Potential Use of Hyperspectral Reflectance as a High-Throughput Nondestructive Phenotyping Tool for Assessing Salt Tolerance in Advanced Spring Wheat Lines under Field Conditions
Abstract
:1. Introduction
2. Results
2.1. Impact of Salinity Treatment, Genotype, Year, and Their Interactions on Grain Yield, Stress Tolerance Indices, and Spectral Reflectance Indices
2.2. Genotypic Performance in Grain Yield, Stress Tolerance Indices, and Spectral Reflectance Indices under Control and Salinity Conditions
2.3. Association of Grain Yield and Stress Tolerance Indices with Spectral Reflectance Indices across All Genotypes
2.4. Grouping Genotypes Based on Their Salt Tolerance Level
2.5. Spectral Signatures of the Three Salinity Tolerance Groups under Control and Salinity Conditions
2.6. Prediction of Grain Yield of the Three Salinity Tolerance Groups under Control and Salinity Conditions by Spectral Reflectance Indices
2.7. Prediction of Stress Tolerance Indices of the Three Salinity Tolerance Groups under Control and Salinity Conditions by Spectral Reflectance Indices
3. Discussion
3.1. Interpreting Canopy Hyperspectral Behavior of Salinity Tolerance Groups under Control and Salinity Conditions
3.2. The Ability of SRIs for Assessment of GY and STIs
3.3. Assessment of GY and STIs for Each Salinity Tolerance Group
4. Materials and Methods
4.1. Plant Materials and Experimental Setup
4.2. Grain Yield Measurement and Calculation of Salt Tolerance Indices
4.3. Spectroradiometric Data and Processing
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Murad, K.F.; Hossain, A.; Fakir, O.A.; Biswas, S.K.; Sarker, K.K.; Rannu, R.P.; Timsina, J. Conjunctive use of saline and fresh water increases the productivity of maize in saline coastal region of Bangladesh. Agric. Water Manag. 2018, 204, 262–270. [Google Scholar] [CrossRef]
- Mansour, E.; Moustafa, E.S.A.; Desoky, E.M.; Ali, M.M.A.; Yasin, M.A.T.; Attia, A.; Alsuhaibani, N.; Tahir, M.U.; El-Hendawy, S.E. Multidimensional evaluation for detecting salt tolerance of bread wheat genotypes under actual saline field growing conditions. Plants 2020, 9, 1324. [Google Scholar] [CrossRef]
- Nassar, R.M.A.; Kamel, H.A.; Ghoniem, A.E.; Alarcón, J.J.; Sekara, A.; Ulrichs, C.; Abdelhamid, M.T. Physiological and anatomical mechanisms in wheat to cope with salt stress induced by seawater. Plants 2020, 9, 237. [Google Scholar] [CrossRef] [Green Version]
- Oyiga, B.C.; Sharma, R.; Shen, J.; Baum, M.; Ogbonnaya, F.; Léon, J.; Ballvora, A. Identification and characterization of salt tolerance of wheat germplasm using a multivariable screening approach. J. Agron. Crop Sci. 2016, 202, 472–485. [Google Scholar] [CrossRef]
- Joshi, R.; Singla-Pareek, S.L.; Pareek, A. Engineering abiotic stress response in plants for biomass production. J. Biol. Chem. 2018, 293, 5035–5043. [Google Scholar] [CrossRef] [Green Version]
- Carillo, P.; Annunziata, M.; Pontecorvo, G.; Fuggi, A.; Woodrow, P. Salinity Stress and Salt Tolerance in Abiotic Stress in Plants—Mechanisms and Adaptations; Shanker, A.K., Venkateswarlu, B., Eds.; InTech: Rijeka, Croatia, 2011; Volume 1, pp. 21–38. [Google Scholar]
- El-Hendawy, S.E.; Hassan, W.M.; Al-Suhaibani, N.A.; Refay, Y.; Abdella, K.A. Comparative performance of multivariable agro-physiological parameters for detecting salt tolerance of wheat cultivars under simulated saline field growing conditions. Front. Plant Sci. 2017, 8, 435. [Google Scholar] [CrossRef] [Green Version]
- Al-Ashkar, I.; Alderfasi, A.; El-Hendawy, S.E.; Al-Suhaibani, N.; El-Kafafi, S.; Seleiman, M.F. Detecting salt tolerance in doubled haploid wheat Lines. Agronomy 2019, 9, 211. [Google Scholar] [CrossRef] [Green Version]
- Mbarki, S.; Sytar, O.; Cerda, A.; Zivcak, M.; Rastogi, A.; He, X.; Zoghlami, A.; Abdelly, C.; Brestic, M. Strategies to mitigate the salt stress effects on photosynthetic apparatus and productivity of crop plants. In Salinity Responses and Tolerance in Plants, 1st ed.; Kumar, V., Wani, S.H., Uprasanna, P., Tran, L.S., Eds.; Springer: Cham, Switzerland, 2018; Volume 1, pp. 85–136. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of salt tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Araus, J.L.; Slafer, G.A.; Royo, C.; Serret, M.D. Breeding for yield potential and stress adaptation in cereals. Crit. Rev. Plant Sci. 2008, 27, 377–412. [Google Scholar] [CrossRef]
- Reynolds, M.; Pask, A.; Mullan, D. Physiological Breeding I: Interdisciplinary Approaches to Improve Crop Adaptation; International Maize and Wheat Improvement Center (CIMMYT): Texcoco, Mexico, 2012. [Google Scholar]
- Acreche, M.M.; Slafer, G.A. Grain weight radiation interception and use efficiency as affected by sink-strength in Mediterranean wheat released from 1940 to 2005. Field Crops Res. 2009, 110, 98–105. [Google Scholar] [CrossRef]
- Reynolds, M.; Foulkes, M.J.; Slafer, G.A.; Berry, P.; Parry, M.A.J.; Snape, J.W.; Angus, W.J. Raising yield potential in wheat. J. Exp. Bot. 2009, 60, 1899–1918. [Google Scholar] [CrossRef] [Green Version]
- Lobos, G.A.; Matus, I.; Rodriguez, A.; Romero-Bravo, S.; Araus, J.L.; Pozo, A.D. Wheat genotypic variability in grain yield and carbon isotope discrimination under Mediterranean conditions assessed by spectral reflectance. J. Integr. Plant Biol. 2014, 56, 470–479. [Google Scholar] [CrossRef] [Green Version]
- Hernandez, J.; Lobos, G.A.; Matus, I.; del Pozo, A.; Silva, P.; Galleguillos, M. Using ridge regression models to estimate grain yield from field spectral data in bread wheat (Triticum aestivum L.) grown under three water regimes. Remote Sens. 2015, 7, 2109–2126. [Google Scholar] [CrossRef] [Green Version]
- Becker, E.; Schmidhalter, U. Evaluation of yield and drought using active and passive spectral sensing systems at the reproductive stage in wheat. Front. Plant Sci. 2017, 8, 379. [Google Scholar] [CrossRef] [Green Version]
- Silva-Perez, V.; Molero, G.; Serbin, S.P.; Condon, A.G.; Reynolds, M.P.; Furbank, R.T.; Evans, J.R. Hyperspectral reflectance as a tool to measure biochemical and physiological traits in wheat. J. Exp. Bot. 2018, 69, 483–496. [Google Scholar] [CrossRef] [Green Version]
- El-Hendawy, S.E.; Al-Suhaibani, N.; Dewir, Y.H.; El-Sayed, S.; Alotaibi, M.; Hassan, W.M.; Refay, Y.; Tahir, M.U. Ability of modified spectral reflectance indices for estimating growth and photosynthetic efficiency of wheat under saline field conditions. Agronomy 2019, 9, 35. [Google Scholar] [CrossRef] [Green Version]
- Lobos, G.A.; Escobar-Opazo, A.; Estrada, F.; Romero-Bravo, S.; Garriga, M.; del Pozo, A.; Poblete-Echeverría, C.; Gonzalez-Talice, J.; González-Martinez, L.; Caligari, P. Spectral reflectance modeling by wavelength selection: Studying the scope for blueberry physiological breeding under contrasting water supply and heat conditions. Remote Sens. 2019, 11, 329. [Google Scholar] [CrossRef] [Green Version]
- Elmetwalli, A.H.; El-Hendawy, S.E.; Al-Suhaibani, N.; Alotaibi, M.; Tahir, M.U.; Mubushar, M.; Hassan, W.M.; El-Sayed, S. Potential of hyperspectral and thermal proximal sensing for estimating growth performance and yield of soybean exposed to different drip irrigation regimes under arid conditions. Sensors 2020, 20, 6569. [Google Scholar] [CrossRef]
- El-Hendawy, S.; Elsayed, S.; Al-Suhaibani, N.; Alotaibi, M.; Tahir, M.U.; Mubushar, M.; Attia, A.; Hassan, W.M. Use of hyperspectral reflectance sensing for assessing growth and chlorophyll content of spring wheat grown under simulated saline field conditions. Plants 2021, 10, 101. [Google Scholar] [CrossRef]
- Fu, Y.; Yang, G.; Wang, J.; Song, X.; Feng, H. Winter wheat biomass estimation based on spectral indices, band depth analysis and partial least squares regression using hyperspectral measurements. Comput. Electron. Agric. 2014, 100, 51–59. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Bao, Y.; Luo, J.; Jin, X.; Xu, X.; Song, X.; Yang, G. Exploring the best hyperspectral features for LAI estimation using partial least squares regression. Remote Sens. 2014, 6, 6221–6241. [Google Scholar] [CrossRef] [Green Version]
- Cochavi, A.; Rapaport, T.; Gendler, T.; Karnieli, A.; Eizenberg, H.; Rachmilevitch, S.; Ephrath, J.E. Recognition of Orobanche cumana below-ground parasitism through physiological and hyperspectral measurements in sunflower (Helianthus annuus L.). Front. Plant Sci. 2017, 8, 909. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Zhou, Z.; Zhang, G.; Meng, Y.; Chen, B.; Wang, Y. Monitoring the leaf water content and specific leaf weight of cotton (Gossypium hirsutum L.) in saline soil using leaf spectral reflectance. Eur. J. Agron. 2012, 41, 103–117. [Google Scholar] [CrossRef]
- Bayat, B.; van der Tol, C.; Verhoef, W. Remote sensing of grass response to drought stress using spectroscopic techniques and canopy reflectance model inversion. Remote Sens. 2016, 8, 557. [Google Scholar] [CrossRef] [Green Version]
- El-Hendawy, S.E.; Al-Suhaibani, N.; Elsayed, S.; Hassan, W.M.; Dewir, Y.H.; Refay, Y.; Abdella, K.A. Potential of the existing and novel spectral reflectance indices for estimating the leaf water status and grain yield of spring wheat exposed to different irrigation rates. Agric. Water Manag. 2019, 217, 356–373. [Google Scholar] [CrossRef]
- Peñuelas, J.; Filella, I. Visible and near-infrared reflectance techniques for diagnosing plant physiological status. Trends Plant Sci. 1998, 3, 151–156. [Google Scholar] [CrossRef]
- Gutierrez, M.; Reynolds, M.P.; Raun, W.R.; Stone, M.L.; Klatt, A.R. Spectral water indices for assessing yield in elite bread wheat genotypes in well irrigated, water stressed, and high temperature conditions. Crop Sci. 2010, 50, 197–214. [Google Scholar] [CrossRef]
- Garriga, M.; Romero-Bravo, S.; Estrada, F.; Escobar, A.; Matus, I.A.; del Pozo, A.; Astudillo, C.A.; Lobos, G.A. Assessing wheat traits by spectral reflectance: Do we really need to focus on predicted trait-values or directly identify the elite genotypes group? Front. Plant Sci. 2017, 8, 280. [Google Scholar] [CrossRef] [Green Version]
- Rapaport, T.; Hochberg, U.; Cochavi, A.; Karnieli, A.; Rachmilevitch, S. The potential of the spectral ‘water balance index’ (WABI) for crop irrigation scheduling. New Phytol. 2017, 216, 741–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Babar, M.A.; Reynolds, M.P.; van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll, and canopy temperature in wheat. Crop Sci. 2006, 46, 1046–1057. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Keydan, G.P.; Merzlyak, M.N. Three-band model for noninvasive estimation of chlorophyll, carotenoids and anthocyanin contents in higher plant leaves. Geophys. Res. Lett. 2006, 33, L11402. [Google Scholar] [CrossRef] [Green Version]
- Garriga, M.; Retamales, J.B.; Romero, S.; Caligari, P.D.S.; Lobos, G.A. Chlorophyll, anthocyanin, and gas exchange changes assessed by spectroradiometry in Fragaria chiloensis under salt stress. J. Integr. Plant Biol. 2014, 56, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Aparicio, N.; Villegas, D.; Casadesús, J.; Araus, J.L.; Royo, C. Spectral vegetation indices as nondestructive tools for determining durum wheat yield. Agron. J. 2000, 92, 83–91. [Google Scholar] [CrossRef]
- Babar, M.A.; Reynolds, M.P.; van Ginkel, M.; Klatt, A.R.; Raun, W.R.; Stone, M.L. Spectral reflectance indices as a potential indirect selection criteria for wheat yield under irrigation. Crop Sci. 2006, 46, 578–588. [Google Scholar] [CrossRef]
- Babar, M.A.; van Ginkel, M.; Klatt, A.; Prasad, B.; Reynolds, M.P. The potential of using spectral reflectance indices to estimate yield in wheat grown under reduced irrigation. Euphytica 2006, 150, 155–172. [Google Scholar] [CrossRef]
- Prasad, B.; Carver, B.F.; Stone, M.L.; Babar, M.A.; Raun, W.R.; Klatt, A.R. Potential use of spectral reflectance indices as a selection tool for grain yield in winter wheat under great plains conditions. Crop Sci. 2007, 47, 1426–1440. [Google Scholar] [CrossRef] [Green Version]
- Weber, V.S.; Araus, J.L.; Cairns, J.E.; Sanchez, C.; Melchinger, A.E.; Orsini, E. Prediction of grain yield using reflectance spectra of canopy and leaves in maize plants grown under different water regimes. Field Crop. Res. 2012, 128, 82–90. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Alotaibi, M.; Al-Suhaibani, N.; Al-Gaadi, K.; Hassan, W.; Dewir, Y.H.; Emam, M.A.E.-G.; Elsayed, S.; Schmidhalter, U. Comparative performance of spectral reflectance indices and multivariate modeling for assessing agronomic parameters in advanced spring wheat lines under two contrasting irrigation regimes. Front. Plant Sci. 2019, 10, 1537. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Al-Suhaibani, N.; Al-Ashkar, I.; Alotaibi, M.; Tahir, M.U.; Solieman, T.; Hassan, W.M. Combining genetic analysis and multivariate modeling to evaluate spectral reflectance indices as indirect selection tools in wheat breeding under water deficit stress conditions. Remote Sens. 2020, 12, 1480. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Hu, Y.C.; Yakout, G.M.; Awad, A.M.; Hafiz, S.E.; Schmidhalter, U. Evaluating salt tolerance of wheat genotypes using multiple parameters. Eur. J. Agron. 2005, 22, 243–253. [Google Scholar] [CrossRef]
- Bouslama, M.; Schapaugh, W.T. Stress tolerance in soybean. Part 1: Evaluation of three screening techniques for heat and drought tolerance. Crop. Sci. 1984, 24, 933–937. [Google Scholar] [CrossRef]
- Munns, R. Comparative physiology of salt and water stress. Plant Cell Environ. 2002, 25, 239–250. [Google Scholar] [CrossRef] [PubMed]
- Morton, M.J.L.; Awlia, M.; Al-Tamimi, N.; Saade, S.; Pailles, Y.; Negrão, S.; Tester, M. Salt stress under the scalpel—Dissecting the genetics of salt tolerance. Plant J. 2019, 97, 148–163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandez, G.C.J. Effective selection criteria for assessing plant stress tolerance. In Proceedings of the International Symposium on Adaptation of Vegetables and Other Food Crops in Temperature and Water Stress, Shanhua, Taiwan, 13–16 August 1992; pp. 257–270. [Google Scholar]
- Singh, B.U.; Rao, K.V.; Sharma, H.C. Comparison of selection indices to identify sorghum genotypes resistant to the spotted stemborer Chilo partellus (Lepidoptera: Noctuidae). Int. J. Trop. Insect. Sci. 2011, 31, 38–51. [Google Scholar] [CrossRef] [Green Version]
- Fischer, R.; Maurer, R. Drought resistance in spring wheat cultivars. I. Grain yield responses. Aust. J. Agric. Res. 1978, 29, 897–912. [Google Scholar] [CrossRef]
- Blum, A.; Sinmena, B.; Mayer, J.; Golan, G.; Shpiler, L. Stem reserve mobilisation supports wheat grain filling under heat stress. Aust. J. Plant Physiol. 1994, 21, 771–781. [Google Scholar] [CrossRef]
- Richards, R.A. Selectable traits to increase crop photosynthesis and yield of grain crops. J. Exp. Bot. 2000, 51, 447–458. [Google Scholar] [CrossRef]
- Pennacchi, J.P.; Carmo-Silva, E.; Andralojc, P.P.J.; Feuerhelm, D.; Powers, S.J.; Parry, M.A.J. Dissecting wheat grain yield drivers in a mapping population in the UK. Agronomy 2018, 8, 94. [Google Scholar] [CrossRef] [Green Version]
- Rosielle, A.; Hamblin, J. Theoretical aspects of selection for yield in stress and non-stress environment. Crop Sci. 1981, 21, 943–946. [Google Scholar] [CrossRef]
- Drikvand, R.; Doosty, B.; Hosseinpour, T. Response of rainfed wheat genotypes to drought stress using drought tolerance indices. J. Agric. Sci. 2012, 4, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Raman, A.; Verulkar, S.; Mandal, N.; Variar, V.; Shukla, V.; Dwivedi, J.; Singh, B.; Singh, O.; Swain, P.; Mall, A.; et al. Drought yield index to select high yielding rice lines under different drought stress severities. Rice 2012, 5, 31–43. [Google Scholar] [CrossRef] [Green Version]
- Cabello, R.; Monneveux, P.; De Mendiburu, F.; Bonierbale, M. Comparison of yield based drought tolerance indices in improved varieties, genetic stocks and landraces of potato (Solanum tuberosum L.). Euphytica 2013, 193, 147–156. [Google Scholar] [CrossRef]
- Eivazi, A.R.; Mohammadi, S.; Rezaei, M.; Ashori, S.; Hossien, P.F. Effective selection criteria for assessing drought tolerance indices in barley (Hordeum vulgare L.) accessions. Int. J. Agron. Plant Prod. 2013, 4, 813–821. [Google Scholar]
- Negarestani, M.; Tohidi-Nejad, E.; Khajoei-Nejad, G.; Nakhoda, B.; Mohammadi-Nejad, G. Comparison of different multivariate statistical methods for screening the drought tolerant genotypes of pearl millet (Pennisetum americanum L.) and sorghum (Sorghum bicolor L.). Agronomy 2019, 9, 645. [Google Scholar] [CrossRef] [Green Version]
- Devi, K.; Chahal, S.; Singh, S.; Karnam Venkatesh, K.; Mamrutha, H.M.; Raghav, N.; Singh, G.; Singh, G.P.; Tiwari, R. Assessment of wheat genotypes based on various indices under different heat stress conditions. Indian J. Genet. 2021, 81, 2–7. [Google Scholar]
- Harkness, C.; Semenov, M.A.; Areal, F.; Senapati, N.; Trnka, M.; Balek, J.; Bishop, J. Adverse weather conditions for UK wheat production under climate change. Agric. For. Meteorol. 2020, 107862, 282–283. [Google Scholar] [CrossRef]
- Heil, K.; Lehner, A.; Schmidhalter, U. Influence of climate conditions on the temporal development of wheat yields in a long-term experiment in an area with Pleistocene Loess. Climate 2020, 8, 100. [Google Scholar] [CrossRef]
- Blackburn, G.A. Hyperspectral remote sensing of plant pigments. J. Exp. Bot. 2007, 58, 855–867. [Google Scholar] [CrossRef] [Green Version]
- Lara, M.A.; Diezma, B.; Lle’o, L.; Roger, J.M.; Garrido, Y.; Gil, M.I.; Ruiz-Altisent, M. Hyperspectral imaging to evaluate the effect of irrigation water salinity in lettuce. Appl. Sci. 2016, 6, 412. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Al-Suhaibani, N.; Hassan, W.; Dewir, Y.H.; El-Sayed, S.; Al-Ashkar, I.; Abdella, K.A.; Schmidhalter, U. Evaluation of wavelengths and spectral reflectance indices for high throughput assessment of growth, water relations and ion contents of wheat irrigated with saline water. Agric. Water Manag. 2019, 212, 358–377. [Google Scholar] [CrossRef]
- Kovar, M.; Brestic, M.; Sytar, O.; Barek, V.; Hauptvogel, P.; Zivcak, M. Evaluation of hyperspectral reflectance parameters to assess the leaf water content in soybean. Water 2019, 11, 443. [Google Scholar] [CrossRef] [Green Version]
- Das, B.; Manohara, K.K.; Mahajan, G.R.; Sahoo, R.N. Spectroscopy based novel spectral indices, PCA-and PLSR-coupled machine learning models for salinity stress phenotyping of rice. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 229, 117983. [Google Scholar] [CrossRef]
- Rud, R.; Shoshany, M.; Alchanatis, V. Spectral indicators for salinity effects in crops: A comparison of a new green indigo ratio with existing indices. Remote Sens. Lett. 2011, 2, 289–298. [Google Scholar] [CrossRef]
- El-Hendawy, S.; Hassan, W.; Al-Suhaibani, N.; Schmidhalter, U. Spectral assessment of drought tolerance indices and grain yield in advanced spring wheat lines grown under full and limited water irrigation. Agric. Water Manag. 2017, 182, 1–12. [Google Scholar] [CrossRef]
- El-Hendawy, S.E.; Hassan, W.M.; Refay, Y.; Schmidhalter, U. On the use of spectral reflectance indices to assess agro-morphological traits of wheat plants grown under simulated saline field conditions. J. Agron. Crop Sci. 2017, 203, 406–428. [Google Scholar] [CrossRef]
- Kawamura, K.; Ikeura, H.; Phongchanmaixay, S.; Khanthavong, P. Canopy hyperspectral sensing of paddy fields at the booting stage and PLS regression can assess grain yield. Remote Sens. 2018, 10, 1249. [Google Scholar] [CrossRef] [Green Version]
- Royo, C.; Aparicio, N.; Villegas, D.; Casadesu´s, J.; Monneveux, P.; Araus, J.L. Usefulness of spectral reflectance indices as durum wheat yield predictors under contrasting Mediterranean environments. Int. J. Remote Sens. 2003, 24, 4403–4419. [Google Scholar] [CrossRef]
- Ferrio, J.P.; Villegas, D.; Zarco, J.; Aparicio, N.; Araus, J.L.; Royo, C. Assessment of durum wheat yield using visible and near-infrared reflectance spectra of canopies. Field Crops Res. 2005, 94, 126–148. [Google Scholar] [CrossRef]
- Christenson, B.S.; Schapaugh, W.T.; Nan, J.R.; Price, K.P.; Prasad, V.; Fritz, A.K. Predicting soybean relative maturity and seed yield using canopy reflectance. Crop Sci. 2016, 56, 625–643. [Google Scholar] [CrossRef] [Green Version]
- Ashraf, M. Evaluation of genetic variation for improvement of salt tolerance in spring wheat. In Prospects for Saline Agriculture; Ahmed, R., Malik, K.A., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 113–121. [Google Scholar]
- Al-Suhaibani, N.; Selim, M.; Alderfasi, A.; El-Hendawy, S. Comparative performance of integrated nutrient management between composted agricultural wastes, chemical fertilizers, and biofertilizers in improving soil quantitative and qualitative properties and crop yields under arid conditions. Agronomy 2020, 10, 1503. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Mahalakshmi, V.; Bidinger, F. Water deficit during panicle development in pearl millet: Yield compensation by tillers. J. Agric. Sci. 1986, 106, 113–119. [Google Scholar] [CrossRef] [Green Version]
- Gitelson, A.; Merzlyak, M.N. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation. J. Plant Physiol. 1994, 143, 286–292. [Google Scholar] [CrossRef]
- Merzlyak, M.N.; Gitelson, A.A.; Chivkunova, O.B.; Rakitin, V.Y. Non-destructive optical detection of leaf senescence and fruit ripening. Physiol. Plant 1999, 106, 135–141. [Google Scholar] [CrossRef] [Green Version]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Rondeaux, G.; Steven, M.; Baret, F. Optimization of soil-adjusted vegetation indices. Remote Sens. Environ. 1996, 55, 95–107. [Google Scholar] [CrossRef]
- Peñuelas, J.; Pinol, J.; Ogaya, R.; Filella, I. Estimation of plant water concentration by the reflectance Water Index WI (R900/R970). Int. J. Remote Sens. 1997, 18, 2869–2875. [Google Scholar] [CrossRef]
- Wilson, E.H.; Sader, S.A. Detection of forest harvest type using multiple dates of Landsat TM imagery. Remote Sens. Environ. 2002, 80, 385–396. [Google Scholar] [CrossRef]
- Romero, A.; Aguado, I.; Yebra, M. Estimation of dry matter content in leaves using normalized indexes and PROSPECT model inversion. Inter. J. Remote Sens. 2012, 33, 396–414. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007, 34, L20405. [Google Scholar] [CrossRef]
- Hamzeh, S.; Naseri, A.A.; AlaviPanah, S.K.; Mojaradi, B.; Bartholomeus, H.M.; Clevers, J.G.P.W.; Behzad, M. Estimating salinity stress in sugarcane fields with space borne hyperspectral vegetation indices. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 282–290. [Google Scholar] [CrossRef]
2019–2020 | 2020–2021 | Combined Two Years | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Effect | ST | G | ST × G | ST | G | ST × G | Y | ST | ST × Y | G | G × Y | ST × G | ST × G × Y |
DF | 1 | 63 | 63 | 1 | 63 | 63 | 1 | 1 | 1 | 63 | 63 | 63 | 63 |
GY | 333.5 *** | 1.01 *** | 0.605 *** | 333.2 *** | 1.05 *** | 0.526 *** | 14.09 ns | 666.7 *** | 0.002 ns | 1.85 *** | 0.219 ** | 1.05 *** | 0.082 ns |
Vegetation SRIs | |||||||||||||
NDVI-1 | 0.864 *** | 0.013 *** | 0.012 *** | 0.117 * | 0.015 *** | 0.008 *** | 0.693 * | 0.808 *** | 0.173 *** | 0.018 *** | 0.010 *** | 0.010 *** | 0.011 *** |
NDVI-2 | 0.686 *** | 0.010 *** | 0.010 *** | 0.056 ns | 0.013 *** | 0.008 *** | 0.314 * | 0.566 *** | 0.175 ** | 0.014 *** | 0.009 *** | 0.008 *** | 0.010 *** |
BNDVI | 0.004 ns | 0.010 *** | 0.009 *** | 0.021 * | 0.012 *** | 0.001 *** | 0.022 * | 0.003 * | 0.022 *** | 0.021 *** | 0.001 *** | 0.009 *** | 0.001 *** |
GNDVI | 0.034 * | 0.040 *** | 0.002 *** | 0.009 ns | 0.037 *** | 0.003 *** | 0.007 ns | 0.040 ** | 0.004 ns | 0.074 *** | 0.003 *** | 0.002 *** | 0.002 *** |
RNDVI | 0.384 ** | 0.045 *** | 0.004 *** | 0.143 ** | 0.024 *** | 0.004 *** | 0.726 *** | 0.498 *** | 0.029 * | 0.064 *** | 0.005 *** | 0.005 *** | 0.003 *** |
Chlgreen | 60.6 ** | 33.4 *** | 1.25 *** | 42.6 * | 42.8 *** | 4.17 *** | 115.5 ** | 102.4 *** | 0.794 ns | 73.6 *** | 2.56 *** | 2.97 *** | 2.45 *** |
Chlred-edge | 90.7 *** | 1.27 *** | 1.26 *** | 8.16 ns | 2.10 *** | 1.12 *** | 71.91 * | 76.62 *** | 22.22 ** | 1.97 *** | 1.39 *** | 1.11 *** | 1.27 *** |
EVI | 2.47 ** | 0.090 *** | 0.010 *** | 0.052 ns | 0.050 *** | 0.009 *** | 0.572 ** | 0.905 *** | 1.62 *** | 0.130 *** | 0.010 *** | 0.011 *** | 0.007 *** |
MTVI | 2.61 ** | 0.084 *** | 0.010 *** | 0.234 * | 0.048 *** | 0.008 ** | 0.037 ns | 0.640 *** | 2.20 *** | 0.122 *** | 0.009 *** | 0.011 *** | 0.007 *** |
OSAVI | 0.714 ** | 0.051 *** | 0.004 *** | 0.021 ns | 0.027 *** | 0.004 *** | 0.410 ** | 0.490 *** | 0.245 *** | 0.074 *** | 0.005 *** | 0.005 *** | 0.003 *** |
Water SRIs | |||||||||||||
WI | 0.194 *** | 0.003 *** | 0.003 *** | 0.383 ** | 0.003 *** | 0.003 *** | 0.518 ** | 0.562 *** | 0.016 * | 0.004 *** | 0.002 *** | 0.003 *** | 0.003 *** |
NWI-1 | 0.063 ** | 0.002 *** | 0.002 *** | 0.147 ** | 0.009 *** | 0.007 *** | 0.397 *** | 0.202 *** | 0.009 * | 0.002 *** | 0.001 *** | 0.001 *** | 0.001 *** |
NWI-2 | 0.037 *** | 0.006 *** | 0.006 *** | 0.066 ** | 0.005 *** | 0.005 *** | 0.093 ** | 0.101 *** | 0.002 ns | 0.007 *** | 0.004 *** | 0.006 *** | 0.003 *** |
WBI | 1.32 ** | 0.031 *** | 0.024 *** | 0.226 ns | 0.022 * | 0.017 ns | 3.12 ** | 1.32 *** | 0.226 * | 0.035 *** | 0.018 ** | 0.021 *** | 0.021 *** |
NDWI | 0.465 ** | 0.023 *** | 0.008 *** | 0.080 * | 0.019 *** | 0.005 *** | 0.909 ** | 0.465 *** | 0.080 ** | 0.038 *** | 0.004 *** | 0.008 *** | 0.005 *** |
NDMI | 0.470 ** | 0.022 *** | 0.008 *** | 0.049 * | 0.021 *** | 0.006 *** | 0.680 ** | 0.411 *** | 0.108 ** | 0.038 *** | 0.004 *** | 0.008 *** | 0.006 *** |
DMCI | 0.015 * | 0.001 *** | 0.002 *** | 0.077 ns | 0.005 *** | 0.005 *** | 0.087 * | 0.079 * | 0.012 ns | 0.004 *** | 0.003 *** | 0.004 *** | 0.003 *** |
NMDI | 0.087 * | 0.027 *** | 0.005 *** | 0.145 ** | 0.030 *** | 0.007 *** | 0.213 * | 0.229 *** | 0.004 ns | 0.052 *** | 0.005 *** | 0.005 *** | 0.007 *** |
SWSI-1 | 1.55 * | 0.243 *** | 0.022 *** | 0.048 ns | 0.194 *** | 0.023 ns | 0.796 * | 1.07 *** | 0.529 ** | 0.415 *** | 0.022 *** | 0.024 *** | 0.021 *** |
SWSI-2 | 0.036 ns | 0.211 *** | 0.054 *** | 6.04 ** | 0.105 *** | 0.048 *** | 2.82 * | 2.57 *** | 3.51 *** | 0.264 *** | 0.052 *** | 0.051 *** | 0.051 *** |
Stress tolerance indices (STIs) | |||||||||||||
YSI | 0.023 *** | 0.021 *** | 0.017 ns | 0.040 *** | 0.004 *** | ||||||||
SSI | 0.199 *** | 0.206 *** | 0.005 * | 0.372 *** | 0.033 ** | ||||||||
STI | 0.040 *** | 0.045 *** | 0.028 ns | 0.075 *** | 0.009 ns | ||||||||
TOL | 1.21 *** | 1.05 *** | 0.005 ns | 2.10 *** | 0.164 * | ||||||||
GMP | 0.460 *** | 0.540 *** | 7.28 ns | 0.885 *** | 0.115 ns |
Traits | 2019–2020 | 2020–2021 | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Control | Salinity | Control | Salinity | |||||||||
Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | Min | Max | Mean | |
GY (ton ha−1) | 3.92 | 7.24 | 5.54 | 2.51 | 4.81 | 3.67 | 4.24 | 7.81 | 5.81 | 2.27 | 5.21 | 3.94 |
Vegetation SRIs | ||||||||||||
NDVI-1 | 0.496 | 0.769 | 0.633 | 0.276 | 0.727 | 0.538 | 0.387 | 0.776 | 0.663 | 0.340 | 0.767 | 0.628 |
NDVI-2 | 0.429 | 0.706 | 0.563 | 0.271 | 0.650 | 0.478 | 0.320 | 0.698 | 0.573 | 0.305 | 0.698 | 0.549 |
BNDVI | 0.720 | 0.945 | 0.871 | 0.711 | 0.960 | 0.878 | 0.704 | 0.947 | 0.871 | 0.658 | 0.944 | 0.856 |
GNDVI | 0.485 | 0.901 | 0.747 | 0.412 | 0.876 | 0.728 | 0.532 | 0.906 | 0.749 | 0.467 | 0.885 | 0.739 |
RNDVI | 0.487 | 0.931 | 0.803 | 0.391 | 0.900 | 0.740 | 0.666 | 0.950 | 0.852 | 0.542 | 0.936 | 0.813 |
Chlgreen | 1.297 | 16.867 | 6.023 | 0.926 | 13.152 | 5.228 | 2.088 | 17.532 | 6.734 | 1.357 | 14.048 | 6.068 |
Chlred-edge | 1.828 | 5.874 | 3.202 | 0.752 | 4.650 | 2.230 | 1.099 | 5.860 | 3.474 | 0.958 | 5.866 | 3.182 |
EVI | 0.321 | 0.972 | 0.751 | 0.187 | 0.920 | 0.591 | 0.507 | 0.917 | 0.714 | 0.385 | 1.007 | 0.737 |
MTVI | 0.317 | 0.962 | 0.725 | 0.151 | 0.898 | 0.560 | 0.430 | 0.861 | 0.632 | 0.339 | 0.983 | 0.681 |
OSAVI | 0.415 | 0.887 | 0.742 | 0.292 | 0.849 | 0.655 | 0.558 | 0.873 | 0.752 | 0.463 | 0.879 | 0.737 |
Water SRIs | ||||||||||||
WI | 1.071 | 1.300 | 1.167 | 1.016 | 1.202 | 1.122 | 1.126 | 1.321 | 1.228 | 1.054 | 1.258 | 1.164 |
NWI-1 | −0.116 | 0.043 | −0.039 | −0.070 | 0.081 | −0.013 | −0.132 | −0.040 | −0.091 | −0.094 | 0.014 | −0.052 |
NWI-2 | −0.130 | −0.034 | −0.077 | −0.092 | −0.008 | −0.057 | −0.138 | −0.059 | −0.102 | −0.114 | −0.026 | −0.076 |
WBI | −0.095 | 0.514 | 0.207 | −0.001 | 0.628 | 0.324 | −0.246 | 0.374 | 0.114 | −0.189 | 0.566 | 0.163 |
NDWI | 0.484 | 0.887 | 0.750 | 0.460 | 0.837 | 0.681 | 0.534 | 0.936 | 0.799 | 0.514 | 0.910 | 0.770 |
NDMI | −0.872 | −0.464 | −0.726 | −0.810 | −0.446 | −0.656 | −0.917 | −0.535 | −0.762 | −0.882 | −0.455 | −0.739 |
DMCI | −0.263 | −0.088 | −0.187 | −0.326 | −0.112 | −0.200 | −0.388 | −0.035 | −0.201 | −0.484 | −0.109 | −0.229 |
NMDI | 0.314 | 0.816 | 0.645 | 0.443 | 0.795 | 0.615 | 0.442 | 0.835 | 0.683 | 0.091 | 0.828 | 0.644 |
SWSI-1 | 0.363 | 1.474 | 0.980 | 0.308 | 1.463 | 0.853 | 0.525 | 1.571 | 0.992 | 0.419 | 1.654 | 0.970 |
SWSI-2 | 0.854 | 2.242 | 1.681 | 0.884 | 2.280 | 1.662 | 1.078 | 1.760 | 1.425 | 1.127 | 2.439 | 1.676 |
Stress tolerance indices (STIs) | ||||||||||||
2019–2020 | 2020–2021 | |||||||||||
YSI | 0.446 | 0.869 | 0.670 | 0.429 | 0.857 | 0.683 | ||||||
SSI | 0.399 | 1.621 | 0.979 | 0.439 | 1.790 | 0.987 | ||||||
STI | 0.395 | 1.054 | 0.667 | 0.319 | 1.193 | 0.684 | ||||||
TOL | 0.593 | 3.437 | 1.864 | 0.707 | 3.728 | 1.863 | ||||||
GMP | 3.481 | 5.696 | 4.497 | 3.196 | 6.376 | 4.772 |
Traits | Salt-Tolerant Group | Salt-Sensitive Group | Moderately Salt-Tolerant Group |
---|---|---|---|
Number of genotypes in each cluster | 25 | 19 | 20 |
Grain yield under control condition (GYc, ton ha−1) | 6.23 | 5.45 | 5.18 |
Grain yield under salinity condition (GYs, ton ha−1) | 4.01 | 3.41 | 3.93 |
Yield stability index (YSI) | 0.65 | 0.63 | 0.76 |
Stress susceptibility index (SSI) | 1.07 | 1.13 | 0.73 |
Stress tolerance index (STI) | 0.78 | 0.58 | 0.64 |
Tolerance index (TOL) | 2.22 | 2.04 | 1.25 |
Geometric mean productivity (GMP) | 4.99 | 4.30 | 4.51 |
Treatments | Equation | R2 | RMSE |
---|---|---|---|
Vegetation SRIs | |||
Control | GYC = 4.456 + 0.190(Chlgreen) | 0.79 | 0.266 |
GYS = 1.446 + 3.155(GNDVI) | 0.38 | 0.317 | |
Salinity | GYC = 3.167 + 2.372(RNDVI) + 0.117(Chlgreen) | 0.69 | 0.321 |
GYS = 1.355 + 3.341(GNDVI) | 0.47 | 0.292 | |
Water SRIs | |||
Control | GYC = 6.037 − 4.07(WI) − 3.91(NDMI) + 1.62(SWSI-1) | 0.77 | 0.279 |
GYS = 1.457 + 3.539(NMDI) | 0.38 | 0.316 | |
Salinity | GYC = 3.574 + 2.299(SWSI-1) | 0.64 | 0.345 |
GYS = 2.616 + 1.307(SWSI-1) | 0.42 | 0.305 |
STIs | Salt Tolerance Groups | Vegetation SRIs | Water SRIs | ||||
---|---|---|---|---|---|---|---|
GNDVI | RNDVI | Chlgreen | WI | NDMI | SWSI-1 | ||
YSI | Salt-tolerant group | 0.25 * Q | 0.30 * Q | 0.17 ns Q | 0.14 ns Q | 0.43 ** Q | 0.33 * Q |
Salt-sensitive group | 0.49 ** Q | 0.51 ** Q | 0.41 ** Q | 0.29 * Q | 0.48 ** Q | 0.47 ** Q | |
Moderately salt-tolerant group | 0.13 ns Q | 0.21 ns Q | 0.13 ns Q | 0.09 ns Q | 0.09 ns Q | 0.16 ns Q | |
SSI | Salt-tolerant group | 0.25 * Q | 0.30 * Q | 0.17 ns Q | 0.14 ns Q | 0.43 ** Q | 0.33 * Q |
Salt-sensitive group | 0.49 ** Q | 0.51 ** Q | 0.41 ** Q | 0.29 * Q | 0.48 ** Q | 0.47 ** Q | |
Moderately salt-tolerant group | 0.13 ns Q | 0.21 ns Q | 0.13 ns Q | 0.09 ns Q | 0.09 ns Q | 0.16 ns Q | |
STI | Salt-tolerant group | 0.61 *** Q | 0.65 *** Q | 0.65 *** Q | 0.33 * Q | 0.65 *** Q | 0.71 *** Q |
Salt-sensitive group | 0.75 *** Q | 0.78 *** Q | 0.78 *** Q | 0.15 ns L | 0.41 ** Q | 0.66 *** Q | |
Moderately salt-tolerant group | 0.88 *** L | 0.88 *** Q | 0.88 *** Q | 0.65 *** L | 0.69 *** Q | 0.90 *** Q | |
TOL | Salt-tolerant group | 0.27 * Q | 0.31 * Q | 0.19 ns Q | 0.14 ns Q | 0.34 * Q | 0.30 * Q |
Salt-sensitive group | 0.46 ** Q | 0.46 ** Q | 0.41 ** Q | 0.32 * Q | 0.50 ** Q | 0.49 ** Q | |
Moderately salt-tolerant group | 0.32 * Q | 0.39 * Q | 0.32 * Q | 0.19 ns Q | 0.25 * L | 0.36 * Q | |
GMP | Salt-tolerant group | 0.62 *** Q | 0.67 *** Q | 0.65 *** Q | 0.33 * Q | 0.67 *** Q | 0.72 *** Q |
Salt-sensitive group | 0.71 *** Q | 0.75 *** Q | 0.75 *** Q | 0.15 ns Q | 0.41 ** Q | 0.63 *** Q | |
Moderately salt-tolerant group | 0.89 *** L | 0.89 *** Q | 0.89 *** Q | 0.66 *** Q | 0.69 *** Q | 0.91 *** Q |
Different Indices | Equation | Ref. |
---|---|---|
STIs | ||
Yield stability index (YSI) | YSI = GYs/GYc | [77] |
Stress susceptibility index (SSI) | SSI = (1− GYs/GYc)/(1 − GÝs/ GÝc) | [49] |
Stress tolerance index (STI) | STI = (GYc × GYs)/(GYs) | [47] |
Tolerance index (TOL) | TOL = GYc − GYs | [47] |
Geometric mean productivity (GMP) | GMP = (GYc × GYs) | [47] |
Vegetation SRIs | ||
Normalized difference vegetation index (NDVI-1) | (R750 − R705)/(R750 + R705) | [78] |
Normalized difference vegetation index (NDVI-2) | (R780 − R715)/(R780 + R715) | [19] |
Blue normalized difference vegetation index (BNDVI) | (R970 − R420)/(R970 + R420) | [19] |
Green normalized difference vegetation index (GNDVI) | (R940 − R550)/(R940 + R550) | [73] |
Red normalized difference vegetation index (RNDVI) | (R990 − R680)/(R990 + R680) | [79] |
Green chlorophyll index (Chlgreen) | (R760/R550) − 1 | [79] |
Red edge chlorophyll index (Chlred-edge) | (R760/R710) − 1 | [19] |
Enhanced vegetation index (EVI) | 2.5 [(R782 − R675)/(R782 + 6 × R675 − 7.5 × R445 + 1)] | [80] |
Modified Transformed Vegetation Index (MTVI) | 1.2 × [(1.2 × (R800 − R550) − 2.5 × (R670 − R550)] | [81] |
Optimized soil adjusted vegetation index (OSAVI) | 1.16 × (R800 − R670)/(R800 + R670 + 0.16) | [82] |
Water SRIs | ||
Water index (WI) | (R900/R970) | [83] |
Normalized water index -1 (NWI-1) | (R970 − R880)/(R970 + R880) | [37] |
Normalized water index -2 (NWI-2) | (R970 − R900)/(R970 + R900) | [39] |
Water balance index (WBI) | (R1500 − R531)/(R1500 + R531) | [32] |
Normalized difference water index (NDWI) | (R860 − R2270)/(R860 + R2270) | [19] |
Normalized difference moisture index (NDMI) | (R2200 − R1100)/(R2200 + R1100) | [84] |
Dry matter content index (DMCI) | (R2305 − R1495)/(R2305 + R1495) | [85] |
Normalized multi-band drought index (NMDI) | 860 − (R1640 − R2130)/860 + (R1640 − R2130) | [86] |
Salinity and water stress index-1 (SWSI-1) | (R803 − R681)/√(R1326 − R1507) | [87] |
Salinity and water stress index-2 (SWSI-2) | (R803 − R681)/√(R905 − R972) | [87] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Hendawy, S.; Al-Suhaibani, N.; Mubushar, M.; Tahir, M.U.; Refay, Y.; Tola, E. Potential Use of Hyperspectral Reflectance as a High-Throughput Nondestructive Phenotyping Tool for Assessing Salt Tolerance in Advanced Spring Wheat Lines under Field Conditions. Plants 2021, 10, 2512. https://doi.org/10.3390/plants10112512
El-Hendawy S, Al-Suhaibani N, Mubushar M, Tahir MU, Refay Y, Tola E. Potential Use of Hyperspectral Reflectance as a High-Throughput Nondestructive Phenotyping Tool for Assessing Salt Tolerance in Advanced Spring Wheat Lines under Field Conditions. Plants. 2021; 10(11):2512. https://doi.org/10.3390/plants10112512
Chicago/Turabian StyleEl-Hendawy, Salah, Nasser Al-Suhaibani, Muhammad Mubushar, Muhammad Usman Tahir, Yahya Refay, and ElKamil Tola. 2021. "Potential Use of Hyperspectral Reflectance as a High-Throughput Nondestructive Phenotyping Tool for Assessing Salt Tolerance in Advanced Spring Wheat Lines under Field Conditions" Plants 10, no. 11: 2512. https://doi.org/10.3390/plants10112512
APA StyleEl-Hendawy, S., Al-Suhaibani, N., Mubushar, M., Tahir, M. U., Refay, Y., & Tola, E. (2021). Potential Use of Hyperspectral Reflectance as a High-Throughput Nondestructive Phenotyping Tool for Assessing Salt Tolerance in Advanced Spring Wheat Lines under Field Conditions. Plants, 10(11), 2512. https://doi.org/10.3390/plants10112512