Protective Role of Ice Barriers: How Reproductive Organs of Early Flowering and Mountain Plants Escape Frost Injuries
Abstract
:1. Introduction
2. Results
2.1. Ice Management Strategies
2.2. Species-Specific Freezing Patterns
2.2.1. Anemone nemorosa L.
2.2.2. Galanthus nivalis L.
2.2.3. Jasminum nudiflorum Lindl.
2.2.4. Muscari sp.
2.2.5. Scilla forbesii (Baker) Speta
2.3. Anatomy of Structural Ice Barriers
3. Discussion
3.1. Structural Ice Barriers
3.2. Thermal Ice Barriers
3.3. Ice Nucleation Temperature
3.4. Freezing Resistance
4. Conclusions
5. Materials and Methods
5.1. Plant Samples
5.2. Freezing Treatment
5.3. Infrared Video Thermography
5.4. Ice Tolerance Test
5.5. Microscopical Investigations
5.6. Data Analysis
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sakai, A.; Larcher, W. Frost Survival of Plants. Responses and Adaptation to Freezing Stress; Springer: Berlin/Heidelberg, Germany, 1987; Volume 62, p. 321. [Google Scholar]
- Neuner, G.; Erler, A.; Ladinig, U.; Hacker, J.; Wagner, J. Frost resistance of reproductive tissues during various stages of development in high mountain plants. Physiol. Plant. 2013, 147, 88–100. [Google Scholar] [CrossRef]
- Ladinig, U.; Hacker, J.; Neuner, G.; Wagner, J. How endangered is sexual reproduction of high-mountain plants by summer frosts? Frost resistance, frequency of frost events and risk assessment. Oecologia 2013, 171, 743–760. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Neuner, G. Frost resistance in alpine woody plants. Front. Plant Sci. 2014, 5. [Google Scholar] [CrossRef] [Green Version]
- Menzel, A. Trends in phenological phases in europe between 1951 and 1996. Int. J. Biometeorol. 2000, 44, 76–81. [Google Scholar] [CrossRef]
- Cara Donna, P.J.; Bains, J.A. Frost sensitivity of leaves and flowers of subalpine plants is related to tissue type and phenology. J. Ecol. 2016, 104, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Hamann, E.; Denney, D.; Day, S.; Lombardi, E.; Jameel, M.I.; MacTavish, R.; Anderson, J.T. Review: Plant eco-evolutionary responses to climate change: Emerging directions. Plant Sci. 2021, 304. [Google Scholar] [CrossRef] [PubMed]
- Stegner, M.; Lackner, B.; Schäfernolte, T.; Buchner, O.; Xiao, N.; Gierlinger, N.; Holzinger, A.; Neuner, G. Winter nights during summer time: Stress physiological response to ice and facilitation of freezing cytorrhysis by elastic cell wall components in leaves of a nival species. Int. J. Mol. Sci. 2020, 21, 7042. [Google Scholar] [CrossRef] [PubMed]
- Hacker, J.; Neuner, G. Ice propagation in plants visualized at the tissue level by idta (infrared differential thermal analysis). Tree Physiol. 2007, 27, 1661–1670. [Google Scholar] [CrossRef]
- Hacker, J.; Neuner, G. Ice propagation in dehardened alpine plant species studied by infrared differential thermal analysis (idta). Arct. Antarct. Alp. Res. 2008, 40, 660–670. [Google Scholar] [CrossRef] [Green Version]
- Carter, J.; Brennan, R.; Wisniewski, M. Patterns of ice formation and movement in blackcurrant. HortScience 2001, 36, 855–859. [Google Scholar] [CrossRef] [Green Version]
- Workmaster, B.A.A.; Palta, J.P.; Wisniewski, M. Ice nucleation and propagation in cranberry uprights and fruit using infrared video thermography. J. Am. Soc. Hortic. Sci. 1999, 124, 619–625. [Google Scholar] [CrossRef]
- Kuprian, E.; Briceno, V.; Wagner, J.; Neuner, G. Ice barriers promote supercooling and prevent frost injury in reproductive buds, flowers and fruits of alpine dwarf shrubs throughout the summer. Environ. Exp. Bot. 2014, 106, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Kuprian, E.; Tuong, T.; Pfaller, K.; Wagner, J.; Livingston, D., III; Neuner, G. Persistent supercooling of reproductive shoots is enabled by structural ice barriers being active despite an intact xylem connection. PLoS ONE 2016, 11. [Google Scholar] [CrossRef]
- Hacker, J.; Ladinig, U.; Wagner, J.; Neuner, G. Inflorescences of alpine cushion plants freeze autonomously and may survive subzero temperatures by supercooling. Plant Sci. 2011, 180, 149–156. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quamme, H.A. Mechanism of supercooling in overwintering peach flower buds. J. Am. Soc. Hortic. Sci. 1978, 103, 57–61. [Google Scholar]
- Ishikawa, M.; Sakai, A. Freezing avoidance mechanisms by supercooling in some rhododendron flower buds with reference to water relations. Plant Cell Physiol. 1981, 22, 953–967. [Google Scholar] [CrossRef]
- Ashworth, E.; Davis, G. Ice nucleation within peach trees. J. Am. Soc. Hortic. Sci. 1984, 109, 198–201. [Google Scholar] [CrossRef] [Green Version]
- Chalker-Scott, L. Disruption of an ice-nucleation barrier in cold hardy azalea buds ny sublethal heat stress. Ann. Bot. 1992, 70, 409–418. [Google Scholar] [CrossRef]
- Wisniewski, M.; Davies, G. Evidence for the involvment of a specific cell wall layer in regulation of deep supercooling of xylem parenchyma. Plant Physiol. 1989, 91, 151–156. [Google Scholar] [CrossRef] [Green Version]
- Quamme, H.A.; Su, W.A.; Veto, L.J. Anatomical features facilitating supercooling of the flower within the dormant peach flower bud. J. Am. Soc. Hortic. Sci. 1995, 120, 814–822. [Google Scholar] [CrossRef] [Green Version]
- Jones, K.; McKersie, D.; Paroschy, J. Prevention of ice propagation by permeability barriers in bud axes of vitis vinifera. Can. J. Bot. 2000, 78, 3–9. [Google Scholar] [CrossRef]
- Neuner, G.; Hacker, J. Ice Formation and Propagation in Alpine Plants. In Plants in Alpine Regions: Cell Physiology of Adaptation and Survival Strategies; Lütz, C., Ed.; Springer: Vienna, Austria, 2012; pp. 163–174. [Google Scholar] [CrossRef]
- Endoh, K.; Kasuga, J.; Arakawa, K.; Ito, T.; Fujikawa, S. Cryo-scanning electron microscopic study on freezing behaviors of tissue cells in dormant buds of larch (larix kaempferi). Cryobiology 2009, 59, 214–222. [Google Scholar] [CrossRef]
- Ashworth, E.N. Xylem development in prunus flower buds and the relationship to deep supercooling. Plant Physiol. 1984, 74, 862–865. [Google Scholar] [CrossRef] [Green Version]
- Ashworth, E.N.; Willard, T.J.; Malone, S.R. The relationship between vascular differentiation and the distribution of ice within forsythia flower buds. Plant Cell Environ. 1992, 15, 607–612. [Google Scholar] [CrossRef]
- Julian, C.; Herrero, M.; Rodrigo, J.F. Flower bud drop and pre-blossom frost damage in apricot (Prunus armeniaca l.). J. Appl. Bot. Food Qual. 2007, 81, 21–25. [Google Scholar]
- Pramsohler, M.; Neuner, G. Dehydration and osmotic adjustment in apple stem tissue during winter as it relates to the frost resistance of buds. Tree Physiol. 2013, 33, 807–816. [Google Scholar] [CrossRef] [Green Version]
- Kasuga, J.; Hashidoko, Y.; Nishioka, A.; Yoshiba, M.; Arakawa, K.; Fujikawa, S. Deep supercooling xylem parenchyma cells of katsura tree (cercidiphyllum japonicum) contain flavonol glycosides exhibiting high anti-ice nucleation activity. Plant Cell Environ. 2008, 31, 1335–1348. [Google Scholar] [CrossRef]
- Ishikawa, M.; Ishikawa, M.; Toyomasu, T.; Aoki, T.; Price, W.S. Ice nucleation activity in various tissues of rhododendron flower buds: Their relevance to extraorgan freezing. Front. Plant Sci. 2015, 6, 149. [Google Scholar] [CrossRef]
- Körner, C. Alpine Plant Life. Functional Plant Ecology of High Mountain Ecosystems; Springer: Berlin/Heidelberg, Germany, 2003. [Google Scholar]
- Fernández-Marín, B.; Arzac, M.I.; López-Pozo, M.; José Manuel, L.; Roach, T.; Stegner, M.; Neuner, G.; García-Plazaola, J. Frozen in the dark: Interplay of night-time activity of xanthophyll cycle, xylem attributes, and desiccation tolerance in fern resistance to winter. J. Exp. Bot. 2021, 72, 3168–3184. [Google Scholar] [CrossRef]
- Marcante, S.; Sierra-Almeida, A.; Spindelbock, J.; Erschbamer, B.; Neuner, G. Frost as a limiting factor for recruitment and establishment of early development stages in an alpine glacier foreland? J. Veg. Sci. 2012, 23, 858–868. [Google Scholar] [CrossRef]
- Till, O. Über die frosthärte von pflanzen sommergrüner laubwälder. Flora 1956, 143, 499–542. [Google Scholar] [CrossRef]
- Taschler, D.; Neuner, G. Summer frost resistance and freezing patterns measured in situ in leaves of major alpine plant growth forms in relation to their upper distribution boundary. Plant Cell Environ. 2004, 27, 737–746. [Google Scholar] [CrossRef]
- Neuner, G.; Huber, B.; Plangger, A.; Pohlin, J.M.; Walde, J. Low temperatures at higher elevations require plants to exhibit increased freezing resistance throughout the summer months. Environ. Exp. Bot. 2020, 169. [Google Scholar] [CrossRef]
- Lauber, K.; Wagner, G. Flora Helvetica, 4th ed.; Haupt Verlag: Bern, Switzerland, 2007. [Google Scholar]
- Raunkiaer, C. The Life Forms of Plants and Statistical Plant Geography; Oxford University Press: Oxford, UK, 1934. [Google Scholar]
- Flora of China. Available online: http://www.efloras.org/florataxon.aspx?flora_id=2&taxon_id=200017786 (accessed on 12 May 2021).
- Stegner, M.; Wagner, J.; Neuner, G. Ice accommodation in plant tissues pinpointed by cryo-microscopy in reflected-polarised-light. Plant Methods 2020, 16, 73. [Google Scholar] [CrossRef]
- Kuznetsova, A.; Brockhoff, P.B.; Christensen, R.H.B. Lmertest package: Tests in linear mixed effects models. J. Stat. Softw. 2017, 82, 1–26. [Google Scholar] [CrossRef] [Green Version]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019; Available online: https://www.R-project.org/ (accessed on 29 April 2021).
Taxon | Ice Tolerance of | Structural Ice Barrier | Ice Nucleation Temperature of | ||
---|---|---|---|---|---|
Flowers | Leaves/Stems | Flowers | Leaves/Stems | ||
Anemone nemorosa L. | - | + | + | −7.6 ± 1.1 | −6.3 ± 1.1 |
Galanthus nivalis L. | + 1 | + | - | −5.2 ± 0.2 | −6.1 ± 0.5 (−2.4 ± 0.8) 4 |
Jasminum nudiflorum Lindl. | - | + | + | −9.2 ² | −4.1 ± 1.8 |
Muscari sp. ³ | - | + | + | −17.9 ± 3.0 | −8.3 ± 1.8 |
Scilla forbesii (Baker) Speta | + | + | - | −10.7 ± 0.3 | −9.9 ± 1.2 |
Taxon | Growth Form | Life Form | Vertical Distribution | Flowering Time |
---|---|---|---|---|
Anemone nemorosa L. | Perennial herb | Rhizome geophyte | colline-montane (subalpine) (−2000 m) | March–April/May |
Galanthus nivalis L. | Bulb-forming perennial herb | Geophyte | colline-montane (100–1400 m) | January–March (April) |
Jasminum nudiflorum Lindl. | Perennial woody shrub | Deciduous shrub | colline-subalpine (800–4500 m) | December–April |
Muscari sp. | Bulb-forming perennial herb | Geophyte | colline-montane (subalpine) (−1200 m) | April–May |
Scilla forbesii (Baker) Speta | Bulb-forming perennial herb | Geophyte | colline-montane | March–April |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bertel, C.; Hacker, J.; Neuner, G. Protective Role of Ice Barriers: How Reproductive Organs of Early Flowering and Mountain Plants Escape Frost Injuries. Plants 2021, 10, 1031. https://doi.org/10.3390/plants10051031
Bertel C, Hacker J, Neuner G. Protective Role of Ice Barriers: How Reproductive Organs of Early Flowering and Mountain Plants Escape Frost Injuries. Plants. 2021; 10(5):1031. https://doi.org/10.3390/plants10051031
Chicago/Turabian StyleBertel, Clara, Jürgen Hacker, and Gilbert Neuner. 2021. "Protective Role of Ice Barriers: How Reproductive Organs of Early Flowering and Mountain Plants Escape Frost Injuries" Plants 10, no. 5: 1031. https://doi.org/10.3390/plants10051031
APA StyleBertel, C., Hacker, J., & Neuner, G. (2021). Protective Role of Ice Barriers: How Reproductive Organs of Early Flowering and Mountain Plants Escape Frost Injuries. Plants, 10(5), 1031. https://doi.org/10.3390/plants10051031