Myco-Suppression Analysis of Soybean (Glycine max) Damping-Off Caused by Pythium aphanidermatum
Abstract
:1. Introduction
2. Results
3. Discussion
4. Materials and Methods
4.1. Identification of Pythium Species
4.2. Antagonistic Activity of P. oligandrum Isolates against the Pathogenic P. aphanidermatum Using Dual Culture Technique
4.3. Effect of Half-Strength Culture Filtrate of P. oligandrum on the Linear Growth of Pathogenic P. aphanidermatum
4.4. Effect of Half-Strength Culture Filtrate of P. oligandrum on the Dry Weight of Pathogenic P. aphanidermatum
4.5. Mycoparasitism between P. oligandrum and P. aphanidermatum Using SEM
4.6. Pathogenicity of P. aphanidermatum and Its Possible Control Measure
4.6.1. In Agar Bottles Assay
4.6.2. In Soil Pots Assay
4.7. Effects of G. max Seeds Treatment with P. aphanidermatum and Three Isolates of Bioagent P. oligandrum on Growth Seed Parameters
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Urrea, K.; Rupe, J.; Chen, P.; Rothrock, C.S. Characterization of seed rot resistance to Pythium aphanidermatum in soybean. Crop. Sci. 2017, 57, 1394–1403. [Google Scholar] [CrossRef]
- Janvier, C.; Villeneuve, F.; Alabouvette, C.; Edel-Hermann, V.; Mateille, T.; Steinberg, C. Soil health through soil disease suppression: Which strategy from descriptors to indicators? Soil Biol. Biochem. 2007, 39, 1–23. [Google Scholar] [CrossRef]
- Nzungize, J.; Gepts, P.; Buruchara, R.; Male, A.; Ragama, P.; Busogoro, J.; Baudoin, J.-P. Introgression of Pythium root rot resistance gene into Rwandan susceptible common bean cultivars. Afr. J. Plant. Sci. 2011, 5, 193–200. [Google Scholar]
- Navi, S.S.; Huynh, T.; Mayers, C.G.; Yang, X.-B. Diversity of Pythium spp. associated with soybean damping-off, and management implications by using foliar fungicides as seed treatments. Phytopathol. Res. 2019, 1, 1–10. [Google Scholar] [CrossRef]
- Vera-Reyes, I.; Esparza-Arredondo, I.J.E.; Lira-Saldivar, R.H.; Granados-Echegoyen, C.A.; Alvarez-Roman, R.; Vásquez-López, A.; De los Santos-Villarreal, G.; Díaz-Barriga Castro, E. In vitro antimicrobial effect of metallic nanoparticles on phytopathogenic strains of crop plants. J. Phytopathol. 2019, 167, 461–469. [Google Scholar] [CrossRef]
- Mohiddin, G.J.; Srinivasulu, M.; Subramanyam, K.; Madakka, M.; Meghana, D.; Rangaswamy, V. Influence of insecticides flubendiamide and spinosad on biological activities in tropical black and red clay soils. 3 Biotech. 2015, 5, 13–21. [Google Scholar] [CrossRef] [Green Version]
- Ashwathi, S.; Ushamalini, C.; Parthasarathy, S.; Nakkeeran, S. Morphological, pathogenic and molecular characterisation of Pythium aphanidermatum: A causal pathogen of coriander damping-off in India. Pharma Innov. 2017, 6, 44. [Google Scholar]
- Kato, M.; Minamida, K.; Tojo, M.; Kokuryu, T.; Hamaguchi, H.; Shimada, S. Association of Pythium and Phytophthora with pre-emergence seedling damping-off of soybean grown in a field converted from a paddy field in Japan. Plant Prod. Sci. 2013, 16, 95–104. [Google Scholar] [CrossRef]
- Takenaka, S.; Nakamura, Y.; Kono, T.; Sekiguchi, H.; Masunaka, A.; Takahashi, H. Novel elicitin-like proteins isolated from the cell wall of the biocontrol agent Pythium oligandrum induce defence-related genes in sugar beet. Mol. Plant Pathol. 2006, 7, 325–339. [Google Scholar] [CrossRef]
- Vallance, J.; Le Floch, G.; Déniel, F.; Barbier, G.; Lévesque, C.A.; Rey, P. Influence of Pythium oligandrum biocontrol on fungal and oomycete population dynamics in the rhizosphere. Appl. Environ. Microbiol. 2009, 75, 4790–4800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benhamou, N.; Le Floch, G.; Vallance, J.; Gerbore, J.; Grizard, D.; Rey, P. Pythium oligandrum: An example of opportunistic success. Microbiology 2012, 158, 2679–2694. [Google Scholar] [CrossRef]
- Patkowska, E. Effect of Bio-Products on Bean Yield and Bacterial and Fungal Communities in the Rhizosphere and Non-Rhizosphere. Pol. J. Environ. Stud. 2009, 18, 255–263. [Google Scholar]
- Jain, S.; Vaishnav, A.; Kasotia, A.; Kumari, S.; Gaur, R.K.; Choudhary, D.K. Rhizobacterium-mediated growth promotion and expression of stress enzymes in Glycine max L. Merrill against Fusarium wilt upon challenge inoculation. World J. Microbiol. Biotechnol. 2014, 30, 399–406. [Google Scholar] [CrossRef] [PubMed]
- Jain, S.; Kumari, S.; Vaishnav, A.; Choudhary, D.K.; Sharma, K.P. Isolation and characterization of plant growth promoting bacteria from soybean rhizosphere and their effect on soybean plant growth promotion. Int. J. Adv. Sci Technol Res. 2016, 5, 397–410. [Google Scholar]
- John, R.P.; Tyagi, R.; Prévost, D.; Brar, S.K.; Pouleur, S.; Surampalli, R. Mycoparasitic Trichoderma viride as a biocontrol agent against Fusarium oxysporum f. sp. adzuki and Pythium arrhenomanes and as a growth promoter of soybean. Crop. Prot. 2010, 29, 1452–1459. [Google Scholar] [CrossRef]
- Horner, N.R.; Grenville-Briggs, L.J.; Van West, P. The oomycete Pythium oligandrum expresses putative effectors during mycoparasitism of Phytophthora infestans and is amenable to transformation. Fungal Biol. 2012, 116, 24–41. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, S.; Shimizu, A.; Shimizu, M.; Takahashi, H.; Takenaka, S. Biocontrol of black scurf on potato by seed tuber treatment with Pythium Oligandrum. Biol. Control. 2012, 60, 297–304. [Google Scholar] [CrossRef]
- Al-Sheikh, H. Two pathogenic species of Pythium: P. aphanidermatum and P. diclinum from a wheat field. Saudi J. Biol. Sci. 2010, 17, 347–352. [Google Scholar] [CrossRef] [Green Version]
- Al-Sheikh, H.; Abdelzaher, H.M. Occurrence, identification and pathogenicity of Pythium aphanidermatum, P. diclinum, P. dissotocum and Pythium" Group P" isolated from Dawmat Al-Jandal Lake, Saudi Arabia. Res. J. Environ. Sci. 2012, 6, 196. [Google Scholar] [CrossRef] [Green Version]
- Nzungize, J.R.; Lyumugabe, F.; Busogoro, J.-P.; Baudoin, J.-P. Pythium root rot of common bean: Biology and control methods. A review. BASE 2012, 16, 405–413. [Google Scholar]
- Fukuta, S.; Takahashi, R.; Kuroyanagi, S.; Miyake, N.; Nagai, H.; Suzuki, H.; Hashizume, F.; Tsuji, T.; Taguchi, H.; Watanabe, H. Detection of Pythium aphanidermatum in tomato using loop-mediated isothermal amplification (LAMP) with species-specific primers. Eur. J. Plant Pathol. 2013, 136, 689–701. [Google Scholar] [CrossRef]
- Elnaghy, M.; Abdelzaher, H.; Shoulkamy, M.; Sayed, S. Ecological studies on Pythium species associated with some plants rhizosphere in El-Minia, Egypt. J. Pure Appl. Microbiol. 2014, 8, 195–204. [Google Scholar]
- MA Abdelzaher, H.; Kageyama, K. Diversity of aquatic Pythium and Phytopythium spp. from rivers and a pond of Gifu city, Japan. Nov. Res. Microbiol. J. 2020, 4, 1029–1044. [Google Scholar] [CrossRef]
- Maurya, S. Biological control a sustainable approach for plant diseases management: A review. J. Pharmacogn. Phytochem. 2020, 9, 1514–1523. [Google Scholar]
- Abdelzaher, H. Negative interaction between tomato growth-promoting Pythium oligandrum and the damping-off pathogen Pythium aphanidermatum. In Proceedings of the Annual Meeting of Phytopathological Society of Japan, Gifu, Japan, 5 February 2011; pp. 27–29. [Google Scholar]
- Nzungize, J.; Gepts, P.; Buruchara, R.; Buah, S.; Ragama, P.; Busogoro, J.; Baudoin, J.-P. Pathogenic and molecular characterization of Pythium species inducing root rot symptoms of common bean in Rwanda. Afr. J. Microbiol. Res. 2011, 5, 1169–1181. [Google Scholar]
- Le Floch, G.; Vallance, J.; Benhamou, N.; Rey, P. Combining the oomycete Pythium oligandrum with two other antagonistic fungi: Root relationships and tomato grey mold biocontrol. Biol. Control. 2009, 50, 288–298. [Google Scholar] [CrossRef]
- Moustafa, S.M.N. Influence of Pythium oligandrum on Mycelia and Production of Zoo-and Oo-spores of Two Phytopathogenic Pythium spp. J. Pure Appl. Microbiol. 2019, 13, 233–240. [Google Scholar] [CrossRef] [Green Version]
- You, X.; Barraud, J.; Tojo, M. Suppressive effects of Pythium oligandrum on soybean damping off caused by P. aphanidermatum and P. myriotylum. Annu. Rep. Kansai Plant. Prot. Soc. 2019, 61, 9–13. [Google Scholar] [CrossRef] [Green Version]
- Gerbore, J.; Benhamou, N.; Vallance, J.; Le Floch, G.; Grizard, D.; Regnault-Roger, C.; Rey, P. Biological control of plant pathogens: Advantages and limitations seen through the case study of Pythium Oligandrum. Environ. Sci. Pollut. Res. 2014, 21, 4847–4860. [Google Scholar] [CrossRef] [Green Version]
- Boumaaza, B.; Benkhelifa, M.; Belkhoudja, M. Effects of two salts compounds on mycelial growth, sporulation, and spore germination of six isolates of Botrytis cinerea in the western north of Algeria. Int. J. Microbiol. 2015, 2015, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Senda, M.; Kageyama, K.; Suga, H.; Lévesque, C.A. Two new species of Pythium, P. senticosum and P. takayamanum, isolated from cool-temperate forest soil in Japan. Mycologia 2009, 101, 439–448. [Google Scholar] [CrossRef]
- Jiang, Y.; Haudenshield, J.; Hartman, G. Characterization of Pythium spp. from soil samples in Illinois. Can. J. Plant. Pathol. 2012, 34, 448–454. [Google Scholar] [CrossRef]
- Bellemain, E.; Carlsen, T.; Brochmann, C.; Coissac, E.; Taberlet, P.; Kauserud, H. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiol. 2010, 10, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kageyama, K.; Suzuki, M.; Priyatmojo, A.; Oto, Y.; Ishiguro, K.; Suga, H.; Aoyagi, T.; Fukui, H. Characterization and identification of asexual strains of Pythium associated with root rot of rose in Japan. J. Phytopathol. 2003, 151, 485–491. [Google Scholar] [CrossRef]
Incubation Period | Antagonistic isolates | P. aphanidermatum | |
---|---|---|---|
Linear Growth (mm) | Reduction (%) | ||
P. oligandrum MS15 | 29.52 * ± 0.13 | 67.2 | |
3 days | P. oligandrum MS19 | 30.51 * ± 0.16 | 66.1 |
P. oligandrum MS31 | 31.23 * ± 0.15 | 65.3 | |
P. oligandrum MS15 | 25.83 * ± 0.14 | 71.3 | |
6 days | P. oligandrum MS19 | 27.01 * ± 0.05 | 67.1 |
P. oligandrum MS31 | 28.17 * ± 0.08 | 68.7 | |
Control of P. aphanidermatum | 90.00 * ± 0.02 | ---- |
Type of Culture Filtrate Sterilization | Antagonistic Isolates | P. aphanidermatum | |
---|---|---|---|
Linear Growth (mm) | Reduction (%) | ||
Millipored filtrate | P. oligandrum MS15 | 59.24 * ± 0.15 | 34.18 |
P. oligandrum MS19 | 60.73 * ± 0.08 | 32.52 | |
P. oligandrum MS31 | 61.46 * ± 0.14 | 31.71 | |
Autoclaved filtrate | P. oligandrum MS15 | 63.48 * ± 0.17 | 29.47 |
P. oligandrum MS19 | 65.58 * ± 0.09 | 27.13 | |
P. oligandrum MS31 | 65.84 * ± 0.11 | 26.84 | |
Control of P. aphanidermatum | 90.00 * ± 0.02 | – |
Type of Filtrate Sterilization | Antagonistic Isolates | P. aphanidermatum | |
---|---|---|---|
Mycelial Dry Weight (mg) | Inhibition (%) | ||
Millipored filtrate | P. oligandrum MS15 | 463.62 * ± 0.17 | 40.11 |
P. oligandrum MS19 | 484.53 * ± 0.12 | 37.4 | |
P. oligandrum MS31 | 489.19 * ± 0.15 | 36.8 | |
Autoclaved filtrate | P. oligandrum MS15 | 497.68 * ± 0.18 | 35.7 |
P. oligandrum MS19 | 529.42 * ± 0.19 | 31.6 | |
P. oligandrum MS31 | 542.57 * ± 0.11 | 29.9 | |
Control P. aphanidermatum | 774.00 *± 0.14 | – |
Treatments | Glycine max Seedlings | |||
---|---|---|---|---|
2% Water Agar | Soil Pots | |||
Inhibition (%) | Survival (%) | Inhibition (%) | Survival (%) | |
Control (No Pythium) | 0 | 100 | 00 | 100 |
P. aphanidermatum | 100 | 00 | 86.7 | 13.3 |
P. oligandrum MS15 | 0 | 100 | 0 | 100 |
P. oligandrum MS19 | 0 | 100 | 0 | 100 |
P. oligandrum MS31 | 0 | 100 | 0 | 100 |
P. aphanidermatum + P. oligandrum MS15 | 0.67 | 93.3 | 20 | 80 |
P. aphanidermatum + P. oligandrum MS19 | 12.7 | 87.2 | 24.9 | 75.1 |
P. aphanidermatum + P. oligandrum MS31 | 13.3 | 86.7 | 23.3 | 76.7 |
Seed Treatments | Plant Growth Parameters | Percentage of Plant Growth Promotion | ||||
---|---|---|---|---|---|---|
Shoot Length (cm) | Root Length (cm) | No. of Lateral Roots | Shoot Length (%) | Root Length (%) | No. of Lateral Roots (%) | |
Control (No Pythium) | 17.1 * ± 0.7 | 4.3 * ± 0.6 | 11.7 * ± 1.1 | 00 | 00 | 00 |
P. oligandrum MS15 | 18.7 * ± 1.1 | 8.5 * ± 0.9 | 22.3 * ± 1.3 | 8.6 | 97.7 | 90.6 |
P. oligandrum MS19 | 17.9 * ± 0.9 | 7.1 * ± 1.3 | 19.4 * ± 0.9 | 4.7 | 65.1 | 65.8 |
P. oligandrum MS31 | 18.5 * ± 1.2 | 7.8 * ± 0.8 | 21.5 * ± 1.2 | 8.2 | 81.4 | 83.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sayed, S.R.M.; Abdelmohsen, S.A.M.; Abdelzaher, H.M.A.; Elnaghy, M.A.; Mostafa, A.A.; Al-Harbi, F.F.; Abdelbacki, A.M.M. Myco-Suppression Analysis of Soybean (Glycine max) Damping-Off Caused by Pythium aphanidermatum. Plants 2021, 10, 788. https://doi.org/10.3390/plants10040788
Sayed SRM, Abdelmohsen SAM, Abdelzaher HMA, Elnaghy MA, Mostafa AA, Al-Harbi FF, Abdelbacki AMM. Myco-Suppression Analysis of Soybean (Glycine max) Damping-Off Caused by Pythium aphanidermatum. Plants. 2021; 10(4):788. https://doi.org/10.3390/plants10040788
Chicago/Turabian StyleSayed, Shaban R. M., Shaimaa A. M. Abdelmohsen, Hani M. A. Abdelzaher, Mohammed A. Elnaghy, Ashraf A. Mostafa, Fatemah F. Al-Harbi, and Ashraf M. M. Abdelbacki. 2021. "Myco-Suppression Analysis of Soybean (Glycine max) Damping-Off Caused by Pythium aphanidermatum" Plants 10, no. 4: 788. https://doi.org/10.3390/plants10040788
APA StyleSayed, S. R. M., Abdelmohsen, S. A. M., Abdelzaher, H. M. A., Elnaghy, M. A., Mostafa, A. A., Al-Harbi, F. F., & Abdelbacki, A. M. M. (2021). Myco-Suppression Analysis of Soybean (Glycine max) Damping-Off Caused by Pythium aphanidermatum. Plants, 10(4), 788. https://doi.org/10.3390/plants10040788