MA, USA, 2018. [Google Scholar]
- Kreft, M. Buckwheat phenolic metabolites in health and disease. Nutr. Res. Rev. 2016, 29, 30–39. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.Z.; Zhou, M.L.; Tang, Y.; Li, F.L.; Tang, Y.X.; Shao, J.R.; Xue, W.T.; Wu, Y.M. Bioactive compounds in functional buckwheat food. Food Res. Int. 2012, 49, 389–395. [Google Scholar] [CrossRef]
- Zhou, M.L.; Sun, Z.M.; Ding, M.Q.; Logacheva, M.D.; Kreft, I.; Wang, D.; Yan, M.L.; Shao, J.R.; Tang, Y.X.; Wu, Y.M. FtSAD2 and FtJAZ1 regulate activity of the FtMYB11 transcription repressor of the phenylpropanoid pathway in Fagopyrum tataricum. New Phytol. 2017, 216, 814–828. [Google Scholar] [CrossRef] [Green Version]
- Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev. Ecol. Evol. Syst. 2009, 40, 677–697. [Google Scholar] [CrossRef]
- Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009. [Google Scholar] [CrossRef]
- Busby, J.R. BIOCLIM-a bioclimate analysis and prediction system. Plant Prot. Q. 1991, 6, 8–9. [Google Scholar]
- Hirzel, A.H.; Hausser, J.; Chessel, D.; Perrin, N. Ecological-niche factor analysis: How to compute habitat suitability maps without absence data? Ecology 2002, 83, 2027–2036. [Google Scholar] [CrossRef]
- Yee, T.W.; Mackenzie, M. Vector generalized additive models in plant ecology. Ecol. Model. 2002, 157, 141–156. [Google Scholar] [CrossRef]
- Lehmann, A.; Overton, J.M.; Leathwick, J.R. GRASP: Generalized regression analysis and spatial prediction. Ecol. Model. 2002, 157, 189–207. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Vayssières, M.P.; Plant, R.E.; Allen-Diaz, B.H. Classification trees: An alternative non-parametric approach for predicting species distributions. J. Veg. Sci. 2000, 11, 679–694. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Ma, B.; Sun, J. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecol. 2018, 18, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Wan, J.Z.; Wang, C.J.; Tan, J.F.; Yu, F.H. Climatic niche divergence and habitat suitability of eight alien invasive weeds in China under climate change. Ecol. Evol. 2017, 7, 1541–1552. [Google Scholar] [CrossRef] [Green Version]
- Yi, Y.J.; Cheng, X.; Yang, Z.F.; Zhang, S.H. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol. Eng. 2016, 92, 260–269. [Google Scholar] [CrossRef]
- IPCC. Climate Chang. 2013: The Physical Science Basis, Contribution of Working; IPCC: Geneva, Switzerland, 2013; pp. 866–871. [Google Scholar]
- Walther, G.R. Climatic forcing on the dispersal of exotic species. Phytocoenologia 2000, 30, 409–430. [Google Scholar] [CrossRef]
- Root, T.L.; Price, J.T.; Hall, K.R.; Schneider, S.H.; Rosenzweig, C.; Pounds, J.A. Fingerprints of global warming on wild animals and plants. Nature 2003, 421, 57–60. [Google Scholar] [CrossRef] [PubMed]
- Yue, Q.; Xu, X.R.; Hillier, J.; Cheng, K.; Pan, G.X. Mitigating greenhouse gas emissions in agriculture: From farm production to food consumption. J. Clean. Prod. 2017, 149, 1011–1019. [Google Scholar] [CrossRef]
- Crenna, E.; Sinkko, T.; Sala, S. Biodiversity impacts due to food consumption in Europe. J. Clean. Prod. 2019, 227, 378–391. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P. Towards Sustainable Dryland Agricultural Practices; Central Research Institute for Dryland Agriculture: Telangana, India, 1990. [Google Scholar]
- Bhattacharyya, R.; Kundu, S.; Prakash, V.; Gupta, H.S. Sustainability under combined application of mineral and organic fertilizers in a rainfed soybean-wheat system of the Indian Himalayas. Eur. J. Agron. 2008, 28, 33–46. [Google Scholar] [CrossRef]
- Ghosh, P.; Dayal, D.; Mandal, K.; Wanjari, R.; Hati, K. Optimization of fertilizer schedules in fallow and groundnut-based cropping systems and an assessment of system sustainability. Field Crop. Res. 2003, 80, 83–98. [Google Scholar] [CrossRef]
- Manna, M.; Swarup, A.; Wanjari, R.; Ravankar, H.; Mishra, B.; Saha, M.; Singh, Y.; Sahi, D.; Sarap, P. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India. Field Crop. Res. 2005, 93, 264–280. [Google Scholar] [CrossRef]
- De Candolle, A. Origine des Plantes Cultivées; G. Baillière et cie: Paris, France, 1883; Volume 43. [Google Scholar]
- Nakao, S. Transmittance of cultivated plants through Sino-Himalayan route. In Peoples of Nepal Himalaya; Fauna and Flora Research Society, Kyoto University: Kyoto, Japan, 1957; pp. 397–420. [Google Scholar]
- Jiang, J.; Xing, J. Dalianshan region in Sichuan province one of the habitats of tatary buckwheat. In Proceedings of the 5th International Symposium on Buckwheat, Taiyuan, China, 20–26 August 1992; pp. 20–26. [Google Scholar]
- Li, Q. Preliminary investigation on buckwheat origin in Yunnan, China. In Proceedings of the 5th International Symposium on Buckwheat, Taiyuan, China, 20–26 August 1992; pp. 44–48. [Google Scholar]
- Ye, N. Classification, origin and evolution of genus Fagopyrum in China. In Proceedings of the 5th International Symposium on Buckwheat, Taiyuan, China, 20–26 August 1992; pp. 19–28. [Google Scholar]
- Majumder, B.; Mandal, B.; Bandyopadhyay, P.; Chaudhury, J. Soil organic carbon pools and productivity relationships for a 34 year old rice-wheat-jute agroecosystem under different fertilizer treatments. Plant Soil 2007, 297, 53–67. [Google Scholar] [CrossRef]
- Jiang, Y.; Zeng, Z.H.; Bu, Y.; Ren, C.Z.; Li, J.Z.; Han, J.J.; Tao, C.; Zhang, K.; Wang, X.X.; Lu, G.X. Effects of selenium fertilizer on grain yield, Se uptake and distribution in common buckwheat (Fagopyrum esculentum Moench). Plant Soil Environ. 2015, 61, 371–377. [Google Scholar] [CrossRef] [Green Version]
- Oljača, S.; Dolijanović, Ž.; Oljača, M.V.; Djordjević, S. Effect of microbiological fertilizer and soil additive on yield of buckwheat (Fagopyrum esculentum Moench) under high altitude conditions. Ratar. Povrt. 2012, 49, 302–306. [Google Scholar]
- Zhang, K.L.; Yao, L.J.; Meng, J.S.; Tao, J. Maxent modeling for predicting the potential geographical distribution of two peony species under climate change. Sci.Total Environ. 2018, 634, 1326–1334. [Google Scholar] [CrossRef] [PubMed]
- Khanum, R.; Mumtaz, A.; Kumar, S. Predicting impacts of climate change on medicinal asclepiads of Pakistan using Maxent modeling. Acta Oecol. 2013, 49, 23–31. [Google Scholar] [CrossRef]
- Luitel, D.R.; Siwakoti, M.; Joshi, M.D.; Rangaswami, M.; Jha, P.K. Potential suitable habitat of Buckwheat (Fagopyrum spp) under the climate change scenarios in Nepal. J. Crop Sci. Biotechnol. 2021, 24, 401–410. [Google Scholar] [CrossRef]
- Miklavec K, P.I.; Raats, M.M.; Pohar, J. The availability of foods with buckwheat in Slovenian market. In Proceedings of the 2nd Euro IBRA Symposium: Buckwheat for Life and Sport, Tarvisio, Italy, 21–22 April 2018. [Google Scholar]
- Gao, Z.; Meng, F. Effect of Fagopyrum cymosum rootin on clonal formation of four human tumor cells. China J. Chin. Mater. Med. 1993, 18, 498–500, 511. [Google Scholar]
- Hafeez, B.B.; Adhami, V.M.; Asim, M.; Siddiqui, I.A.; Bhat, K.M.; Zhong, W.; Saleem, M.; Din, M.; Setaluri, V.; Mukhtar, H. Targeted knockdown of Notch1 inhibits invasion of human prostate cancer cells concomitant with inhibition of matrix metalloproteinase-9 and urokinase plasminogen activator. Clin. Cancer Res. 2009, 15, 452–459. [Google Scholar] [CrossRef] [Green Version]
- Chan, P.K. Inhibition of tumor growth in vitro by the extract of Fagopyrum cymosum (fago-c). Life Sci. 2003, 72, 1851–1858. [Google Scholar] [CrossRef]
- Zhang, W.J.; Li, X.C.; Liu, Y.Q.; Yao, R.C.; Nonaka, G.I.; Yang, C.R. Phenolic constituents from Fagopyrum dibotrys. Acta Bot. Yunnanica 1994, 16, 354–356. [Google Scholar]
- Lin, H.S.; Li, G.S.; Guang, B. Clinical research on wei mai ning capsule in treating nsclc. Cancer Res. Clin. 2003, 15, 368–370. [Google Scholar]
- Sun, H.S.; Taiji, A.; Seung, K.J.; Campbel, C.G. Inheritance of self-compatibility and flower morphology in an inter-specific buckwheat hybrid. Can. J. Plant Sci. 1999, 79, 483–490. [Google Scholar]
- Matsui, K.; Tetsuka, T.; Hara, T.; Morishita, T. Breeding and characterization of a new self-compatible common buckwheat [Fagopyrum esculentum] parental line, ‘Buckwheat Norin-PL1′. Bull. Natl. Agric. Res. Cent. Kyushu Okinawa Reg. 2008, 49, 11–17. [Google Scholar]
- Campbell, C. Inter-specific hybridization in the genus Fagopyrum. In Proceedings of the 6th International Symposium on Buckwheat, Shinshu, Japan, 24–29 August 1995; pp. 255–263. [Google Scholar]
- Libby, W.F.; Anderson, E.C.; Arnold, J.R. Age determination by radiocarbon content: World-wide assay of natural radiocarbon. Science 1949, 109, 227–228. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Harris, R.M.B.; Grose, M.R.; Lee, G.; Bindoff, N.L.; Porfirio, L.L.; Fox-Hughes, P. Climate projections for ecologists. Wiley Interdiscip. Rev. Clim. Chang. 2014, 5, 621–637. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Stehfest, E.; den Elzen, M.G.; Kram, T.; van Vliet, J.; Deetman, S.; Isaac, M.; Goldewijk, K.K.; Hof, A.; Beltran, A.M. RCP2. 6: Exploring the possibility to keep global mean temperature increase below 2 °C. Clim. Chang. 2011, 109, 95–116. [Google Scholar] [CrossRef]
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4. 5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef] [Green Version]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5-A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef] [Green Version]
- Jaynes, E.T. Information theory and statistical mechanics. Phys. Rev. 1957, 106, 620. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Araújo, M.B.; Pearson, R.G.; Thuiller, W.; Erhard, M. Validation of species-climate impact models under climate change. Glob. Chang. Biol. 2005, 11, 1504–1513. [Google Scholar] [CrossRef] [Green Version]
- Swets, J.A. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
Number | Scientific Name | Number | Scientific Name |
---|---|---|---|
Wild species | Wild species | ||
1 | Fagopyrum cymosum (Trevir.) Meisn | 12 | Fagopyrum urophyllum (Bureau & Franch.) H. Gross |
2 | Fagopyrum hailuogouense J.R. Shao, M.L. Zhou & Qian Zhang | 13 | Fagopyrum lineare (Sam.) Haraldson |
3 | Fagopyrum macrocarpum Ohsako & Ohnishi | 14 | Fagopyrum gracilipedoides Ohsako & Ohnishi |
4 | Fagopyrum qiangcai D.Q. Bai | 15 | Fagopyrum statice Gross |
5 | Fagopyrum capillatum Ohnishi | 16 | Fagopyrum crispatifolium J.L. Liu |
6 | Fagopyrum gracilipes (Hemsl.) Dammer | 17 | Fagopyrum caudatum (Sam.) A.J.Li |
7 | Fagopyrum pugense T. Yu | 18 | Fagopyrum gilesii (Hemsl.) Hedberg |
8 | Fagopyrum homotropicum Ohnishi | 19 | Fagopyrum jinshaense Ohsako & Ohnishi |
9 | Fagopyrum leptopodum (Diels) Hedberg | Cultivated species | |
10 | Fagopyrum luojishanense J.R. Shao | 20 | Fagopyrum esculentum Moench |
11 | Fagopyrum rubifolium Ohsako & Ohnishi | 21 | Fagopyrum tataricum (L.) Gaertn |
Scientific Name | Ploidy | Growth Period | Life Cycle | Style Type | Pollination |
---|---|---|---|---|---|
F. esculentum | D | May to August | A | HE | CP |
F. tataricum | D | May to September | A | HO | SP |
F. qiangcai | D | July to November | A | HE | CP/SP |
F. macrocarpum | -- | July to November | A | HE | CP/SP |
F. rubifolium | D/T | July to November | A | HO | SP |
F. gracilipes | T | June to November | A | HO | SP |
F. pugense | D | July to November | A | HO | CP/SP |
F. luojishanense | D | June to November | A | HO | SP |
F. jinshaense | D | July to November | A | HE | CP |
F. capillatum | D | July to November | A | HE | CP |
F. gracilipedoides | D | July to November | A | HE | CP |
F. gilesii | D | July to November | A | HE | CP |
F. urophyllum | D | April to November | P | HE | CP |
F. lineare | D | August to November | A | HE | CP |
F. statice | D | July to November | P | HE | CP |
F. caudatum | D | June to November | A | HE | CP |
F. crispatofolium | T | July to November | A | HO | SP |
F. homotropicum | D/T | July to October | A | HO | SP |
F. cymosum | D/T | May to December | P | HE | CP |
F. leptopodum | D | June to November | A | HE | CP |
F. hailuogouense | D | May to August | P | HO | SP |
Scientific Name | Plant Height (cm) | Plant Shape | Flower Color | Inflorescence Shape | Perianth Shape | Perianth Length (mm) | Leaf Shape | Leaf Width (cm) | Leaf Length (cm) | Leaf Hair | Stem Hair | Seed Shape | Seed Size (mm) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
F. esculentum | 60.0–150.0 | P/SE | P/R | CR | E | 3.0–4.0 | HA, HS, OVT | 2.0–5.0 | 2.5–7.0 | G | G | T | 4.0–6.0 |
F. tataricum | 80.0–160.0 | E | LG | CO | OV | 2 | HA, HS, T | 2.8 | 2.7 | G | G | OT | 1.5–2.5 |
F. qiangcai | 15.0–70.0 | C/O | W/P | R/CO | E/OV | 3.5–4.0 | HS, OV, T | 1.2–4.0 | 1.2–4.5 | G | G | T | 2.0–5.0 |
F. macrocarpum | 5.0–75.0 | C | W/P | CO | E | -- | HA, HS | 1.2–3.0 | 2.0–3.5 | LH | G | -- | -- |
F. rubifolium | 5.0–115.0 | C/O | P | R | O | -- | HA, HS | 1.0–3.6 | 2.5–4.2 | H | H | T | 1.5–2.5 |
F. gracilipes | 20.0–70.0 | E | W/P | R | E | 2.0–2.5 | OVT | 1.5–3.0 | 2.0–4.0 | LH | G | OT | 3 |
F. pugense | 17.0–70.0 | E/O/P | W/P | R | E/OV | 1.3–2.0 | HS, OV, OVT | 1.2–4.6 | 1.7–5.5 | H | H | OT | 1.8–2.5 |
F. luojishanense | 40.0–70.0 | C/SE | W/P | R | E | 1.3–2.0 | OV, T | 1.2–5.1 | 1.7–6.0 | LH | LH | OT | 1.8–2.5 |
F. jinshaense | 14.2-31.8 | E | W/P | SR | E | -- | HA, HS, T, S | 0.2–1.4 | 0.5–1.4 | G | G | OT | <1.5 |
F. capillatum | 60.0–150.0 | E | W/P | R | OV | -- | HA, HS, OV | 0.4–2.0 | 0.4–3.2 | H | H | OT | 1.5–2.0 |
F. gracilipedoides | 20.0–50.0 | SE | W/P | R | E | -- | HA, HS, OV | 0.4–2.0 | 0.4–3.2 | LH | LH | OT | 2.0–3.0 |
F. gilesii | 16.0–44.0 | SE | W/P | CA | E | 2.0–2.5 | HS | 0.6–2.5 | 0.9–3.5 | H | G | OT | 3.0–4.0 |
F. urophyllum | 180.0–225.0 | E | W/P | CC | E | 2.0–3.0 | HS, AS | 0.9–7.2 | 1.3–9.8 | H | G/LH | OT | 3.0–4.0 |
F. lineare | 22.0–40.0 | E | W | R | E | 1.5 | L, HA | 0.1–1.5 | 0.5–2.2 | G | G | T/ET | 2 |
F. statice | 40.0–50.0 | E | W/P | CO | E | 1.0–1.5 | HA, L, T, OV | 1.5–3.0 | 2.0–3.0 | G | G | T/OT | 2.0–2.5 |
F. caudatum | 27.0–50.0 | O/P | W | R | E/OB | 2.0 -2.5 | S | 4.0–10.0 | 1.0-3.0 | G | G | ET | 3 |
F. crispatofolium | 44.0–88.0 | E/O/P | W | R | E/OB | 1.8-2.0 | HS, OV | 1.5–6.8 | 2.0–7.7 | H | LH | T | 4.0–5.0 |
F. homotropicum | 60.0–130.0 | E/O | P | R | E | 2.0–2.5 | HA, HS, OVT | 1.5–4.5 | 1.5–6.0 | G | G | OT | 2.5–3.0 |
F. cymosum | 50.0–300.0 | C/E | W | CO | E/OV | 3.5–4.0 | HA, OVT | 6.1–9.4 | 5.2–8.3 | G/H/LH | G/H/LH | CT/ET | 6.0–8.0 |
F. leptopodum | 6.0–60.0 | C/E | W/P | R | E | 1.5–2.5 | OV, T | 1.0–1.5 | 1.5–2.5 | G | G | OT | 2 |
F. hailuogouense | 30.0–70.0 | E/O | W/P | CO | OV | 1.8–2.0 | HS, OV | 1.8–5.3 | 2.2–5.8 | G | G | OT | 2.5–3 |
China | Europe | Japan | South Korea | |||||
---|---|---|---|---|---|---|---|---|
SYI | CV | SYI | CV | SYI | CV | SYI | CV | |
1959–1979 | 0.37 | 0.35 | 0.51 | 0.23 | 0.77 | 0.11 | 0.44 | 0.31 |
1979–2000 | 0.61 | 0.18 | 0.64 | 0.17 | 0.72 | 0.14 | 0.72 | 0.09 |
2000–2016 | 0.40 | 0.31 | 0.66 | 0.16 | 0.63 | 0.18 | 0.71 | 0.10 |
China | Europe | Japan | South Korea |
---|---|---|---|
Buckwheat tea | Unprocessed cereals | Buckwheat noodle | Buckwheat noodle |
Buckwheat pillow | Breakfast cereals | Buckwheat honey | Buckwheat pancake |
Buckwheat noodle | Pasta | Buckwheat tea | Buckwheat pillow |
Buckwheat flour | Biscuit | Buckwheat pillow | Buckwheat bouquet |
Buckwheat honey | Bread | Buckwheat rice | Buckwheat tea |
Buckwheat cake | Soup | Buckwheat seasoning | Buckwheat flour |
Buckwheat liquor | Cereal bars | Buckwheat flour | Buckwheat cake |
Baby food | |||
Cakes, muffins, and pastry | |||
Meat alternatives | |||
Coffee and tea | |||
Honey and syrups | |||
Chocolate and sweets | |||
Canned fish and seafood | |||
Yoghurt products | |||
Processed meat and derivatives |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wen, W.; Li, Z.; Shao, J.; Tang, Y.; Zhao, Z.; Yang, J.; Ding, M.; Zhu, X.; Zhou, M. The Distribution and Sustainable Utilization of Buckwheat Resources under Climate Change in China. Plants 2021, 10, 2081. https://doi.org/10.3390/plants10102081
Wen W, Li Z, Shao J, Tang Y, Zhao Z, Yang J, Ding M, Zhu X, Zhou M. The Distribution and Sustainable Utilization of Buckwheat Resources under Climate Change in China. Plants. 2021; 10(10):2081. https://doi.org/10.3390/plants10102081
Chicago/Turabian StyleWen, Wen, Zhiqiang Li, Jirong Shao, Yu Tang, Zhijun Zhao, Jingang Yang, Mengqi Ding, Xuemei Zhu, and Meiliang Zhou. 2021. "The Distribution and Sustainable Utilization of Buckwheat Resources under Climate Change in China" Plants 10, no. 10: 2081. https://doi.org/10.3390/plants10102081
APA StyleWen, W., Li, Z., Shao, J., Tang, Y., Zhao, Z., Yang, J., Ding, M., Zhu, X., & Zhou, M. (2021). The Distribution and Sustainable Utilization of Buckwheat Resources under Climate Change in China. Plants, 10(10), 2081. https://doi.org/10.3390/plants10102081