Short Rotation Intensive Culture of Willow, Spent Mushroom Substrate and Ramial Chipped Wood for Bioremediation of a Contaminated Site Used for Land Farming Activities of a Former Petrochemical Plant
Abstract
:1. Introduction
2. Results
2.1. Initial Soil Contaminant Concentrations (T0)
2.2. Intermediate Variation (IV) and Global Variation (GV) of Soil Contaminant Concentrations
2.3. Variation Rate (VR) of Soil Contaminant Concentrations
2.4. Water Extracted TEs, pH and EC
2.5. Biomass Production and TE Phytoextraction
3. Discussion
3.1. Biomass Production
3.2. TE Phytoextraction
3.3. Soil Organic Amendment and TE Phytoextraction
3.4. Soil Contaminants in the Initial Soil Samples (T0)
3.5. Willows and Global Variations (GV) of Contaminants in Soil
3.6. Variation Rates (VR)
3.7. Willows and Water-Soluble Fractions in Soil
3.8. Organic Amendment and Soil Contaminants Concentrations
4. Materials and Methods
4.1. Experimental Site
4.2. Experimental Planting and Maintenance of the Plantation
4.3. Soil Sampling
4.4. Biomass Sampling
4.5. Data Analyses
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Weir, E.; Doty, S. Social acceptability of phytoremediation: The role of risk and values. Int. J. Phytoremediat. 2016, 6514, 1029–1036. [Google Scholar] [CrossRef]
- Gerhardt, K.E.; Gerwing, P.D.; Greenberg, B.M. Opinion: Taking Phytoremediation from Proven Technology to Accepted Practice. Plant Sci. 2017, 256, 170–185. [Google Scholar] [CrossRef] [PubMed]
- Fagnano, M.; Visconti, D.; Fiorentino, N. Agronomic approaches for characterization, remediation, and monitoring of contaminated sites. Agronomy 2020, 10, 1335. [Google Scholar] [CrossRef]
- Bell, T.H.; Stefani, F.O.P.; Abram, K.; Champagne, J.; Yergeau, E.; Hijri, M.; St-Arnaud, M. A diverse soil microbiome degrades more crude oil than specialized bacterial assemblages obtained in culture. Appl. Environ. Microbiol. 2016, 82, 5530–5541. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Greger, M. Clonal Differences in Mercury Tolerance, Accumulation, and Distribution in Willow. J. Environ. Qual. 2004, 33, 1779–1785. [Google Scholar] [CrossRef]
- Cristaldi, A.; Conti, G.O.; Jho, E.H.; Zuccarello, P.; Grasso, A.; Copat, C.; Ferrante, M. Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environ. Technol. Innov. 2017, 8, 309–326. [Google Scholar] [CrossRef]
- Mench, M.J.; Didier, V.L.; Löffler, M.; Gomez, A.; Masson, P. A Mimicked In-Situ Remediation Study of Metal-Contaminated Soils with Emphasis on Cadmium and Lead. J. Environ. Qual. 1994, 23, 58–63. [Google Scholar] [CrossRef]
- Dagher, D.J.; Pitre, F.E.; Hijri, M. Ectomycorrhizal fungal inoculation of sphaerosporella brunnea significantly increased stem biomass of salix miyabeana and decreased lead, tin, and zinc, soil concentrations during the phytoremediation of an industrial landfill. J. Fungi 2020, 6, 87. [Google Scholar] [CrossRef]
- Susarla, S.; Medina, V.F.; McCutcheon, S.C. Phytoremediation: An ecological solution to organic chemical contamination. Ecol. Eng. 2002, 18, 647–658. [Google Scholar] [CrossRef]
- Shang, K.; Hu, Y.H.; Vincent, G.; Labrecque, M. Biomass and phytoextraction potential of three ornamental shrub species tested over three years on a large-scale experimental site in Shanghai, China. Int. J. Phytoremediat. 2020, 22, 10–19. [Google Scholar] [CrossRef]
- Khan, A.H.A.; Kiyani, A.; Mirza, C.R.; Butt, T.A.; Barros, R.; Ali, B.; Iqbal, M.; Yousaf, S. Ornamental plants for the phytoremediation of heavy metals: Present knowledge and future perspectives. Environ. Res. 2021, 195, 110780. [Google Scholar] [CrossRef]
- Patra, D.K.; Acharya, S.; Pradhan, C.; Patra, H.K. Poaceae plants as potential phytoremediators of heavy metals and eco-restoration in contaminated mining sites. Environ. Technol. Innov. 2021, 21, 101293. [Google Scholar] [CrossRef]
- Pandey, V.C.; Singh, D.P. Phytoremediation Potential of Perennial Grasses; Elsevier Inc.: Amsterdam, The Netherlands, 2020; ISBN 978-0-12-817732-7. [Google Scholar]
- Antoniadis, V.; Shaheen, S.M.; Stärk, H.J.; Wennrich, R.; Levizou, E.; Merbach, I.; Rinklebe, J. Phytoremediation potential of twelve wild plant species for toxic elements in a contaminated soil. Environ. Int. 2021, 146. [Google Scholar] [CrossRef] [PubMed]
- Rosselli, W.; Keller, C.; Boschi, K. Phytoextraction capacity of trees growing on a metal contaminated soil. Plant Soil 2003, 256, 265–272. [Google Scholar] [CrossRef]
- Padoan, E.; Passarella, I.; Prati, M.; Bergante, S.; Facciotto, G.; Ajmone-Marsan, F. The suitability of short rotation coppice crops for phytoremediation of Urban soils. Appl. Sci. 2020, 10, 307. [Google Scholar] [CrossRef] [Green Version]
- Greger, M.; Landberg, T. Use of Willow in Phytoextraction. Int. J. Phytoremediat. 1999, 1, 115–123. [Google Scholar] [CrossRef]
- McIntosh, P.; Kuzovkina, Y.A.; Schulthess, C.P.; Guillard, K. Breakdown of low-level total petroleum hydrocarbons (TPH) in contaminated soil using grasses and willows. Int. J. Phytoremediat. 2016, 18, 656–663. [Google Scholar] [CrossRef] [PubMed]
- Hultgren, J.; Pizzul, L.; Castillo, M.D.P.; Granhall, U. Degradation of pah in a creosote-contaminated soil. A comparison between the effects of willows (Salix Viminalis), wheat straw and a nonionic surfactant. Int. J. Phytoremediat. 2010, 12, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Courchesne, F.; Turmel, M.C.; Cloutier-Hurteau, B.; Constantineau, S.; Munro, L.; Labrecque, M. Phytoextraction of soil trace elements by willow during a phytoremediation trial in Southern Québec, Canada. Int. J. Phytoremediat. 2017, 19, 545–554. [Google Scholar] [CrossRef]
- Pavlíková, D.; Macek, T.; Macková, M.; Pavlík, M. Monitoring native vegetation on a dumpsite of PCB-contaminated soil. Int. J. Phytoremediat. 2007, 9, 71–78. [Google Scholar] [CrossRef]
- Janssen, J.; Weyens, N.; Croes, S.; Beckers, B.; Meiresonne, L.; Van Peteghem, P.; Carleer, R.; Vangronsveld, J. Phytoremediation of Metal Contaminated Soil Using Willow: Exploiting Plant-Associated Bacteria to Improve Biomass Production and Metal Uptake. Int. J. Phytoremediat. 2015, 17, 1123–1136. [Google Scholar] [CrossRef]
- Mleczek, M.; Gąsecka, M.; Waliszewska, B.; Magdziak, Z.; Szostek, M.; Rutkowski, P.; Kaniuczak, J.; Zborowska, M.; Budzyńska, S.; Mleczek, P.; et al. Salix viminalis L.—A highly effective plant in phytoextraction of elements. Chemosphere 2018, 212, 67–78. [Google Scholar] [CrossRef]
- Kersten, G. Phytoremediation of Metal Contamination using Salix (willows). Master’s Thesis, University of Denver, Denver, CO, USA, 2015. [Google Scholar]
- Ul Hai, I.; Sher, F.; Yaqoob, A.; Liu, H. Assessment of biomass energy potential for SRC willow woodchips in a pilot scale bubbling fluidized bed gasifier. Fuel 2019, 258. [Google Scholar] [CrossRef]
- Karp, A. Willows as a Source of Renewable Fuels and Diverse Products. In Challenges and Opportunities for the World’s Forests in the 21st Century; Fenning, T., Ed.; Springer Netherlands: Dordrecht, The Netherlands, 2014; pp. 617–641. ISBN 978-94-007-7076-8. [Google Scholar]
- Ruttens, A.; Boulet, J.; Weyens, N.; Smeets, K.; Adriaensen, K.; Meers, E.; van Slycken, S.; Tack, F.; Meiresonne, L.; Thewys, T.; et al. Short rotation coppice culture of willows and poplars as energy crops on metal contaminated agricultural soils. Int. J. Phytoremediat. 2011, 13, 194–207. [Google Scholar] [CrossRef]
- McHugh, N.; Edmondson, J.L.; Gaston, K.J.; Leake, J.R.; O’Sullivan, O.S. Modelling short-rotation coppice and tree planting for urban carbon management—A citywide analysis. J. Appl. Ecol. 2015, 52, 1237–1245. [Google Scholar] [CrossRef]
- Cunniff, J.; Purdy, S.J.; Barraclough, T.J.P.; Castle, M.; Maddison, A.L.; Jones, L.E.; Shield, I.F.; Gregory, A.S.; Karp, A. High yielding biomass genotypes of willow (Salix spp.) show differences in below ground biomass allocation. Biomass Bioenergy 2015, 80, 114–127. [Google Scholar] [CrossRef] [Green Version]
- Mleczek, M.; Rutkowski, P.; Goliński, P.; Kaczmarek, Z.; Szentner, K.; Waliszewska, B.; Stolarski, M.; Szczukowski, S. Biological diversity of Salix taxa in Cu, Pb and Zn phytoextraction from soil. Int. J. Phytoremediat. 2017, 19, 121–132. [Google Scholar] [CrossRef] [PubMed]
- Tlustoš, P.; Száková, J.; Vysloužilová, M.; Pavlíková, D.; Weger, J.; Javorská, H. Variation in the uptake of Arsenic, Cadmium, Lead, and Zinc by different species of willows Salix spp. grown in contaminated soils. Cent. Eur. J. Biol. 2007, 2, 254–275. [Google Scholar] [CrossRef]
- Landberg, T.; Greger, M. Differences in uptake and tolerance to heavy metals in Salix from unpolluted and polluted areas. Appl. Geochem. 1996, 11, 175–180. [Google Scholar] [CrossRef]
- Fischerová, Z.; Tlustoš, P.; Száková, J.; Šichorová, K. A comparison of phytoremediation capability of selected plant species for given trace elements. Environ. Pollut. 2006, 144, 93–100. [Google Scholar] [CrossRef] [PubMed]
- Grenier, V.; Pitre, F.E.; Guidi Nissim, W.; Labrecque, M. Genotypic differences explain most of the response of willow cultivars to petroleum-contaminated soil. Trees Struct. Funct. 2015, 29, 871–881. [Google Scholar] [CrossRef]
- Labrecque, M.; Teodorescu, T.I. Field performance and biomass production of 12 willow and poplar clones in short-rotation coppice in southern Quebec (Canada). Biomass Bioenergy 2005, 29, 1–9. [Google Scholar] [CrossRef]
- Guidi Nissim, W.; Pitre, F.E.; Teodorescu, T.I.; Labrecque, M. Long-term biomass productivity of willow bioenergy plantations maintained in southern Quebec, Canada. Biomass Bioenergy 2013, 56, 361–369. [Google Scholar] [CrossRef]
- Pray, T.J.; Nissim, W.G.; St-Arnaud, M.; Labrecque, M. Investigating the effect of a mixed mycorrhizal inoculum on the productivity of biomass plantation willows grown on marginal farm land. Forests 2018, 9, 185. [Google Scholar] [CrossRef] [Green Version]
- Guittonny-Larchevêque, M.; Lortie, S. Above- and Belowground Development of a Fast-Growing Willow Planted in Acid-Generating Mine Technosol. J. Environ. Qual. 2017, 46, 1462–1471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yergeau, E.; Bell, T.H.; Champagne, J.; Maynard, C.; Tardif, S.; Tremblay, J.; Greer, C.W. Transplanting soil microbiomes leads to lasting effects on willow growth, but not on the rhizosphere microbiome. Front. Microbiol. 2015, 6, 1436. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grobelak, A. Organic soil amendments in the phytoremediation process. In Phytoremediation: Management of Environmental Contaminants; Springer International Publishing: Cham, Switzerland, 2016; Volume 4, pp. 21–39. ISBN 9783319418117. [Google Scholar]
- Chirakkara, R.A.; Reddy, K.R. Biomass and chemical amendments for enhanced phytoremediation of mixed contaminated soils. Ecol. Eng. 2015, 85, 265–274. [Google Scholar] [CrossRef]
- Wiszniewska, A.; Hanus-Fajerska, E.; MuszyŃska, E.; Ciarkowska, K. Natural Organic Amendments for Improved Phytoremediation of Polluted Soils: A Review of Recent Progress. Pedosphere 2016, 26, 1–12. [Google Scholar] [CrossRef]
- Owaid, M.N.; Abed, I.A.; Al-Saeedi, S.S.S. Applicable properties of the bio-fertilizer spent mushroom substrate in organic systems as a byproduct from the cultivation of Pleurotus spp. Inf. Process. Agric. 2017, 4, 78–82. [Google Scholar] [CrossRef]
- Lou, Z.; Sun, Y.; Zhou, X.; Baig, S.A.; Hu, B.; Xu, X. Composition variability of spent mushroom substrates during continuous cultivation, composting process and their effects on mineral nitrogen transformation in soil. Geoderma 2017, 307, 30–37. [Google Scholar] [CrossRef]
- Phan, C.W.; Sabaratnam, V. Potential uses of spent mushroom substrate and its associated lignocellulosic enzymes. Appl. Microbiol. Biotechnol. 2012, 96, 863–873. [Google Scholar] [CrossRef]
- Eggen, T.; Sasek, V. Use of Edible and Medicinal Oyster Mushroom [Pleurotus ostreatus (Jacq.: Fr.) Kumm.] Spent Compost in Remediation of Chemically Polluted Soils. Int. J. Med. Mushrooms 2002, 4, 255–261. [Google Scholar] [CrossRef]
- Buswell, J.A. Potential of spent mushroom substrate for bioremediation purposes. Compost Sci. Util. 1994, 2, 31–36. [Google Scholar] [CrossRef]
- Kadri, T.; Rouissi, T.; Kaur Brar, S.; Cledon, M.; Sarma, S.; Verma, M. Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: A review. J. Environ. Sci. 2017, 51, 52–74. [Google Scholar] [CrossRef] [PubMed]
- Lemieux, G.; Germain, D. Ramial Chipped Wood: The Clue to a Sustainable Fertile Soil; Laval University, Faculty of Forestry and Geomatics: Quebec City, QC, Canada, 2000. [Google Scholar]
- Caron, C.; Lemieux, G.; Lachance, L. Regenerating Soils with Ramial Chipped Wood; Laval University, Faculty of Forestry and Geomatics: Quebec City, QC, Canada, 1998. [Google Scholar]
- Goltapeh, E.M.; Danesh, Y.R.; Varma, A. Fungal Wood Decay Processes as a Basis for Bioremediation. Soil Biol. 2013, 32, 203–226. [Google Scholar] [CrossRef]
- Caron, C. Ramial Chipped wood: A basic tool for regenerating soils. In Proceedings of the Dixième Conférence Internationale de L’international Federation of Organic Agriculture Movements (IFOAM); Laval University, Faculty of Forestry and Geomatics: Quebec City, QC, Canada, 1994; p. 15. [Google Scholar]
- Hattab, N.; Soubrand, M.; Guégan, R.; Motelica-Heino, M.; Bourrat, X.; Faure, O.; Bouchardon, J.L. Effect of organic amendments on the mobility of trace elements in phytoremediated techno-soils: Role of the humic substances. Environ. Sci. Pollut. Res. 2014, 21, 10470–10480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hattab, N.; Motelica-Heino, M.; Faure, O.; Bouchardon, J.L. Effect of fresh and mature organic amendments on the phytoremediation of technosols contaminated with high concentrations of trace elements. J. Environ. Manag. 2015, 159, 37–47. [Google Scholar] [CrossRef] [Green Version]
- Guidi, W.; Kadri, H.; Labrecque, M. Establishment techniques to using willow for phytoremediation on a former oil refinery in southern Quebec: Achievements and constraints. Chem. Ecol. 2012, 28, 37–41. [Google Scholar] [CrossRef]
- Thygesen, R.S.; Trapp, S. Phytotoxicity of polycyclic aromatic hydrocarbons to willow trees. J. Soils Sediments 2002, 2, 77–82. [Google Scholar] [CrossRef]
- Bauer, A.; Black, A.L. Quantification of the Effect of Soil Organic Matter Content on Soil Productivity. Soil Sci. Soc. Am. J. 1994, 58, 185. [Google Scholar] [CrossRef]
- Labrecque, M.; Teodorescu, T.I.; Daigle, S. Effect of wastewater sludge on growth and heavy metal bioaccumulation of two Salix species. Plant Soil 1995, 171, 303–316. [Google Scholar] [CrossRef]
- Adegbidi, H.G.; Briggs, R.D.; Volk, T.A.; White, E.H.; Abrahamson, L.P. Effect of organic amendments and slow-release nitrogen fertilizer on willow biomass production and soil chemical characteristics. Biomass Bioenergy 2003, 25, 389–398. [Google Scholar] [CrossRef]
- Jonathan, S.G.; Lawal, M.M.; Oyetunji, O.J. Effect of spent mushroom compost of Pleurotus pulmonarius on growth performance of four Nigerian vegetables. Mycobiology 2011, 39, 164–169. [Google Scholar] [CrossRef] [Green Version]
- Frutos, I.; García-Delgado, C.; Cala, V.; Gárate, A.; Eymar, E. The use of spent mushroom compost to enhance the ability of Atriplex halimus to phytoremediate contaminated mine soils. Environ. Technol. (UK) 2017, 38, 1075–1084. [Google Scholar] [CrossRef]
- Roy, S.; Barman, S.; Chakraborty, U.; Chakraborty, B. Evaluation of Spent Mushroom Substrate as biofertilizer for growth improvement of Capsicum annuum L. J. Appl. Biol. Biotechnol. 2015, 3, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Paula, F.S.; Tatti, E.; Abram, F.; Wilson, J.; Flaherty, V.O. Stabilisation of spent mushroom substrate for application as a plant growth-promoting organic amendment. J. Environ. Manag. 2017, 196, 476–486. [Google Scholar] [CrossRef]
- Soumare, M.D.; Mnkeni, P.N.S.; Khouma, M. Effects of Casuarina equisetifolia Composted Litter and Ramial-Wood Chips on Tomato Growth and Soil Properties in Niayes, Senegal. Biol. Agric. Hortic. 2002, 20, 111–123. [Google Scholar] [CrossRef]
- Pulford, I.D.; Riddell-Black, D.; Stewart, C. Heavy Metal Uptake by Willow Clones from Sewage Sludge-Treated Soil: The Potential for Phytoremediation. Int. J. Phytoremediat. 2002, 4, 59. [Google Scholar] [CrossRef]
- Algreen, M.; Trapp, S.; Rein, A. Phytoscreening and phytoextraction of heavy metals at Danish polluted sites using willow and poplar trees. Environ. Sci. Pollut. Res. 2014, 21, 8992–9001. [Google Scholar] [CrossRef] [Green Version]
- Séguin, V.; Gagnon, C.; Courchesne, F. Changes in water extractable metals, pH and organic carbon concentrations at the soil-root interface of forested soils. Plant Soil 2004, 260, 1–17. [Google Scholar] [CrossRef]
- Ernst, W.H.O. Bioavailability of heavy metals and decontamination of soils by plants. Appl. Geochem. 1996, 11, 163–167. [Google Scholar] [CrossRef]
- Carrillo-González, R.; Šimůnek, J.; Sauvé, S.; Adriano, D. Mechanisms and Pathways of Trace Element Mobility in Soils. Adv. Agron. 2006, 91, 111–178. [Google Scholar] [CrossRef]
- Nguyen, T.X.T.; Amyot, M.; Labrecque, M. Differential effects of plant root systems on nickel, copper and silver bioavailability in contaminated soil. Chemosphere 2017, 168, 131–138. [Google Scholar] [CrossRef]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010; ISBN 9781420093704. [Google Scholar]
- Laidlaw, W.S.; Arndt, S.K.; Huynh, T.T.; Gregory, D.; Baker, A.J.M. Phytoextraction of Heavy Metals by Willows Growing in Biosolids under Field Conditions. J. Environ. Qual. 2012, 41, 134. [Google Scholar] [CrossRef]
- Zayed, A.; Lytle, C.M.; Qian, J.H.; Terry, N. Chromium accumulation, translocation and chemical speciation in vegetable crops. Planta 1998, 206, 293–299. [Google Scholar] [CrossRef]
- Kacálková, L.; Tlustoš, P.; Száková, J. Phytoextraction of Risk Elements by Willow and Poplar Trees. Int. J. Phytoremediat. 2015, 17, 414–421. [Google Scholar] [CrossRef]
- Pitre, F.; Teodorescu, T.; Labrecque, M. Brownfield phytoremediation of heavy Metals using Brassica and Salix supplemented with EDTA: Results of the first growing season. J. Environ. Sci. Eng. 2010, 4, 51–59. [Google Scholar]
- Desjardins, D.; Pitre, F.E.; Nissim, W.G.; Labrecque, M. Differential uptake of silver, copper and zinc suggests complementary species-specific phytoextraction potential. Int. J. Phytoremediat. 2016, 18, 598–604. [Google Scholar] [CrossRef]
- Pulford, I.D.; Watson, C. Phytoremediation of heavy metal-contaminated land by trees—A review. Environ. Int. 2003, 29, 529–540. [Google Scholar] [CrossRef]
- Bissonnette, L.; St-Arnaud, M.; Labrecque, M. Phytoextraction of heavy metals by two Salicaceae clones in symbiosis with arbuscular mycorrhizal fungi during the second year of a field trial. Plant Soil 2010, 332, 55–67. [Google Scholar] [CrossRef]
- Labrecque, M.; Hu, Y.; Vincent, G.; Shang, K. The use of willow microcuttings for phytoremediation in a copper, zinc and lead contaminated field trial in Shanghai, China. Int. J. Phytoremediat. 2020. [Google Scholar] [CrossRef]
- Gąsecka, M.; Siwulski, M.; Drzewiecka, K.; Magdziak, Z.; Mleczek, M.; Goliński, P.; Stuper-Szablewska, K. Organic acid profile and phenolic and sugar content in Salix purpurea × viminalis L. cultivated with different spent mushroom substrate and copper additions. Chem. Ecol. 2019, 35, 191–203. [Google Scholar] [CrossRef]
- Magdziak, Z.; Mleczek, M.; Gąsecka, M.; Drzewiecka, K.; Kaczmarek, Z.; Siwulski, M.; Goliński, P. Agaricus bisporus compost improves the potential of Salix purpurea × viminalis hybrid for copper accumulation. Int. J. Phytoremediat. 2016, 18, 768–776. [Google Scholar] [CrossRef] [PubMed]
- Almås, Å.R.; McBride, M.B.; Singh, B.R. Solubility and lability of cadmium and zinc in two soils treated with organic matter. Soil Sci. 2000, 165, 250–259. [Google Scholar] [CrossRef]
- Usman, A.R.A.; Kuzyakov, Y.; Stahr, K. Dynamics of organic C mineralization and the mobile fraction of heavy metals in a calcareous soil incubated with organic wastes. Water Air Soil Pollut. 2004, 158, 401–418. [Google Scholar] [CrossRef] [Green Version]
- Kaschl, A.; Chen, Y. Interactions of Humic Substances with Trace Metals and Their Stimulatory Effects on Plant Growth BT—Use of Humic Substances to Remediate Polluted Environments: From Theory to Practice; Perminova, I.V., Hatfield, K., Hertkorn, N., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2005; ISBN 978-1-4020-3252-3. [Google Scholar]
- Borůvka, L.; Drábek, O. Heavy metal distribution between fractions of humic substances in heavily polluted soils. Plant Soil Environ. 2004, 50, 339–345. [Google Scholar] [CrossRef] [Green Version]
- Donisa, C.; Mocanu, R.; Steinnes, E. Distribution of some major and minor elements between fulvic and humic acid fractions in natural soils. Geoderma 2003, 111, 75–84. [Google Scholar] [CrossRef]
- Lalande, T.L.; Skipper, H.D.; Wolf, D.C.; Reynolds, C.M.; Freedman, D.L.; Pinkerton, B.W.; Hartel, P.G.; Grimes, L.W. Phytoremediation of pyrene in a Cecil soil under field conditions. Int. J. Phytoremediat. 2003, 5, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Vervaeke, P.; Luyssaert, S.; Mertens, J.; Meers, E.; Tack, F.M.G.; Lust, N. Phytoremediation prospects of willow stands on contaminated sediment: A field trial. Environ. Pollut. 2003, 126, 275–282. [Google Scholar] [CrossRef]
- Matranga, M. Mobility and Mobilisation of Heavy Metals and PAHs in Partially Water Repellent Urban Soils. Doctoral Dissertation, Universität Berlin, Berlin, Germany, 2012. [Google Scholar]
- Revitt, D.M.; Balogh, T.; Jones, H. Soil mobility of surface applied polyaromatic hydrocarbons in response to simulated rainfall. Environ. Sci. Pollut. Res. 2014, 21, 4209–4219. [Google Scholar] [CrossRef]
- Verginelli, I.; Baciocchi, R. Role of natural attenuation in modeling the leaching of contaminants in the risk analysis framework. J. Environ. Manag. 2013, 114, 395–403. [Google Scholar] [CrossRef] [PubMed]
- Ferro, A.; Gefell, M.; Kjelgren, R.; Lipson, D.S.; Zollinger, N.; Jackson, S. Maintaining hydraulic control using deep rooted tree systems. Adv. Biochem. Eng. Biotechnol. 2003, 78, 125–156. [Google Scholar] [CrossRef]
- Dimitriou, I.; Busch, G. A review of the impacts of short rotation coppice cultivation on water issues. Landbauforsch. Völkenrode 2009, 2009, 197–206. [Google Scholar]
- Mirck, J.; Volk, T.A. Seasonal sap flow of four salix varieties growing on the Solvay wastebeds in Syracuse, NY, USA. Int. J. Phytoremediat. 2010, 12, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Bialowiec, A.; Wojnowska-Baryla, I.; Hasso-Agopsowicz, M. The controlling of landfill leachate evapotranspiration from soil-plant systems with willow: Salix amygdalina L. Waste Manag. Res. 2007, 25, 61–67. [Google Scholar] [CrossRef]
- Rüth, B.; Lennartz, B.; Kahle, P. Water regime of mechanical-biological pretreated waste materials under fast-growing trees. Waste Manag. Res. J. Int. Solid Wastes Public Clean. Assoc. ISWA 2007, 25, 408–416. [Google Scholar] [CrossRef]
- Pivetz, B.E. Phytoremediation of Contaminates Soil and Ground Water at Hazardous Waste Sites; US Environmental Protection Agency, Office of Research and Development: Washington, DC, USA, 2001.
- Gerhardt, K.E.; Huang, X.D.; Glick, B.R.; Greenberg, B.M. Phytoremediation and rhizoremediation of organic soil contaminants: Potential and challenges. Plant Sci. 2009, 176, 20–30. [Google Scholar] [CrossRef]
- Liste, H.H.; Alexander, M. Accumulation of phenanthrene and pyrene in rhizosphere soil. Chemosphere 2000, 40, 11–14. [Google Scholar] [CrossRef]
- Klassen, S.P.; McLean, J.E.; Grossl, P.R.; Sims, R.C. Fate and Behavior of Lead in Soils Planted with Metal-Resistant Species (River Birch and Smallwing Sedge). J. Environ. Qual. 2010, 29, 1826. [Google Scholar] [CrossRef] [Green Version]
- Vervaeke, P.; Tack, F.M.G.; Lust, N.; Verloo, M. Short- and Longer-Term Effects of the Willow Root System on Metal Extractability in Contaminated Dredged Sediment. J. Environ. Qual. 2004, 33, 976. [Google Scholar] [CrossRef]
- Gąsecka, M.; Drzewiecka, K.; Stachowiak, J.; Siwulski, M.; Goliński, P.; Sobieralski, K.; Golak, I. Degradation of polycyclic aromatic hydrocarbons (PAHs) by spent mushroom substrates of Agaricus bisporus and Lentinula edodes. Acta Sci. Pol. Hortorum Cultus 2012, 11, 39–46. [Google Scholar]
- Courchesne, F.; Turmel, M.C.; Cloutier-Hurteau, B.; Tremblay, G.; Munro, L.; Masse, J.; Labrecque, M. Soil trace element changes during a phytoremediation trial with willows in Southern Québec, Canada. Int. J. Phytoremediat. 2017, 19, 632–642. [Google Scholar] [CrossRef] [PubMed]
- Nye, P.H. Changes of pH across the rhizosphere induced by roots. Plant Soil 1981, 61, 7–26. [Google Scholar] [CrossRef]
- Nguyen, T.X.T. Effects of Diverse Plant Species on the Bioavailability of Contaminants in Soil. Master’s Thesis, Université de Montréal, Montreal, QC, Canada, 2015. [Google Scholar]
- Haynes, R.J. Active ion uptake and maintenance of cation-anion balance: A critical examination of their role in regulating rhizosphere pH. Plant Soil 1990, 126, 247–264. [Google Scholar] [CrossRef]
- Takáč, P.; Szabová, T.; Kozáková, L.; Benková, M.; Takáč, P. Heavy metals and their bioavailability from soils in the long-term polluted Central Spiš region of SR. Plant Soil Environ. 2009, 55, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Dunbabin, J.S.; Pokorný, J.; Bowmer, K.H. Rhizosphere oxygenation by Typha domingensis Pers. in miniature artificial wetland filters used for metal removal from wastewaters. Aquat. Bot. 1988, 29, 303–317. [Google Scholar] [CrossRef]
- Marschner, H.; Römheld, V.; Cakmak, I. Root-induced changes of nutrient availability in the rhizosphere. J. Plant Nutr. 1987, 10, 1175–1184. [Google Scholar] [CrossRef]
- Taktek, S.; St-Arnaud, M.; Piché, Y.; Fortin, J.A.; Antoun, H. Igneous phosphate rock solubilization by biofilm-forming mycorrhizobacteria and hyphobacteria associated with Rhizoglomus irregulare DAOM 197198. Mycorrhiza 2016, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Laidlaw, W.S.; Baker, A.J.M.; Gregory, D.; Arndt, S.K. Irrigation water quality influences heavy metal uptake by willows in biosolids. J. Environ. Manag. 2015, 155, 31–39. [Google Scholar] [CrossRef]
- Zhu, D.; Schwab, A.P.; Banks, M.K. Heavy Metal Leaching from Mine Tailings as Affected by Plants. J. Environ. Qual. 2010, 28, 1727. [Google Scholar] [CrossRef]
- Clothier, B.E.; Green, S.R. ROOTS: THE BIG MOVERS OF WATER AND CHEMICAL IN SOIL. Soil Sci. 1997, 162, 534–543. [Google Scholar] [CrossRef]
- Hinsinger, P. How Do Plant Roots Acquire Mineral Nutrients? Chemical Processes Involved in the rhizosphere. Adv. Agron. 1998, 64, 225–265. [Google Scholar] [CrossRef]
- García-Delgado, C.; Jiménez-Ayuso, N.; Frutos, I.; Gárate, A.; Eymar, E. Cadmium and lead bioavailability and their effects on polycyclic aromatic hydrocarbons biodegradation by spent mushroom substrate. Environ. Sci. Pollut. Res. 2013, 20, 8690–8699. [Google Scholar] [CrossRef] [PubMed]
- Robichaud, K.; Girard, C.; Dagher, D.; Stewart, K.; Labrecque, M.; Hijri, M.; Amyot, M. Local fungi, willow and municipal compost effectively remediate petroleum-contaminated soil in the Canadian North. Chemosphere 2019, 220, 47–55. [Google Scholar] [CrossRef]
- Ministère de l’Environnement et de la Lutte Contre les Changements Climatiques du Québec (MELCC). Normales Climatiques du Québec 1981–2010. Available online: http://www.environnement.gouv.qc.ca/climat/normales/index.asp (accessed on 28 February 2021).
- Centre d’Expertise en Analyse Environnementale du Québec (CEAEQ). MA. 400—BPC 1.0—Détermination des biphényles polychlorés: Dosage par chromatographie en phase gazeuse couplée à un spectromètre de masse ou à un détecteur à capture d’électrons—méthode par congénère et groupe homologue, rév. 5. Ministère du Développement durable l’Environnement la Lutte contre les Chang. Clim. du Québec 2014, 35. [Google Scholar]
- Centre d’Expertise en Analyse Environnementale du Québec (CEAEQ). MA. 400—HAP 1.1—Détermination des hydrocarbures aromatiques polycycliques: Dosage par chromatographie en phase gazeuse couplée à un spectromètre de masse, Rév. 5. Ministère du Développement durable l’Environnement la Lutte contre les Chang. Clim. du Québec 2016, 21. [Google Scholar]
- Centre d’Expertise en Analyse Environnementale du Québec (CEAEQ). MA. 400—HYD. 1.0—Méthode d’analyse—Dosage des hydrocarbures pétroliers (C10 à C50) dans l’eau. Ministère du Développement durable l’Environnement la Lutte contre les Chang. Clim. du Québec 2004, 14. [Google Scholar]
- Centre d’Expertise en Analyse Environnementale du Québec (CEAEQ). MA. 200—Mét. 1.2—Détermination des métaux: Méthode par spectrométrie de masse à source ionisante au plasma d’argon, Rév. 5. Ministère du Développement durable, l’Environnement la Lutte contre les Chang. Clim. du Québec 2014, 36. [Google Scholar]
- Centre d’Expertise en Analyse Environnementale du Québec (CEAEQ). MA. 203—Mét. 3.2—Méthode d’analyse—Détermination des métaux dans l’eau: Méthode par spectrométrie d’émission au plasma d’argon, Rév. 2. Ministère du Développement durable, l’Environnement la Lutte contre les Chang. Clim. du Québec 2008, 19. [Google Scholar]
- Labrecque, M.; Teodorescu, T. La culture intensive de saules en courtes rotations (CICR). Inst. Rech. en Biol. Végétale Jard. Bot. Montréal Montréal QC Canada 2006, 4. [Google Scholar]
- Centre d’Expertise en Analyse Environnementale du Québec (CEAEQ). DR-12-SCA-01—Lignes directrices concernant les travaux analytiques en chimie. Ministère du Développement durable, l’Environnement la Lutte contre les Chang. Clim. du Québec 2018, 24. [Google Scholar]
- R Core Development Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008. [Google Scholar]
Parameters | Ctrl | SX61 | SX64 | p-Value |
---|---|---|---|---|
PCBs | 26.72 ± 13.98 B | 83.69 ± 25.84 A | 45.28 ± 22.23 B | 0.006 ** |
C10-C50 | 1757.60 ± 1122.18 B | 6189.33 ± 2365.19 A | 3097.87 ± 1190.97 B | <0.001 *** |
Cadmium | 1.78 ± 0.31 B | 2.23 ± 0.16 A | 1.91 ± 0.20 B | 0.019 * |
Chromium | 411.00 ± 200.10 C | 912.73 ± 143.32 A | 623.13 ± 157.63 B | <0.001 *** |
Copper | 791.80 ± 382.98 B | 2381.33 ± 579.51 A | 1279.47 ± 559.65 B | 0.001 ** |
Nickel | 66.20 ± 15.64 C | 106.47 ± 9.35 A | 84.93 ± 12.46 B | <0.001 *** |
Zinc | 234.20 ± 75.27 C | 479.27 ± 54.00 A | 337.87 ± 66.96 B | <0.001 *** |
Acenaphthene | 0.31 ± 0.21 B | 2.25 ± 3.75 A | 0.67 ± 0.25 B | 0.003 ** |
Acenaphtylene | 1.71 ± 1.43 B | 8.63 ± 3.27 A | 4.25 ± 2.09 B | <0.001 *** |
Anthracene | 6.00 ± 3.76 B | 34.96 ± 13.22 A | 19.50 ± 8.25 B | 0.001 ** |
Benz[a]anthracene | 0.23 ± 0.16 B | 1.14 ± 0.54 A | 0.52 ± 0.25 B | 0.002 ** |
Benzo[a]pyrene | 0.11 ± 0.08 B | 0.48 ± 0.25 A | 0.22 ± 0.11 B | 0.006 ** |
Benzo[ghi]perylene | 0.12 ± 0.08 B | 0.71 ± 0.29 A | 0.36 ± 0.16 B | 0.002 ** |
Chrysene | 0.18 ± 0.13 B | 0.57 ± 0.45 A | 0.25 ± 0.11 B | 0.004 ** |
Fluoranthene | 0.23 ± 0.15 B | 1.40 ± 2.39 A | 0.40 ± 0.17 B | 0.004 ** |
Fluorene | 0.41 ± 0.25 B | 2.14 ± 1.15 A | 0.98 ± 0.40 B | 0.004 ** |
Indeno[1,2,3-cd]pyrene | 0.09 ± 0.07 B | 0.49 ± 0.19 A | 0.24 ± 0.12 B | 0.002 ** |
Naphthalene | 0.19 ± 0.09 B | 0.65 ± 0.20 A | 0.34 ± 0.15 B | <0.001 *** |
Phenanthrene | 1.01 ± 0.66 B | 3.36 ± 1.10 A | 1.79 ± 0.73 B | <0.001 *** |
Pyrene | 0.51 ± 0.35 B | 2.99 ± 3.81 A | 1.06 ± 0.51 B | 0.006 ** |
1-Methylnaphthalene | 0.23 ± 0.13 B | 0.61 ± 0.18 A | 0.35 ± 0.11 B | <0.001 *** |
2-Methylnaphthalene | 0.23 ± 0.15 B | 0.62 ± 0.23 A | 0.40 ± 0.16 B | 0.002 ** |
1,3-Dimethylnaphthalene | 0.29 ± 0.17 B | 0.87 ± 0.26 A | 0.48 ± 0.17 B | <0.001 *** |
2,3,5-Trimethylnaphthalene | 0.09 ± 0.07 B | 0.61 ± 0.89 A | 0.20 ± 0.09 B | 0.001 ** |
Treatments | PCBs | C10-C50 | Benz[a]- anthracene | Benzo[ghi]- perylene | Naphthalene | 1-Methyl- naphthalene | 2-Methyl- naphthalene | 1,3-Dimethyl- naphthalene | |
---|---|---|---|---|---|---|---|---|---|
Ctrl | BG | 23.87 ± 22.33 | 593.60 ± 643.07 | 0.14 ± 0.15 | 0.11 ± 0.11 | 0.08 ± 0.07 | 0.08 ± 0.07 | 0.08 ± 0.07 | 0.13 ± 0.15 |
(−16.06 ± 53.42) | (−72.32 ± 12.30) | (+85.00 ± 343.97) | (+65.00 ± 244.69) | (−1.67 ± 168.68) | (−4.17 ± 170.12) | (−0.83 ± 168.85) | (+76.17 ± 348.86) | ||
RCW | 27.40 ± 21.86 | 674.80 ± 402.98 | 0.27 ± 0.15 | 0.14 ± 0.11 | 0.14 ± 0.11 | 0.15 ± 0.07 | 0.11 ± 0.05 | 0.25 ± 0.21 | |
(+9.72 ± 53.16) | (−55.82 ± 26.21) | (+142.50 ± 248.05) | (+55.00 ± 144.05) | (+53.33 ± 250.32) | (+23.33 ± 157.83) | (−18.33 ± 74.16) | (+61.33 ± 176.24) | ||
RCW+SMS | 33.19 ± 22.54 | 897.80 ± 803.55 | 0.20 ± 0.15 | 0.16 ± 0.15 | 0.11 ± 0.11 | 0.11 ± 0.11 | 0.11 ± 0.11 | 0.18 ± 0.19 | |
(+11.33 ± 38.73) | (−56.52 ± 18.15) | (+100.00 ± 335.88) | (+120.00 ± 325.19) | (+41.67 ± 256.24) | (+39.17 ± 257.72) | (+42.50 ± 256.18) | (+130.33 ± 431.78) | ||
SX61 | BG | 103.84 ± 34.83 | 3742.00 ± 1327.96 | 0.86 ± 0.43 | 0.70 ± 0.42 | 0.36 ± 0.09 | 0.42 ± 0.13 | 0.38 ± 0.11 | 0.62 ± 0.08 |
(+31.61 ± 9.56) | (−35.62 ± 14.07) | (−14.41 ± 27.35) | (−6.33 ± 27.24) | (−42.50 ± 17.22) | (−26.57 ± 30.23) | (−30.00 ± 36.13) | (−14.38 ± 35.33) | ||
RCW | 89.78 ± 24.35 | 3528.00 ± 821.87 | 0.84 ± 0.25 | 0.70 ± 0.25 | 0.40 ± 0.07 | 0.44 ± 0.09 | 0.38 ± 0.13 | 0.60 ± 0.12 | |
(+29.81 ± 26.09) | (−29.38 ± 18.78) | (−9.74 ± 14.77) | (+12.30 ± 21.31) | (−27.05 ± 15.66) | (−17.52 ± 12.04) | (−27.67 ± 16.65) | (−24.13 ± 17.29) | ||
RCW+SMS | 106.90 ± 46.26 | 3416.00 ± 1614.75 | 0.86 ± 0.40 | 0.64 ± 0.30 | 0.32 ± 0.08 | 0.36 ± 0.13 | 0.36 ± 0.09 | 0.42 ± 0.13 | |
(+4.45 ± 35.25) | (−48.95 ± 27.76) | (−21.08 ± 49.18) | (−3.33 ± 42.64) | (−51.90 ± 14.72) | (−41.27 ± 28.94) | (−42.93 ± 26.73) | (−51.92 ± 24.61) | ||
SX64 | BG | 56.14 ± 22.32 | 1670.60 ± 583.58 | 0.40 ± 0.12 | 0.34 ± 0.09 | 0.22 ± 0.04 | 0.26 ± 0.09 | 0.20 ± 0.07 | 0.32 ± 0.13 |
(+47.73 ± 44.60) | (−36.10 ± 12.04) | (−14.17 ± 42.25) | (−8.00 ± 25.15) | (−33.33 ± 20.41) | (−25.00 ± 34.36) | (−50.33 ± 29.59) | (−35.67 ± 38.90) | ||
RCW | 61.20 ± 34.18 | 1831.80 ± 838.99 | 0.54 ± 0.19 | 0.40 ± 0.12 | 0.26 ± 0.05 | 0.28 ± 0.08 | 0.22 ± 0.04 | 0.32 ± 0.08 | |
(+30.77 ± 40.53) | (-49.81 ± 17.89) | (+281.56 ± 681.36) | (+138.67 ± 314.87) | (+66.90 ± 242.45) | (+104.00 ± 333.21) | (+15.71 ± 159.19) | (+99.90 ± 335.62) | ||
RCW+SMS | 57.64 ± 24.17 | 1812.60 ± 955.62 | 0.44 ± 0.21 | 0.33 ± 0.17 | 0.19 ± 0.09 | 0.27 ± 0.13 | 0.23 ± 0.11 | 0.36 ± 0.18 | |
(+35.88 ± 26.77) | (-39.66 ± 18.54) | (−11.11 ± 43.21) | (−8.33 ± 45.64) | (−36.67 ± 21.73) | (−18.33 ± 39.70) | (−35.00 ± 28.50) | (−17.67 ± 27.73) | ||
p-value | Cover | 0.782 | 0.835 | 0.057 | 0.038 * | 0.035 * | 0.026 * | 0.059 | 0.045 * |
Cultivar | 0.081 | 0.048 * | 0.886 | 0.968 | 0.713 | 0.497 | 0.758 | 0.864 | |
Cover*Cultivar | 0.305 | 0.216 | 0.796 | 0.530 | 0.830 | 0.741 | 0.820 | 0.475 | |
Interpretation | - | Ctrl B SX61 A SX64 AB | - | BG B RCW A RCW+SMS AB | BG B RCW A RCW+SMS AB | BG B RCW A RCW+SMS B | - | BG B RCW A RCW+SMS AB |
Treatments | PCBs | Nickel | Benz[a]- anthracene | Benzo[ghi]- perylene | Chrysene | Naphthalene | Phenanthrene | 1-Methyl- naphthalene | 1,3-Dimethyl- naphthalene | 2,3,5-Trimethyl- naphthalene | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Growing period (Gr) | Ctrl | BG | 17.56 ± 75.04 | −5.03 ± 20.14 | 47.44 ± 241.92 | 41.67 ± 185.57 | 92.39 ± 247.43 | 25.44 ± 190.28 | 266.32 ± 1007.36 | 28.33 ± 191.40 | 86.74 ± 344.78 | 25.00 ± 137.26 | |
RCW | 40.08 ± 70.25 | 26.29 ± 71.85 | 100.00 ± 206.80 | 67.86 ± 111.99 | 136.31 ± 227.72 | 32.26 ± 143.34 | 689.22 ± 2424.26 | 41.92 ± 149.79 | 196.89 ± 669.04 | 80.00 ± 310.00 | |||
RCW+SMS | 18.31 ± 48.83 | 6.93 ± 26.79 | 7.74 ± 95.94 | 25.00 ± 89.34 | 42.86 ± 160.92 | 28.57 ± 197.01 | 219.93 ± 729.20 | 21.73 ± 149.75 | 80.12 ± 300.19 | 78.57 ± 307.89 | |||
SX61 | BG | 34.60 ± 58.12 | 12.03 ± 29.59 | 4.05 ± 45.03 | 13.40 ± 37.15 | 20.06 ± 43.56 | −5.87 ± 49.87 | 42.61 ± 94.61 | −3.60 ± 60.83 | 19.66 ± 79.22 | 24.72 ± 83.46 | ||
RCW | 26.55 ± 29.69 | 12.92 ± 31.02 | −1.67 ± 30.14 | 6.79 ± 23.46 | 17.33 ± 37.80 | −14.97 ± 26.78 | 26.73 ± 106.34 | −9.53 ± 37.08 | 6.40 ± 86.39 | 25.72 ± 163.51 | |||
RCW+SMS | 35.20 ± 56.89 | 10.38 ± 27.87 | −5.03 ± 41.01 | 17.18 ± 52.78 | 0.17 ± 39.60 | −16.63 ± 40.32 | 13.01 ± 93.42 | −20.29 ± 38.47 | −9.35 ± 66.81 | 4.18 ± 153.05 | |||
SX64 | BG | 31.03 ± 96.53 | 13.97 ± 42.99 | 32.93 ± 186.42 | 36.22 ± 133.09 | 41.56 ± 140.34 | −2.44 ± 87.40 | 24.82 ± 133.69 | 15.78 ± 138.34 | 14.66 ± 104.99 | 5.33 ± 102.32 | ||
RCW | 29.46 ± 27.87 | 9.28 ± 21.25 | 34.30 ± 134.01 | 29.44 ± 80.96 | 59.78 ± 136.71 | 1.25 ± 86.64 | 184.57 ± 697.84 | 9.03 ± 87.98 | 25.25 ± 138.93 | −9.17 ± 51.57 | |||
RCW+SMS | 25.50 ± 31.96 | 8.04 ± 15.96 | −1.89 ± 49.81 | 4.22 ± 33.77 | 15.52 ± 65.87 | 2.78 ± 47.52 | 49.85 ± 108.16 | −6.48 ± 35.52 | 34.82 ± 113.74 | 15.83 ± 97.08 | |||
Dormant period (Dr) | Ctrl | BG | 1.79 ± 57.36 | 0.77 ± 34.50 | 5.00 ± 47.96 | −10.00 ± 21.08 | −5.67 ± 75.63 | 1.67 ± 49.35 | −13.93 ± 53.78 | 12.50 ± 90.71 | 15.12 ± 119.25 | 31.67 ± 103.77 | |
RCW | −17.85 ± 32.55 | −23.63 ± 20.91 | −0.93 ± 81.06 | −17.59 ± 52.45 | −30.56 ± 55.28 | 20.37 ± 106.65 | 7.53 ± 91.99 | 36.11 ± 116.07 | 13.05 ± 85.71 | 92.59 ± 137.97 | |||
RCW+SMS | −14.54 ± 20.75 | −16.68 ± 12.32 | 28.70 ± 111.89 | −12.96 ± 20.03 | 15.37 ± 113.66 | −3.70 ± 42.92 | 1.26 ± 102.21 | 18.33 ± 109.66 | 15.19 ± 77.05 | 57.41 ± 146.75 | |||
SX61 | BG | −11.23 ± 40.50 | −13.06 ± 12.52 | 21.83 ± 95.71 | −7.03 ± 41.41 | 8.65 ± 76.65 | 7.06 ± 61.05 | 5.49 ± 124.14 | 40.61 ± 132.28 | 39.63 ± 174.37 | 72.33 ± 236.07 | ||
RCW | −13.98 ± 27.70 | −14.78 ± 6.01 | 13.29 ± 52.95 | 5.71 ± 43.37 | −11.08 ± 35.96 | 22.83 ± 53.98 | 7.45 ± 72.06 | 50.83 ± 105.30 | 32.56 ± 95.22 | 31.19 ± 88.35 | |||
RCW+SMS | −23.21 ± 34.42 | −17.33 ± 7.16 | 14.63 ± 63.10 | −11.05 ± 32.58 | −2.24 ± 28.35 | 14.67 ± 50.67 | 13.85 ± 76.20 | 62.67 ± 145.55 | 38.70 ± 112.60 | 73.25 ± 148.85 | |||
SX64 | BG | 18.76 ± 69.77 | −14.73 ± 19.55 | 18.33 ± 81.78 | −2.50 ± 52.42 | 3.21 ± 64.43 | 30.00 ± 69.30 | 12.57 ± 55.10 | 26.00 ± 73.41 | 14.83 ± 56.73 | 60.00 ± 90.68 | ||
RCW | −16.39 ± 34.73 | −16.30 ± 6.27 | 9.52 ± 34.95 | −1.50 ± 20.07 | −11.17 ± 33.19 | 34.17 ± 66.72 | 5.41 ± 74.33 | 31.67 ± 95.65 | 16.96 ± 56.88 | 40.00 ± 80.97 | |||
RCW+SMS | −3.64 ± 61.50 | −14.07 ± 6.92 | 61.00 ± 203.73 | −1.67 ± 38.05 | 9.50 ± 88.81 | −6.67 ± 43.18 | 0.94 ± 87.90 | 36.67 ± 120.20 | 5.11 ± 93.11 | 92.62 ± 239.59 | |||
p-value | Cover | 0.571 | 0.681 | 0.002 ** | 0.028 * | 0.042 * | 0.021 * | 0.015 * | 0.006 ** | 0.005 ** | 0.405 | ||
Cultivar | 0.024 * | 0.072 | 0.865 | 0.924 | 0.602 | 0.589 | 0.854 | 0.384 | 0.770 | 0.682 | |||
Period | <0.001 *** | 0.024 * | 0.641 | 0.007 ** | 0.009 ** | 0.028 * | 0.012 * | 0.025 * | 0.850 | 0.015 * | |||
Cover*Cultivar | 0.165 | 0.767 | 0.846 | 0.890 | 0.698 | 0.919 | 0.842 | 0.755 | 0.825 | 0.402 | |||
Cover*Period | 0.255 | 0.207 | 0.412 | 0.635 | 0.491 | 0.811 | 0.998 | 0.853 | 0.912 | 0.941 | |||
Cultivar*Period | 0.725 | 0.994 | 0.838 | 0.726 | 0.253 | 0.890 | 0.655 | 0.803 | 0.825 | 0.817 | |||
Cover*Cultivar*Period | 0.601 | 0.013 * | 0.589 | 0.214 | 0.855 | 0.549 | 0.562 | 0.970 | 0.560 | 0.549 | |||
Interpretation | Ctrl B SX61 AB SX64 A | Gr::Ctrl | BG B RCW A RCW+SMS AB | BG B RCW A RCW+SMS B | BG B RCW A RCW+SMS AB | BG AB RCW A RCW+SMS B | BG B RCW A RCW+SMS B | BG B RCW A RCW+SMS B | BG B RCW A RCW+SMS B | BG B RCW A RCW+SMS B | - | ||
Gr > Dr | Gr > Dr | - | Gr > Dr | Gr > Dr | Gr < Dr | Gr > Dr | Gr < Dr | - | Gr < Dr |
Parameters | Times | Units | Ctrl | SX61 | p-Value | Interpretation | ||||
---|---|---|---|---|---|---|---|---|---|---|
BG | RCW | BG | RCW | Cover | Cultivar | Cover * Cultivar | ||||
pH | T0 | - | 7.68 ± 0.30 | - | 7.89 ± 0.09 | - | - | 0.133 | - | - |
EC | µS cm−1 | 127.50 ± 37.96 | - | 120.45 ± 9.09 | - | - | 0.675 | - | - | |
Chromium | mg kg−1 | 0.24 ± 0.15 | - | 0.33 ± 0.05 | - | - | 0.252 | - | - | |
Copper | mg kg−1 | 3.09 ± 1.84 | - | 4.06 ± 1.43 | - | - | 0.516 | - | - | |
Nickel | mg kg−1 | 0.04 ± 0.02 | - | 0.03 ± 0.00 | - | - | 0.102 | - | - | |
Zinc | mg kg−1 | 0.14 ± 0.01 | - | 0.15 ± 0.02 | - | - | 0.384 | - | - | |
pH | T1 | - | 7.90 ± 0.24 | 7.91 ± 0.12 | 7.94 ± 0.13 | 7.92 ± 0.09 | 0.922 | 0.616 | 0.604 | - |
EC | µS cm−1 | 47.02 ± 10.91 | 91.09 ± 33.67 | 68.57 ± 11.74 | 74.14 ± 18.91 | 0.070 | 0.637 | 0.061 | - | |
Chromium | mg kg−1 | 0.10 ± 0.04 | 0.27 ± 0.09 | 0.31 ± 0.06 | 0.32 ± 0.07 | 0.039 * | 0.009 ** | 0.040 * | Ctrl:(BG < RCW) and BG:(Ctrl < SX61) | |
Copper | mg kg−1 | 1.41 ± 0.50 | 2.80 ± 1.44 | 3.88 ± 1.58 | 3.75 ± 0.51 | 0.162 | 0.047 * | 0.095 | Ctrl < SX61 | |
Nickel | mg kg−1 | 0.03 ± 0.01 | 0.05 ± 0.01 | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.147 | 0.011 * | 0.289 | Ctrl > SX61 | |
Zinc | mg kg−1 | 0.12 ± 0.01 | 0.14 ± 0.01 | 0.14 ± 0.01 | 0.14 ± 0.01 | 0.070 | 0.216 | 0.094 | - | |
pH | T5 | - | 7.91 ± 0.26 | 8.00 ± 0.05 | 8.01 ± 0.07 | 8.02 ± 0.07 | 0.381 | 0.277 | 0.552 | - |
EC | µS cm−1 | 47.56 ± 17.81 | 72.58 ± 39.63 | 67.72 ± 7.20 | 76.34 ± 16.76 | 0.071 | 0.271 | 0.269 | - | |
Chromium | mg kg−1 | 0.15 ± 0.06 | 0.24 ± 0.14 | 0.33 ± 0.14 | 0.32 ± 0.08 | 0.012 * | 0.008 ** | 0.237 | BG<RCW and Ctrl < SX61 | |
Copper | mg kg−1 | 1.78 ± 0.70 | 1.92 ± 0.77 | 4.08 ± 1.08 | 3.77 ± 0.54 | 0.684 | 0.026 * | 0.305 | Ctrl < SX61 | |
Nickel | mg kg−1 | 0.04 ± 0.01 | 0.04 ± 0.01 | 0.03 ± 0.00 | 0.03 ± 0.01 | 0.373 | 0.008 ** | 0.748 | Ctrl > SX61 | |
Zinc | mg kg−1 | 0.12 ± 0.01 | 0.12 ± 0.01 | 0.13 ± 0.01 | 0.13 ± 0.02 | 0.936 | 0.039 * | 0.987 | Ctrl < SX61 |
Parameters | Units | SX61 | SX64 | p-Value | Interpretation | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
BG | RCW | RCW + SMS | BG | RCW | RCW + SMS | Cover | Cultivar | Cover * Cultivar | |||
Biomass | odt ha−1 yr−1 | 22.75 ± 7.86 | 26.35 ± 9.61 | 26.20 ± 12.89 | 28.83 ± 12.22 | 26.36 ± 9.89 | 28.38 ± 11.97 | 0.646 | 0.301 | 0.368 | - |
Humidity | % | 55.85 ± 1.00 | 56.26 ± 1.00 | 55.44 ± 1.00 | 53.94 ± 1.00 | 53.84 ± 1.00 | 53.98 ± 1.00 | 0.387 | <0.001 *** | 0.076 | SX61 A, SX64 B |
Shoot [Cd] | mg kg−1 | 2.24 ± 0.00 | 2.42 ± 0.00 | 2.50 ± 1.00 | 2.02 ± 1.00 | 2.30 ± 1.00 | 2.36 ± 1.00 | 0.526 | 0.024 * | 0.844 | SX61 A, SX64 B |
Shoot [Cu] | 5.60 ± 1.00 | 5.60 ± 1.00 | 5.60 ± 1.00 | 5.00 ± 0.00 | 5.20 ± 1.00 | 5.20 ± 1.00 | 0.922 | 0.311 | 0.873 | - | |
Shoot [Zn] | 64.80 ± 4.00 | 78.20 ± 8.00 | 75.60 ± 11.00 | 68.60 ± 4.00 | 81.40 ± 13.00 | 77.60 ± 8.00 | 0.010 ** | 0.312 | 0.921 | BG B, RCW A, RCW+SMS A | |
Cd extraction yield | mg ha−1 yr−1 | 51.42 ± 16.71 | 63.22 ± 15.44 | 67.16 ± 33.96 | 61.25 ± 31.79 | 59.51 ± 18.58 | 69.07 ± 30.56 | 0.368 | 0.685 | 0.288 | - |
Cu extraction yield | 129.46 ± 41.98 | 149.38 ± 47.13 | 148.88 ± 61.75 | 144.15 ± 33.14 | 133.82 ± 34.27 | 145.75 ± 29.23 | 0.613 | 0.953 | 0.430 | - | |
Zn extraction yield | 1470.03 ± 247.55 | 2035.75 ± 391.30 | 1956.97 ± 654.48 | 1996.43 ± 553.11 | 2114.64 ± 598.14 | 2198.83 ± 492.27 | 0.027 * | 0.195 | 0.244 | BG B, RCW A, RCW+SMS A | |
BCF of Cd | Factor | 1.04 ± 0.19 | 1.09 ± 0.15 | 1.07 ± 0.20 | 1.11 ± 0.36 | 1.13 ± 0.20 | 1.27 ± 0.33 | 0.699 | 0.089 | 0.299 | - |
BCF of Cu | 0.0027 ± 0.0037 | 0.0028 ± 0.0021 | 0.0021 ± 0.0028 | 0.0048 ± 0.0013 | 0.0047 ± 0.0005 | 0.0056 ± 0.0005 | 0.893 | 0.079 | 0.207 | - | |
BCF of Zn | 0.14 ± 0.03 | 0.17 ± 0.02 | 0.15 ± 0.02 | 0.22 ± 0.05 | 0.23 ± 0.04 | 0.26 ± 0.12 | 0.711 | 0.028 * | 0.407 | SX61 B, SX64 A |
Parameters | Units | Values | Parameters | Units | Values |
---|---|---|---|---|---|
Cation-exchange capacity | meq 100g−1 | 43.50 | PCBs c | mg kg−1 | 57.58 ± 11.70 |
pH a | - | 7.70 | Cadmium c | mg kg−1 | 1.75 ± 0.15 |
pH buffer | - | >7.50 | Chromium c | mg kg−1 | 659.50 ± 127.22 |
Soil texture | - | Clay | Copper c | mg kg−1 | 1380.00 ± 201.57 |
Clay | % | 46.00 | Nickel c | mg kg−1 | 42.90 ± 2.22 |
Silt | % | 33.90 | Lead c | mg kg−1 | 34.00 ± 8.12 |
Sand | % | 20.10 | Zinc c | mg kg−1 | 386.50 ± 72.13 |
Organic matter | % | 9.60 | Acenaphthene c | mg kg−1 | 0.56 ± 0.18 |
K+ Mg + Ca saturation | % | 100.00 | Acenaphtylene c | mg kg−1 | 1.98 ± 0.38 |
P (P/Al) saturation | % | 16.50 | Anthracene c | mg kg−1 | 18.15 ± 4.90 |
Ca saturation | % | 81.60 | Benz[a]anthracene c | mg kg−1 | 0.43 ± 0.09 |
K saturation | % | 3.10 | Benzo[a]pyrene c | mg kg−1 | 0.28 ± 0.07 |
Mg saturation | % | 15.30 | Benzo[ghi]perylene c | mg kg−1 | 0.48 ± 0.12 |
Parameters | Units | Values | Chrysene c | mg kg−1 | 0.40 ± 0.09 |
Ca b | mg kg−1 | 7090.00 | Fluoranthene c | mg kg−1 | 0.54 ± 0.20 |
P b | mg kg−1 | 80.00 | Fluorene c | mg kg−1 | 0.94 ± 0.21 |
K b | mg kg−1 | 525.00 | Indeno[1,2,3-cd]pyrene c | mg kg−1 | 0.32 ± 0.09 |
Mg b | mg kg−1 | 800.00 | Naphthalene c | mg kg−1 | 0.42 ± 0.13 |
Al b | mg kg−1 | 48.00 | Phenanthrene c | mg kg−1 | 2.62 ± 0.71 |
Zn b | mg kg−1 | 85.60 | Pyrene c | mg kg−1 | 1.34 ± 0.41 |
Cu b | mg kg−1 | 417.00 | 1-Methylnaphthalene c | mg kg−1 | 0.42 ± 0.13 |
Mn b | mg kg−1 | 11.00 | 2-Methylnaphthalene c | mg kg−1 | 0.42 ± 0.12 |
B b | mg kg−1 | 1.40 | 1,3-Dimethylnaphthalene c | mg kg−1 | 0.55 ± 0.18 |
Fe b | mg kg−1 | 178.00 | 2,3,5-Trimethylnaphthalene c | mg kg−1 | 0.40 ± 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fortin Faubert, M.; Hijri, M.; Labrecque, M. Short Rotation Intensive Culture of Willow, Spent Mushroom Substrate and Ramial Chipped Wood for Bioremediation of a Contaminated Site Used for Land Farming Activities of a Former Petrochemical Plant. Plants 2021, 10, 520. https://doi.org/10.3390/plants10030520
Fortin Faubert M, Hijri M, Labrecque M. Short Rotation Intensive Culture of Willow, Spent Mushroom Substrate and Ramial Chipped Wood for Bioremediation of a Contaminated Site Used for Land Farming Activities of a Former Petrochemical Plant. Plants. 2021; 10(3):520. https://doi.org/10.3390/plants10030520
Chicago/Turabian StyleFortin Faubert, Maxime, Mohamed Hijri, and Michel Labrecque. 2021. "Short Rotation Intensive Culture of Willow, Spent Mushroom Substrate and Ramial Chipped Wood for Bioremediation of a Contaminated Site Used for Land Farming Activities of a Former Petrochemical Plant" Plants 10, no. 3: 520. https://doi.org/10.3390/plants10030520
APA StyleFortin Faubert, M., Hijri, M., & Labrecque, M. (2021). Short Rotation Intensive Culture of Willow, Spent Mushroom Substrate and Ramial Chipped Wood for Bioremediation of a Contaminated Site Used for Land Farming Activities of a Former Petrochemical Plant. Plants, 10(3), 520. https://doi.org/10.3390/plants10030520