Bioactive’s Characterization, Biological Activities, and In Silico Studies of Red Onion (Allium cepa L.) Skin Extracts
Abstract
:1. Introduction
2. Results and Discussion
2.1. Extraction and Characterization
2.2. Chromatographic Profile of the Anthocyanins from the Red Onion Skins Extract
2.3. Heat Treatment
2.4. Estimation of TAC and Antioxidant Activity Degradation Kinetic Parameters
2.5. Thermodynamic Parameters Calculation
2.6. In Vitro Enzyme Activity Inhibition
3. Materials and Methods
3.1. Materials
3.2. Chemicals
3.3. Extraction of Anthocyanins from the Red Onion Skins
3.4. Extract Characterization
3.5. Chromatographic Analysis of Anthocyanins
3.6. Thermal Treatment
3.7. Kinetic Analysis
3.8. Thermodynamic Parameters
3.9. Molecular Modeling Investigations on Anthocyanins Behavior at Thermal Treatment
3.10. In Vitro Enzymes Activity Inhibition
3.10.1. α-Amylase Inhibition Assay
3.10.2. α-Glucosidase Inhibition Assay
3.10.3. Lipase Inhibition Assay
3.10.4. Lipoxygenase Inhibition Assay
3.11. In Silico Testing the Anthocyanins Binding to Enzymes
3.12. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Griffiths, G.; Trueman, L.; Crowther, T.; Thomas, B.; Smith, B. Onions—A Global Benefit to Health. Phytother. Res. 2002, 16, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Ramos, F.A.; Takaishi, Y.; Shirotori, M.; Kawaguchi, Y.; Tsuchiya, K.; Shibata, H.; Higuti, T.; Tadokoro, T.; Takeuchi, M. Antibacterial and Antioxidant Activities of Quercetin Oxidation Products from Yellow Onion (Allium Cepa) Skin. J. Agric. Food Chem. 2006, 54, 3551–3557. [Google Scholar] [CrossRef] [PubMed]
- Gawlik-Dziki, U.; Kaszuba, K.; Piwowarczyk, K.; Świeca, M.; Dziki, D.; Czyz, J. Onion Skin—Raw Material for the Production of Supplement That Enhances the Health-Beneficial Properties of Wheat Bread. Food Res. Int. 2015, 73, 97–106. [Google Scholar] [CrossRef]
- Ren, F.; Nian, Y.; Perussello, C.A. Effect of Storage, Food Processing and Novel Extraction Technologies on Onions Flavonoid Content: A Review. Food Res. Int. 2020, 132, 108953. [Google Scholar] [CrossRef] [PubMed]
- Downes, K.; Chope, G.A.; Terry, L.A. Effect of Curing at Different Temperatures on Biochemical Composition of Onion (Allium Cepa L.) Skin from Three Freshly Cured and Cold Stored UK-Grown Onion Cultivars. Postharvest Biol. Technol. 2009, 54, 80–86. [Google Scholar] [CrossRef]
- Kara, Ş.; Ercȩlebi, E.A. Thermal Degradation Kinetics of Anthocyanins and Visual Colour of Urmu Mulberry (Morus Nigra L.). J. Food Eng. 2013, 116, 541–547. [Google Scholar] [CrossRef]
- Yamaguchi, K.K.D.L.; Pereira, L.F.R.; Lamarão, C.V.; Lima, E.S.; Da Veiga-Junior, V.F. Amazon Acai: Chemistry and Biological Activities: A Review. Food Chem. 2015, 179, 137–151. [Google Scholar] [CrossRef]
- Ogi, K.; Sumitani, H. Elucidation of an α-Glucosidase Inhibitor from the Peel of Allium Cepa by Principal Component Analysis. Biosci. Biotechnol. Biochem. 2019, 83, 751–754. [Google Scholar] [CrossRef]
- Jaiswal, N.; Rizvi, S.I. Amylase Inhibitory and Metal Chelating Effects of Different Layers of Onion (Allium Cepa L.) at Two Different Stages of Maturation in Vitro. Ann. Phytomedicine Int. J. 2017, VI, 45–50. [Google Scholar] [CrossRef]
- Kim, H.Y. Effects of Onion (Allium Cepa) Skin Extract on Pancreatic Lipase and Body Weight-Related Parameters. Food Sci. Biotechnol. 2007, 16, 434–438. [Google Scholar]
- Lesjak, M.; Beara, I.; Simin, N.; Pintać, D.; Majkić, T.; Bekvalac, K.; Orčić, D.; Mimica-Dukić, N. Antioxidant and Anti-Inflammatory Activities of Quercetin and Its Derivatives. J. Funct. Foods 2018, 40, 68–75. [Google Scholar] [CrossRef]
- Peron, D.V.; Fraga, S.; Antelo, F. Thermal Degradation Kinetics of Anthocyanins Extracted from Juçara (Euterpe Edulis Martius) and “Italia” Grapes (Vitis Vinifera L.), and the Effect of Heating on the Antioxidant Capacity. Food Chem. 2017, 232, 836–840. [Google Scholar] [CrossRef] [PubMed]
- Patras, A.; Brunton, N.P.; O’Donnell, C.; Tiwari, B.K. Effect of Thermal Processing on Anthocyanin Stability in Foods; Mechanisms and Kinetics of Degradation. Trends Food Sci. Technol. 2010, 21, 3–11. [Google Scholar] [CrossRef]
- Burton-Freeman, B.; Sandhu, A.; Edirisinghe, I. Anthocyanins. In Nutraceuticals: Efficacy, Safety and Toxicity; Gupta, R.C., Ed.; Elsevier Science Publishing: Amsterdam, The Netherlands, 2016; pp. 489–500. [Google Scholar] [CrossRef]
- Viera, V.B.; Piovesan, N.; Rodrigues, J.B.; Mello, R.d.O.; Prestes, R.C.; dos Santos, R.C.; Vaucher, R.d.A.; Hautrive, T.P.; Kubota, E.H. Extraction of Phenolic Compounds and Evaluation of the Antioxidant and Antimicrobial Capacity of Red Onion Skin (Allium Cepa L.). Int. Food Res. J. 2017, 24, 990–999. [Google Scholar]
- Slimestad, R.; Fossen, T.; Vågen, I.M. Onions: A Source of Unique Dietary Flavonoids. J. Agric. Food Chem. 2007, 55, 10067–10080. [Google Scholar] [CrossRef]
- Metrani, R.; Singh, J.; Acharya, P.; Jayaprakasha, G.K.; Patil, B.S. Comparative Metabolomics Profiling of Polyphenols, Nutrients and Antioxidant Activities of Two Red Onion (Allium Cepa L.) Cultivars. Plants 2020, 9, 1077. [Google Scholar] [CrossRef]
- Ali, O.-H.A.A.; Al-Sayed, H.M.A.; Yasin, N.M.N.; Afifi, E.A.A. Effectof Different Extraction Methodson Stablity of Anthocyanins Extracted from Red Onion Peels (Allium Cepa) and Its Uses as Food Colorants. Bull. Natl. Nutr. Inst. Arab Repub. Egypt 2016, 47, 197. [Google Scholar]
- Katsampa, P.; Valsamedou, E.; Grigorakis, S.; Makris, D.P. A Green Ultrasound-Assisted Extraction Process for the Recovery of Antioxidant Polyphenols and Pigments from Onion Solid Wastes Using Box-Behnken Experimental Design and Kinetics. Ind. Crops Prod. 2015, 77, 535–543. [Google Scholar] [CrossRef]
- Makris, D.P. Optimisation of Anthocyanin Recovery from Onion (Allium Cepa) Solid Wastes Using Response Surface Methodology. J. Food Technol. 2010, 8, 183–186. [Google Scholar]
- Škerget, M.; Majheniě, L.; Bezjak, M.; Knez, Ž. Antioxidant, Radical Scavenging and Antimicrobial Activities of Red Onion (Allium Cepa L.) Skin and Edible Part Extracts. Chem. Biochem. Eng. Q. 2009, 23, 435–444. [Google Scholar]
- Yang, S.J.; Paudel, P.; Shrestha, S.; Seong, S.H.; Jung, H.A.; Choi, J.S. In Vitro Protein Tyrosine Phosphatase 1B Inhibition and Antioxidant Property of Different Onion Peel Cultivars: A Comparative Study. Food Sci. Nutr. 2019, 7, 205–215. [Google Scholar] [CrossRef]
- Lee, K.A.; Kim, K.T.; Kim, H.J.; Chung, M.S.; Chang, P.S.; Park, H.; Pai, H.D. Antioxidant Activities of Onion (Allium Cepa L.) Peel Extracts Produced by Ethanol, Hot Water, and Subcritical Water Extraction. Food Sci. Biotechnol. 2014, 23, 615–621. [Google Scholar] [CrossRef]
- Prokopov, T.; Slavov, A.; Petkova, N.; Yanakieva, V.; Bozadzhiev, B.; Taneva, D. Study of Onion Processing Waste Powder for Potential Use in Food Sector. Acta Aliment. 2018, 47, 181–188. [Google Scholar] [CrossRef] [Green Version]
- Stoica, F.; Râpeanu, G.; Nistor, O.V.; Enachi, E.; Stănciuc, N.; Mureșan, C.B.G.E. Recovery of Bioactive Compounds from Red Onion Skins Using Conventional Solvent Extraction and Microwave Assisted Extraction. Ann. Univ. Dunarea De Jos Galati Fascicle VI-Food Technol. 2020, 44, 104–126. [Google Scholar] [CrossRef]
- Pérez-Gregorio, R.M.; García-Falcón, M.S.; Simal-Gándara, J.; Rodrigues, A.S.; Almeida, D.P.F. Identification and Quantification of Flavonoids in Traditional Cultivars of Red and White Onions at Harvest. J. Food Compos. Anal. 2010, 23, 592–598. [Google Scholar] [CrossRef]
- Donner, H.; Gao, L.; Mazza, G. Separation and Characterization of Simple and Malonylated Anthocyanins in Red Onions, Allium Cepa L. Food Res. Int. 1997, 30, 637–643. [Google Scholar] [CrossRef]
- Turturicə, M.; Stənciuc, N.; Bahrim, G.; Râpeanu, G. Effect of Thermal Treatment on Phenolic Compounds from Plum (Prunus Domestica) Extracts—A Kinetic Study. J. Food Eng. 2016, 171, 200–207. [Google Scholar] [CrossRef]
- Turturică, M.; Stănciuc, N.; Bahrim, G.; Râpeanu, G. Investigations on Sweet Cherry Phenolic Degradation During Thermal Treatment Based on Fluorescence Spectroscopy and Inactivation Kinetics. Food Bioprocess Technol. 2016, 9, 1706–1715. [Google Scholar] [CrossRef]
- Oancea, A.M.; Turturică, M.; Bahrim, G.; Râpeanu, G.; Stănciuc, N. Phytochemicals and Antioxidant Activity Degradation Kinetics during Thermal Treatments of Sour Cherry Extract. LWT-Food Sci. Technol. 2017, 82, 139–146. [Google Scholar] [CrossRef]
- Sadilova, E.; Stintzing, F.C.; Carle, R. Thermal Degradation of Acylated and Nonacylated Anthocyanins. J. Food Sci. 2006, 71, C504–C512. [Google Scholar] [CrossRef]
- Zhang, L.; Zhou, J.; Liu, H.; Khan, M.A.; Huang, K.; Gu, Z. Compositions of Anthocyanins in Blackberry Juice and Their Thermal Degradation in Relation to Antioxidant Activity. Eur. Food Res. Technol. 2012, 235, 637–645. [Google Scholar] [CrossRef]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Cools, K.; Terry, L.A.; Esteban, R.M. Characterization of Industrial Onion Wastes (Allium Cepa L.): Dietary Fibre and Bioactive Compounds. Plant Foods Hum. Nutr. 2011, 66, 48–57. [Google Scholar] [CrossRef] [Green Version]
- Jackman, R.L.; Smith, J.L. Anthocyanins and Betalains BT—Natural Food Colorants. Nat. Food Color. 1996, 244–309. [Google Scholar]
- Slavin, M.; Lu, Y.; Kaplan, N.; Yu, L. Effects of Baking on Cyanidin-3-Glucoside Content and Antioxidant Properties of Black and Yellow Soybean Crackers. Food Chem. 2013, 141, 1166–1174. [Google Scholar] [CrossRef] [PubMed]
- Sui, X.; Zhou, W. Monte Carlo Modelling of Non-Isothermal Degradation of Two Cyanidin-Based Anthocyanins in Aqueous System at High Temperatures and Its Impact on Antioxidant Capacities. Food Chem. 2014, 148, 342–350. [Google Scholar] [CrossRef] [PubMed]
- Al-Qadri, F. Kinetics Study and Thermal Stability of Red Onion Skin and It’s Use as Alternative Colorants in Food and Textiles. Int. Adv. Res. J. Sci. Eng. Technol. 2018, 5, 52–58. [Google Scholar] [CrossRef]
- Holdsworth, S.D. Optimisation of Thermal Processing—A Review. J. Food Eng. 1985, 4, 89–116. [Google Scholar] [CrossRef]
- Nayak, B.; Berrios, J.D.J.; Powers, J.R.; Tang, J. Thermal Degradation of Anthocyanins from Purple Potato (Cv. Purple Majesty) and Impact on Antioxidant Capacity. J. Agric. Food Chem. 2011, 59, 11040–11049. [Google Scholar] [CrossRef]
- Qiu, G.; Wang, D.; Song, X.; Deng, Y.; Zhao, Y. Degradation Kinetics and Antioxidant Capacity of Anthocyanins in Air-Impingement Jet Dried Purple Potato Slices. Food Res. Int. 2018, 105, 121–128. [Google Scholar] [CrossRef]
- Sarpong, F.; Yu, X.; Zhou, C.; Amenorfe, L.P.; Bai, J.; Wu, B.; Ma, H. The Kinetics and Thermodynamics Study of Bioactive Compounds and Antioxidant Degradation of Dried Banana (Musa Ssp.) Slices Using Controlled Humidity Convective Air Drying. J. Food Meas. Charact. 2018, 12, 1935–1946. [Google Scholar] [CrossRef]
- Vikram, V.B.; Ramesh, M.N.; Prapulla, S.G. Thermal Degradation Kinetics of Nutrients in Orange Juice Heated by Electromagnetic and Conventional Methods. J. Food Eng. 2005, 69, 31–40. [Google Scholar] [CrossRef]
- Al-Zubaidy, M.M.I.; Khalil, R.A. Kinetic and Prediction Studies of Ascorbic Acid Degradation in Normal and Concentrate Local Lemon Juice during Storage. Food Chem. 2007, 101, 254–259. [Google Scholar] [CrossRef]
- Zahir, E.; Saleem, T.; Siddiqui, H.; Naz, S.; Shahid, S. Kinetic and Thermodynamic Studies of Antioxidant and Antimicrobial Activities of Essential Oil of Lavendula Steochs. J. Basic Appl. Sci. 2015, 11, 217–222. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Luo, M.; Wei, S. The Bioprotective Effects of Polyphenols on Metabolic Syndrome against Oxidative Stress: Evidences and Perspectives. Oxidative Med. Cell. Longev. 2019, 2019, 6713194. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Galavi, A.; Hosseinzadeh, H.; Razavi, B.M. The Effects of Allium Cepa L. (Onion) and Its Active Constituents on Metabolic Syndrome: A Review. Iran. J. Basic Med. Sci. 2020, 24, 3–16. [Google Scholar] [CrossRef]
- Filippatos, T.D.; Derdemezis, C.S.; Gazi, I.F.; Nakou, E.S.; Mikhailidis, D.P.; Elisaf, M.S. Orlistat-Associated Adverse Effects and Drug Interactions: A Critical Review. Drug Saf. 2008, 31, 53–65. [Google Scholar] [CrossRef]
- Leroux-Stewart, J.; Rabasa-Lhoret, R.; Chiasson, J.-L. α-Glucosidase Inhibitors. In International Text book of Diabetes Mellitus, 4th ed.; De Fronzo, R.A., Ferrannini, E., Zimmet, P., Alberti, G., Eds.; John Wiley & Sons Publishing: Hoboken, NJ, USA, 2015; Volume 3, pp. 673–685. [Google Scholar] [CrossRef]
- Nile, A.; Gansukh, E.; Park, G.S.; Kim, D.H.; Hariram Nile, S. Novel Insights on the Multi-Functional Properties of Flavonol Glucosides from Red Onion (Allium Cepa L) Solid Waste—In Vitro and in Silico Approach. Food Chem. 2021, 335, 127650. [Google Scholar] [CrossRef]
- Nile, A.; Nile, S.H.; Kim, D.H.; Keum, Y.S.; Seok, P.G.; Sharma, K. Valorization of Onion Solid Waste and Their Flavonols for Assessment of Cytotoxicity, Enzyme Inhibitory and Antioxidant Activities. Food Chem. Toxicol. 2018, 119, 281–289. [Google Scholar] [CrossRef]
- Oboh, G.; Ademiluyi, A.O.; Agunloye, O.M.; Ademosun, A.O.; Ogunsakin, B.G. Inhibitory Effect of Garlic, Purple Onion, and White Onion on Key Enzymes Linked with Type 2 Diabetes and Hypertension. J. Diet. Suppl. 2019, 16, 105–118. [Google Scholar] [CrossRef]
- Kim, S.H.; Jo, S.H.; Kwon, Y.I.; Hwang, J.K. Effects of Onion (Allium Cepa L.) Extract Administration on Intestinal α-Glucosidases Activities and Spikes in Postprandial Blood Glucose Levels in SD Rats Model. Int. J. Mol. Sci. 2011, 12, 3757–3769. [Google Scholar] [CrossRef] [Green Version]
- Nikavar, B.; Yousefian, N. Inhibitory Effects of Six Allium Species on Alpha-Amylase Enzyme Activity. Iran. J. Pharm. Res. 2009, 8, 53–57. [Google Scholar]
- Bisen, S.P.; Emerald, M. Nutritional and Therapeutic Potential of Garlic and Onion (Allium Sp.). Curr. Nutr. Food Sci. 2016, 12, 190–199. [Google Scholar] [CrossRef]
- Hossain, M.K.; Dayem, A.A.; Han, J.; Yin, Y.; Kim, K.; Saha, S.K.; Yang, G.M.; Choi, H.Y.; Cho, S.G. Molecular Mechanisms of the Anti-Obesity and Anti-Diabetic Properties of Flavonoids. Int. J. Mol. Sci. 2016, 17, 569. [Google Scholar] [CrossRef] [Green Version]
- Trisat, K.; Wong-on, M.; Lapphanichayakool, P.; Tiyaboonchai, W.; Limpeanchob, N. Vegetable Juices and Fibers Reduce Lipid Digestion or Absorption by Inhibiting Pancreatic Lipase, Cholesterol Solubility and Bile Acid Binding. Int. J. Veg. Sci. 2017, 23, 260–269. [Google Scholar] [CrossRef]
- Axer, A.; Jumde, R.P.; Adam, S.; Faust, A.; Schäfers, M.; Fobker, M.; Koehnke, J.; Hirsch, A.K.H.; Gilmour, R. Enhancing Glycan Stabilityviasite-Selective Fluorination: Modulating Substrate Orientation by Molecular Design. Chem. Sci. 2021, 12, 1286–1294. [Google Scholar] [CrossRef]
- Roig-Zamboni, V.; Cobucci-Ponzano, B.; Iacono, R.; Ferrara, M.C.; Germany, S.; Bourne, Y.; Parenti, G.; Moracci, M.; Sulzenbacher, G. Structure of Human Lysosomal Acid α-Glucosidase-A Guide for the Treatment of Pompe Disease. Nat. Commun. 2017, 8, 1111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hadvary, P.; Sidler, W.; Meister, W.; Vetter, W.; Wolfer, H. The Lipase Inhibitor Tetrahydrolipstatin Binds Covalently to the Putative Active Site Serine of Pancreatic Lipase. J. Biol. Chem. 1991, 266, 2021–2027. [Google Scholar] [CrossRef]
- Gilbert, N.C.; Bartlett, S.G.; Waight, M.T.; Neau, D.B.; Boeglin, W.E.; Brash, A.R.; Newcomer, M.E. The Structure of Human 5-Lipoxygenase. Science 2011, 331, 217–219. [Google Scholar] [CrossRef] [Green Version]
- Humphrey, W.; Dalke, A.; Schulten, K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996, 14, 33–38. [Google Scholar] [CrossRef]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Antioxidative Phenolic Constituents of Skins of Onion Varieties and Their Activities. J. Funct. Foods 2013, 5, 1191–1203. [Google Scholar] [CrossRef]
- Sharif, A.; Saim, N.; Jasmani, H.; Ahmad, W.Y.W. Effects of Solvent and Temperature on the Extraction of Colorant from Onion (Allium Cepa) Skin Using Pressurized Liquid Extraction. Asian J. Appl. Sci. 2010, 3, 262–268. [Google Scholar] [CrossRef] [Green Version]
- Costamagna, M.S.; Zampini, I.C.; Alberto, M.R.; Cuello, S.; Torres, S.; Pérez, J.; Quispe, C.; Schmeda-Hirschmann, G.; Isla, M.I. Polyphenols Rich Fraction from Geoffroea Decorticans Fruits Flour Affects Key Enzymes Involved in Metabolic Syndrome, Oxidative Stress and Inflammatory Process. Food Chem. 2016, 190, 392–402. [Google Scholar] [CrossRef] [Green Version]
- van Tilbeurgh, H.; Sarda, L.; Verger, R.; Cambillau, C. Structure of the Pancreatic Lipase–Procolipase Complex. Nature 1992, 359, 159–162. [Google Scholar] [CrossRef] [PubMed]
- Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: Servers for Rigid and Symmetric Docking. Nucleic Acids Res. 2005, 33, 363–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Selected Phytochemical | Extract |
---|---|
TAC, mg C3G/g DW | 2.75 ± 0.15 |
TPC, mg GAE/g DW | 172.17 ± 3.01 |
Antioxidant activity, mM TE/g DW | 436.25 ± 3.51 |
Compounds | Temperature °C | k·10−2 (min−1) | R2 | t1/2 (min) | D (min) |
---|---|---|---|---|---|
TAC | 75 | 0.69 ± 0.08 | 0.96 | 100.32 ± 1.91 | 333.33 ± 6.85 |
95 | 1.38 ± 0.21 | 0.96 | 50.16 ± 1.42 | 166.67 ± 4.68 | |
115 | 2.53 ± 0.83 | 0.98 | 27.36 ± 0.93 | 90.91 ± 3.45 | |
135 | 7.37 ± 1.33 | 0,98 | 9.41 ± 0.72 | 31.25 ± 2.06 | |
155 | 18.65 ± 2.36 | 0.98 | 3.72 ± 0.48 | 12.35 ± 1.08 | |
Ea (kJ·mol−1) = 50.77 ± 1.71 (R2 = 0.97) Z (°C) = 55.56 ± 2.91 (R2 = 0.98) | |||||
Antioxidant activity | 75 | 0.48 ± 0.27 | 0.92 | 143.32 ± 2.42 | 476.19 ± 10.31 |
95 | 0.69 ± 0.42 | 0.93 | 100.33 ± 2.51 | 333.33 ± 9.57 | |
115 | 0.85 ± 0.64 | 0.93 | 81.34 ± 1.82 | 270.27 ± 8.67 | |
135 | 1.04 ± 0.75 | 0.98 | 66.88 ± 1.74 | 222.22 ± 7.48 | |
155 | 1.33 ± 0.84 | 0.99 | 51.89 ± 1.46 | 172.41 ± 6.12 | |
Ea (kJ·mol−1) = 15.13 ± 2.05 (R2 = 0.99) Z (°C) = 188.68 ± 5.11 (R2 = 0.98) |
Compounds | Temperature (K) | ΔH (kJ/mol) | ΔG (kJ/mol) | ΔS (J/(mol·K)) |
---|---|---|---|---|
348 | 47.88 ± 0.62 | 111.91 ± 1.37 | −184.02 ± 2.18 | |
368 | 47.71 ± 0.28 | 116.40 ± 1.32 | −186.65 ± 2.15 | |
TAC | 388 | 47.54 ± 0.30 | 120.94 ± 3.49 | −189.16 ± 1.43 |
408 | 47.38 ± 0.34 | 123.72 ± 2.14 | −187.12 ± 1.33 | |
428 | 47.21 ± 0.27 | 126.65 ± 2.18 | −185.61 ± 1.56 | |
348 | 12.24 ± 0.16 | 112.95 ± 3.53 | −289.39 ± 1.41 | |
368 | 12.07 ± 0.23 | 118.52 ± 1.41 | −289.25 ± 0.92 | |
Antioxidant activity | 388 | 11.91 ± 0.15 | 124.45 ± 2.83 | −290.07 ± 0.71 |
408 | 11.74 ± 0.28 | 130.37 ± 2.57 | −290.77 ± 0.87 | |
428 | 11.57 ± 0.40 | 136.03 ± 2.12 | −290.79 ± 1.06 |
Sample | IC50 (μg/mL Extract) | |||
---|---|---|---|---|
α-Amylase | α-Glucosidase | Lipase | LOX | |
Extract | 1.02 ± 0.30a | 0.57 ± 0.16a | 4.57 ± 0.86a | 2.40 ± 0.71a |
Acarbose | 4.49 ± 0.44b | 2.09 ± 0.14b | - | - |
Orlistat | - | - | 3.18 ± 0.33a | - |
Quercetin | - | - | - | 1.95 ± 0.20a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stoica, F.; Aprodu, I.; Enachi, E.; Stănciuc, N.; Condurache, N.N.; Duță, D.E.; Bahrim, G.E.; Râpeanu, G. Bioactive’s Characterization, Biological Activities, and In Silico Studies of Red Onion (Allium cepa L.) Skin Extracts. Plants 2021, 10, 2330. https://doi.org/10.3390/plants10112330
Stoica F, Aprodu I, Enachi E, Stănciuc N, Condurache NN, Duță DE, Bahrim GE, Râpeanu G. Bioactive’s Characterization, Biological Activities, and In Silico Studies of Red Onion (Allium cepa L.) Skin Extracts. Plants. 2021; 10(11):2330. https://doi.org/10.3390/plants10112330
Chicago/Turabian StyleStoica, Florina, Iuliana Aprodu, Elena Enachi, Nicoleta Stănciuc, Nina Nicoleta Condurache, Denisa Eglantina Duță, Gabriela Elena Bahrim, and Gabriela Râpeanu. 2021. "Bioactive’s Characterization, Biological Activities, and In Silico Studies of Red Onion (Allium cepa L.) Skin Extracts" Plants 10, no. 11: 2330. https://doi.org/10.3390/plants10112330
APA StyleStoica, F., Aprodu, I., Enachi, E., Stănciuc, N., Condurache, N. N., Duță, D. E., Bahrim, G. E., & Râpeanu, G. (2021). Bioactive’s Characterization, Biological Activities, and In Silico Studies of Red Onion (Allium cepa L.) Skin Extracts. Plants, 10(11), 2330. https://doi.org/10.3390/plants10112330