Root Tropisms: New Insights Leading the Growth Direction of the Hidden Half
Abstract
:1. Introduction
2. Highlights of the Special Issue
2.1. Sensors, Signalling, Action Regions, Phytohormones, and Secondary Messengers
2.2. Experimental Tools and Environments
2.3. Tropism Interactions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Muthert, L.W.F.; Izzo, L.G.; Van Zanten, M.; Aronne, G. Root Tropisms: Investigations on Earth and in Space to Unravel Plant Growth Direction. Front. Plant Sci. 2020, 10, 1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilroy, S.; Masson, P.H. Plant Tropisms, 1st ed.; Blackwell Publisher: Ames, IA, USA, 2008. [Google Scholar]
- Darwin, C.; Darwin, F. The Power of Movement in Plants. William Clowes and Sons: London, UK, 1880. [Google Scholar]
- Verbelen, J.-P.; Cnodder, T.D.; Le, J.; Vissenberg, K.; Baluška, F. The root apex of Arabidopsis thaliana consists of four distinct zones of growth activities: Meristematic zone, transition zone, fast elongation zone and growth terminating zone. Plant Signal. Behav. 2006, 1, 296–304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boccalandro, H.E.; De Simone, S.N.; Bergmann-Honsberger, A.; Schepens, I.; Fankhauser, C.; Casal, J.J. Phytochrome kinase substrate1 Regulates root phototropism and gravitropism. Plant Physiol. 2008, 146, 108–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kiss, J.Z. Conducting plant experiments in space. Methods Mol. Biol. 2015, 1309, 255–283. [Google Scholar] [PubMed]
- Gómez, C.; Izzo, L.G. Increasing efficiency of crop production with LEDs. AIMS Agric. Food 2018, 3, 135–153. [Google Scholar] [CrossRef]
- Shkolnik, D.; Fromm, H. The Cholodny-Went theory does not explain hydrotropism. Plant Sci. 2016, 252, 400–403. [Google Scholar] [CrossRef] [PubMed]
- Hubert, B.; Funke, G.L. The phototropism of terrestrial roots. Biol. Jaarb. 1937, 4, 286–315. [Google Scholar]
- Silva-Navas, J.; Moreno-Risueno, M.A.; Manzano, C.; Pallero-Baena, M.; Navarro- Neila, S.; Téllez-Robledo, B.; Garcia-Mina, J.M.; Baigorri, R.; Gallego, F.J.; del Pozo, J.C. D-Root: A system for cultivating plants with the roots in darkness or under different light conditions. Plant J. 2015, 84, 244–255. [Google Scholar] [PubMed] [Green Version]
- Kiss, J.Z.; Wolverton, S.C.; Wyatt, S.E.; Hasenstein, K.H.; van Loon, J.J. Comparison of microgravity analogs to spaceflight in studies of plant growth and development. Front. Plant Sci. 2019, 10, 1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenbrink, J.P.; Kiss, J.Z. Space, the final frontier: A critical review of recent experiments performed in microgravity. Plant Sci. 2016, 243, 115–119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esmon, C.A.; Pedmale, U.V.; Liscum, E. Plant tropisms: Providing the power of movement to a sessile organism. Int. J. Dev. Biol. 2005, 49, 665–674. [Google Scholar] [CrossRef] [PubMed]
- Vandenbrink, J.P.; Herranz, R.; Medina, F.J.; Edelmann, R.E.; Kiss, J.Z. A novel blue-light phototropic response is revealed in roots of Arabidopsis thaliana in microgravity. Planta 2016, 244, 1201–1215. [Google Scholar] [CrossRef] [PubMed]
- Izzo, L.G.; Romano, L.E.; De Pascale, S.; Mele, G.; Gargiulo, L.; Aronne, G. Chemotropic vs hydrotropic stimuli for root growth orientation in microgravity. Front. Plant Sci. 2019, 10, 1547. [Google Scholar] [CrossRef] [PubMed]
- Okada, K.; Shimura, Y. Modulation of root growth by physical stimuli. In Arabidopsis, 1st ed.; Meyerowitz, E.M., Somerville, C.R., Eds.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 1994; pp. 655–683. [Google Scholar]
- Vitha, S.; Zhao, L.; Sack, F.D. Interaction of root gravitropism and phototropism in Arabidopsis wild-type and starchless mutants. Plant Physiol. 2000, 122, 453–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Izzo, L.G.; Aronne, G. Root Tropisms: New Insights Leading the Growth Direction of the Hidden Half. Plants 2021, 10, 220. https://doi.org/10.3390/plants10020220
Izzo LG, Aronne G. Root Tropisms: New Insights Leading the Growth Direction of the Hidden Half. Plants. 2021; 10(2):220. https://doi.org/10.3390/plants10020220
Chicago/Turabian StyleIzzo, Luigi Gennaro, and Giovanna Aronne. 2021. "Root Tropisms: New Insights Leading the Growth Direction of the Hidden Half" Plants 10, no. 2: 220. https://doi.org/10.3390/plants10020220
APA StyleIzzo, L. G., & Aronne, G. (2021). Root Tropisms: New Insights Leading the Growth Direction of the Hidden Half. Plants, 10(2), 220. https://doi.org/10.3390/plants10020220