Source–Sink Manipulation Affects Accumulation of Zinc and Other Nutrient Elements in Wheat Grains
Abstract
:1. Introduction
2. Results
2.1. Grain Yields and Yield Components
2.2. Grain Zn, Fe, Mn and Cu Concentrations and Yields
2.3. Concentrations and Yields of N, P, K, Ca, Mg and Phytate-P, C/N Ratios, and Molar Ratios of PA/Zn, PA/Fe, PA × Ca/Zn and PA × Ca/Fe in Wheat Grains
2.4. Concentrations and Yields/Accumulation of ABA and ACC in Wheat Grains
2.5. Relationships among Grain Yield Traits and Nutritional Quality-Related Parameters
2.6. Relationships between Grain Phytohormones and Grain Yield Traits or Nutritional Quality-Related Parameters
2.7. Principle Component Analysis (PCA) of Various Parameters of Wheat Affected by Source–Sink Manipulation
3. Discussion
3.1. Effects of Soil Zn Fertilization on Grain Yield Traits and Nutrient Accumulation of Wheat
3.2. Cultivars Showing Higher Grain Yields Had Lower Grain Protein and Micronutrient Nutritional Quality
3.3. Effects of Physical Manipulation of Source/Sink on Grain Yield Traits and Nutrient Accumulation of Wheat
3.3.1. Effects of Source–Sink Regulation on Grain Yields and Yield Components of Wheat
3.3.2. Effects of Source–Sink Regulation on Zn and Other Nutrient Concentrations in Wheat Grains
3.3.3. A Better Understanding of the “Dilution Effect” Caused by Yield Increase
3.3.4. Effects of Source–Sink Regulation on the Bioavailability of Zn and Fe in Wheat Grains
3.4. Phytohormones (ABA and ACC) Involved in Nutrient and Biomass Accumulation in Wheat Grains
4. Materials and Methods
4.1. Study Site
4.2. Experimental Design
4.3. Quantification of ABA and ACC
4.4. Nutrient Analysis
4.5. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Marschner, P. Marschner’s Mineral. Nutrition of Higher Plants; Academic Press Elsevier: San Diego, CA, USA, 2012. [Google Scholar]
- Krężel, A.; Maret, W. The biological inorganic chemistry of zinc ions. Arch. Biochem. Biophys. 2016, 611, 3–19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Prasad, A.S. Discovery of human zinc deficiency: Its impact on human health and disease. Adv Nutr. 2013, 4, 176–190. [Google Scholar] [CrossRef]
- Das, S.; Green, A. Importance of zinc in crops and human health. J. SAT Agric. Res. 2013, 11, 1–7. [Google Scholar]
- Ota, E.; Mori, R.; Middleton, P.; Tobe-Gai, R.; Mahomed, K.; Miyazaki, C.; Zulfiqar, A.B. Zinc supplementation for improving pregnancy and infant outcome. Cochrane Database Syst. Rev. 2015, CD000230. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I. Enrichment of cereal grains with zinc: Agronomic or genetic biofortification? Plant. Soil. 2008, 302, 1–17. [Google Scholar] [CrossRef]
- Chen, X.P.; Zhang, Y.Q.; Tong, Y.P.; Xue, Y.F.; Liu, D.Y.; Zhang, W.; Chun, Q.Z. Harvesting more grain zinc of wheat for human health. Sci. Rep. 2017, 7, 7016. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, M.; Kong, F.; Liu, R.; Fan, Q.; Zhang, X. Zinc in wheat grain, processing, and food. Front. Nutr. 2020, 7, 124. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.W.; Mao, H.; Zhao, H.B.; Huang, D.L.; Wang, Z.H. Different increases in maize and wheat grain zinc concentrations caused by soil and foliar applications of zinc in Loess Plateau, China. Field Crop. Res. 2012, 135, 89–96. [Google Scholar] [CrossRef]
- Hao, Y.F.; Zhang, Y.; He, Z.H. Progress in zinc biofortification of crops. Chin. Bull. Life Sci. 2015, 27, 1047–1054. [Google Scholar] [CrossRef]
- Mason, T.; Maskell, E. Studies of the transport of carbohydrate in the cotton plant: II. The factors determining the rate and the direction of movement of sugars. Ann. Bot. Lond 1928, os-42, 571–636. [Google Scholar] [CrossRef]
- Liu, D.; Zhang, W.; Liu, Y.; Chen, X.; Zou, C. Soil application of zinc fertilizer increases maize yield by enhancing the kerner number and kernel weight of inferior grains. Front. Plant. Sci. 2020, 11, 188. [Google Scholar] [CrossRef]
- Yang, J.; Zhang, J. Approach and mechanism in enhancing the remobilization of assimilates and grain-filling in rice and wheat. Chin. Sci. Bull. 2018, 63, 2932–2943. [Google Scholar] [CrossRef]
- Xia, H.; Wang, L.; Qiao, Y.; Kong, W.; Xue, Y.; Wang, Z.; Lingan, K.; Yanfang, X.; Tom, S. Elucidating the source-sink relationships of zinc biofortification in wheat grains a review. Food Energy Sec. 2020, 9, e243. [Google Scholar] [CrossRef]
- Austin, R.B.; Edrich, J. Effects of ear removal on phytosynthesis, carbohydrate accumulation and on the distribution of assimilated 14C in wheat. Ann. Bot. Lond 1975, 39, 141–152. [Google Scholar] [CrossRef]
- Chang, T.G.; Zhu, X.G. Source-sink interaction a century old concept under the light of modern molecular systems biology. J. Exp. Bot. 2017, 68, 4417–4431. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Zhou, S.L.; Zhang, K.; Wang, Z.M. Effects of source and sink reductions on micronutrient and protein contents of grain in wheat. Acta Agron. Sin. 2008, 34, 1629–1636. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Liu, N.; Su, D.; Xue, Q.; Stewart, B.A.; Zhimin, W. Effect of source-sink manipulation on accumulation of micronutrients and protein in wheat grains. J. Plant. Nutr. Soil Sci. 2012, 175, 622–629. [Google Scholar] [CrossRef]
- Xia, H.; Xue, Y.; Kong, W.; Tang, Y.; Li, J.; Li, D. Effects of source/sink manipulation on grain zinc accumulation by winter wheat genotypes. Chil. J. Agric. Res. 2018, 78, 117–125. [Google Scholar] [CrossRef]
- Morgounov, A.; Gómez-Becerra, H.F.; Abugalieva, A.; Dzhunusova, M.; Yessimbekova, M.; Muminjanov, H.; Zelenskiy, Y.; Ozturk, L.; Cakmak, I. Iron and zinc grain density in common wheat grown in Central Asia. Euphytica 2007, 155, 193–203. [Google Scholar] [CrossRef] [Green Version]
- Nowack, B.; Schwyzer, I.; Schulin, R. Uptake of Zn and Fe by wheat (Triticum aestivum var. Greina) and transfer to the grains in the presence of chelating agents (Ethylenediaminedisuccinic acid and Ethylenediaminetetraacetic acid). J. Agric. Food Chem. 2008, 56, 4643–4649. [Google Scholar] [CrossRef]
- Velu, G.; Ortiz-Monasterio, I.; Singh, R.P.; Payne, T. Variation for grain micronutrients concentration in wheat core-collection accessions of diverse origin. Asian J. Crop. Sci. 2011, 3, 43–48. [Google Scholar] [CrossRef]
- Velu, G.; Singh, R.P.; Huerta-Espino, J.; Peña, R.J.; Arun, B.; Mahendru-Singh, A.; Sohu, V.S.; Mavi, G.S.; Crossa, J.; Alvarado, G. Performance of biofortified spring wheat genotypes in target environments for grain zinc and iron concentrations. Field Crop. Res. 2012, 137, 261–267. [Google Scholar] [CrossRef]
- Velu, G.; Ortiz-Monasterio, I.; Cakmak, I.; Hao, Y.; Singh, R.P. Biofortification strategies to increase grain zinc and iron concentrations in wheat. J. Cereal Sci. 2014, 59, 365–372. [Google Scholar] [CrossRef]
- Singh, B.R.; Timsina, Y.N.; Lind, O.C.; Cagno, S.; Janssens, K. Zinc and iron concentration as affected by nitrogen fertilization and their localization in wheat grain. Front. Plant. Sci. 2018, 9, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xia, H.; Xue, Y.; Liu, D.; Kong, W.; Xue, Y.; Tang, Y.; Jin, L.; Dong, L.; Peipei, M. Rational application of fertilizer nitrogen to soil in combination with foliar Zn spraying improved Zn nutritional quality of wheat grains. Front. Plant. Sci. 2018, 9, 677. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wazzike, H.E.; Yousfi, B.E.; Serghat, S. Contributions of three upper leaves of wheat, either healthy or inoculated by Bipolaris sorokiniana, to yield and yield components. Aust. J. Crop. Sci. 2015, 9, 629–637. [Google Scholar]
- Waters, B.M.; Uauy, C.; Dubcovsky, J.; Grusak, M.A. Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J. Exp. Bot. 2009, 60, 4263–4274. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Woo, H.R.; Kim, H.J.; Lim, P.O.; Nam, H.G. Leaf senescence: Systems and dynamics aspects. Annu. Rev. Plant. Biol. 2019, 70, 347–376. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.C.; Hong, S.W.; Whang, S.S.; Lim, P.O.; Nam, H.G.; Koo, J.C. Age-dependent action of an ABA-inducible receptor kinase, RPK1, as a positive regulator of senescence in Arabidopsis leaves. Plant. Cell Physiol. 2011, 52, 651–662. [Google Scholar] [CrossRef] [Green Version]
- Sah, S.; Reddy, K.; Li, J. Abscisic acid and abiotic stress tolerance in crop. Front. Plant. Sci. 2016, 7, 571. [Google Scholar] [CrossRef] [Green Version]
- Gupta, O.P.; Pandey, V.; Saini, R.; Narwal, S.; Malik, V.K.; Khandale, T.; Sewa, R.G.; Pratap, S. Identifying transcripts associated with efficient transport and accumulation of Fe and Zn in hexaploid wheat (T. aestivum L.). J. Biotechnol. 2020, 316, 46–55. [Google Scholar] [CrossRef] [PubMed]
- Cakmak, I.; Pfeiffer, W.H.; McClafferty, B. Biofortification of durum wheat with zinc and iron. Cereal Chem. 2010, 87, 10–20. [Google Scholar] [CrossRef] [Green Version]
- Ryan, M.H.; Mclnerney, J.K.; Record, I.R.; Angus, J.F. Zinc bioavailability in wheat grain in relation to phosphorus fertiliser, crop sequence and mycorrhizal fungi. J. Sci. Food Agric. 2008, 88, 1208–1216. [Google Scholar] [CrossRef]
- Liu, D.Y.; Liu, Y.M.; Zhang, W.; Chen, X.P.; Zou, C.Q. Agronomic approach of zinc biofortification can increase zinc bioavailability in wheat flour and thereby reduce zinc deficiency in humans. Nutrients 2017, 9, 465. [Google Scholar] [CrossRef] [Green Version]
- Kwun, I.S.; Kwon, C.S. Dietary molar ratios of phytate: Zinc and millimolar ratios of phytate × calcium: Zinc in South Koreans. Biol. Trace Elem. Res. 2000, 29–41. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Trace Elements in Human Nutrition and Health; WHO: Geneva, Switzerland, 1996. [Google Scholar]
- Glahn, R.P.; Wortley, G.M.; South, P.K.; Miller, D.D. Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl2 studies using an in vitro digestion/Caco-2 cell model. J. Agric. Food Chem. 2002, 50, 390–395. [Google Scholar] [CrossRef] [PubMed]
- White, P.J.; Broadley, M.R. Biofortification of crops with seven mineral elements often lacking in human diets iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol. 2009, 182, 49–84. [Google Scholar] [CrossRef] [PubMed]
- Gupta, N.; Ram, H.; Kumar, B. Mechanism of zinc absorption in plants uptake, transport, translocation and accumulation. Rev. Environ. Sci. Biotechnol. 2016, 15, 89–109. [Google Scholar] [CrossRef]
- Singh, D.; Prasanna, R. Potential of microbes in the biofortification of Zn and Fe in dietary food grains. A review. Agron.Sustain. Dev. 2020, 40, 15. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Sun, Y.X.; Ye, Y.L.; Karim, M.R.; Xue, Y.F.; Yan, P.; Meng, Q.F.; Cui, Z.L.; Cakmak, I.; Zhang, F.S.; et al. Zinc biofortification of wheat through fertilizer applications in different locations of China. Field Crop. Res. 2012, 125, 1–7. [Google Scholar] [CrossRef]
- Zhao, A.Q.; Tian, X.H.; Cao, Y.X.; Lu, X.C.; Liu, T. Comparison of soil and foliar zinc application for enhancing grain zinc content of wheat when grown on potentially zinc-deficient calcareous soils. J. Sci. Food Agric. 2014, 94, 2016–2022. [Google Scholar] [CrossRef] [PubMed]
- Zhao, A.; Wang, B.; Tian, X.; Yang, X. Combined soil and foliar ZnSO4 application improves wheat grain Zn concentration and Zn fractions in a calcareous soil. Eur. J. Soil Sci. 2020, 71, 681–694. [Google Scholar] [CrossRef]
- Bansal, R.L.; Takkar, P.N.; Bhandari, A.L.; Rana, D.S. Critical level of DTPA extractable Zn for wheat in alkaline soils of semi-arid region of Punjab, India. Ferti. Res. 1990, 21, 163–166. [Google Scholar] [CrossRef]
- Wang, Z.M.; Liu, Q.; Pan, F.; Yuan, L.X.; Yin, X.B. Effects of increasing rates of zinc fertilization on phytic acid and phytic acid/zinc molar ratio in zinc bio-fortified wheat. Field Crop. Res. 2015, 184, 58–64. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, Y.; Rashid, A.; Ram, H.; Savasli, E.; Arisoy, R.; Ortiz-Monasterio, I.; Simunji, S.; Wang, Z.H.; Sohu, V.; et al. Biofortification of wheat with zinc through zinc fertilization in seven countries. Plant. Soil 2012, 361, 119–130. [Google Scholar] [CrossRef]
- Tao, Z.Q.; Wang, D.M.; Chang, X.H.; Wang, Y.J.; Yang, Y.S.; Zhao, G.C. Effects of zinc fertilizer and short-term high temperature stress on wheat grain production and wheat flour proteins. J. Integr. Agr. 2018, 17, 1979–1990. [Google Scholar] [CrossRef] [Green Version]
- Sharma, P.; Aggarwal, P.; Kaur, A. Biofortification: A new approach to eradicate hidden hunger. Food Rev. Int. 2017, 33, 1–21. [Google Scholar] [CrossRef]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc a review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef] [Green Version]
- Kutman, U.B.; Yildiz, B.; Ozturk, L.; Cakmak, I. Biofortification of durum wheat with zinc through soil and foliar applications of nitrogen. Cereal Chem. 2010, 87, 1–9. [Google Scholar] [CrossRef]
- Guttieri, M.; Bowen, D.; Dorsch, J.A.; Raboy, V.; Souza, E. Identification and characterization of a low phytic acid wheat. Crop. Sci. 2004, 44, 418–424. [Google Scholar] [CrossRef]
- Guttieri, M.J.; Peterson, K.M.; Souza, E.J. Agronomic performance of low phytic acid wheat. Crop. Sci. 2006, 46, 2623–2629. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef] [PubMed]
- Davis, D.R. Declining fruit and vegetable nutrient composition what is the evidence? HortScience 2009, 44, 15–19. [Google Scholar] [CrossRef] [Green Version]
- Grassini, P.; Eskridge, K.M.; Cassman, K.G. Distinguishing between yield advances and yield plateaus in historical crop production trends. Nat. Commun. 2013, 4, 2918. [Google Scholar] [CrossRef] [PubMed]
- Curtis, T.; Halford, N.G. Food security challenge of increasing wheat yield and the importance of not compromising food safety. Ann. Appl. Biol. 2014, 164, 354–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Garvin, D.F.; Welch, R.M.; Finley, J.W. Historical shifts in the seed mineral micronutrient concentration of US hard red winter wheat germplasm. J. Sci. Food Agric. 2006, 86, 2213–2220. [Google Scholar] [CrossRef]
- Fan, M.S.; Zhao, F.J.; Fairweather-Tait, S.J.; Poulton, P.R.; Sunham, S.J.; McGrath, S.P. Evidence of decreasing mineral density in wheat grain over the last 160 years. J. Trace. Elem. Med. Bio 2008, 22, 315–324. [Google Scholar] [CrossRef]
- Zhao, F.J.; Su, Y.H.; Dunham, S.J.; Rakszegi, M.; Bedo, Z.; McGrath, S.P.; Shewry, P.R. Variation in mineral micronutrient concentrations in grain of wheat lines of diverse origin. J. Cereal Sci. 2009, 49, 290–295. [Google Scholar] [CrossRef]
- Shewry, P.R.; Pellny, T.K.; Lovegrove, A. Is modern wheat bad for health? Nat. Plants 2016, 2, 1–3. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, P.; Li, M.; Chang, L.; Cheng, H.; Chai, S.; Delong, Y. Dynamic responses of accumulation and remobilization of water soluble carbohydrates in wheat stem to drought stress. Plant. Physiol. Bioch 2020, 155, 262–270. [Google Scholar] [CrossRef]
- Makary, T.; Schulz, R.; Müller, T.; Pekrun, C. Simplified N fertilization strategies for winter wheat. Part 1: Plants: Compensation capacity of modern wheat varieties. Arch. Agron. Soil Sci. 2020, 66, 847–857. [Google Scholar] [CrossRef]
- Fu, X.; Shi, Z.; Ma, C.; Shan, Z.; Liu, Z.; Zhao, Y.; He, M. Effect of N fertilizer and removing leaves after flowering on 1000-grain weight. Chin. Agric. Sci. Bull. 2015, 31, 31–34. [Google Scholar]
- Zhang, M.; Gao, Y.; Zhang, Y.; Fischer, T.; Zhao, Z.; Zhou, X.; Zhimin, W.; Enli, W. The contribution of spike photosynthesis to wheat yield needs to be considered in process-based crop models. Field Crop. Res. 2020, 257, 107931. [Google Scholar] [CrossRef]
- Toyota, M.; Tsutsui, I.; Kusutani, A.; Asanuma, K.I. Initiation and development of spikelets and florets in wheat as influenced by shading and nitrogen supply at the spikelet phase. Plant. Prod. Sci. 2001, 4, 283–290. [Google Scholar] [CrossRef]
- Wang, Z.M.; Zhang, Y.H.; Zhang, Y.P.; Wu, Y.C. Review on photosynthetic performance of ear organs in Triticeae crops. J. Triticeae Crops 2004, 24, 136–139. [Google Scholar]
- Tian, J.C.; Wang, Y.X.; Tang, S.L. The relationship between different photosynthetic organs and grain yield in different genotype super wheats. Shandong Agric. Sci. 2005, 4, 12–14. [Google Scholar] [CrossRef]
- Shen, X.L. Effects of Source-Sink Change of Winter Wheat on the Yield of Winter Wheat and Its Yield Structure. Ph.D. Thesis, Northwest A&F University, Yangling, China, 1 June 2005. [Google Scholar]
- Kutman, U.B.; Yildiz, B.; Cakmak, I. Effect of nitrogen on uptake, remobilization and partitioning of zinc and iron throughout the development of durum wheat. Plant. Soil 2011, 342, 149–164. [Google Scholar] [CrossRef]
- Zhang, D.; Luo, X.S.; Zhao, Z.; Hu, Z.H.; Suo, C.; Chen, Y.; Sun, X.; Fang, X.K. Effect of reduced solar radiation (shading) on wheat yield and mineral metal element content. Jiangsu Agric. Sci. 2019, 47, 75–78. [Google Scholar] [CrossRef]
- Liu, N.; Yu, P.; Wang, C.; Xi, W.X.; Wang, Z.M.; Zhang, Y.H. Effect of leaf and spikelet removal on grain micronutrient and protein concentration in wheat. J. China Agric. Univ. 2013, 18, 42–53. [Google Scholar] [CrossRef]
- Loughman, B.C. The application of in vivo techniques in the study of metabolic aspects of ion absorption in crop plants. Plant. Soil 1987, 99, 63–74. [Google Scholar] [CrossRef]
- Sabrina, B.; Mohammed-Réda, D.; Rachid, R.; Kamel, R.; Houria, B. Correlation between changes in biochemical roots of wheat (Triticum durum desf) and stress induced by some regimes fertilizer NPK. Am. Eurasian J. Toxicol. Sci. 2011, 3, 47–51. [Google Scholar]
- He, M.; Cao, H.; Wang, Z.; Chen, M. Uptake accumulation and utilization efficiency of nitrogen and phosphorus in winter wheat with altered source-sink ratios. Acta Bot. Boreal-Occident Sin. 1996, 16, 361–367. [Google Scholar]
- Zhang, Y.H.; Sun, N.N.; Hong, J.P.; Zhang, Q.; Wang, C.; Xue, Q.W.; Lingan, K. Effect of source-sink manipulation on photosynthetic characteristics of flag leaf and the remobilization of dry mass and nitrogen in vegetative organs of wheat. J. Integr. Agr 2014, 13, 1680–1690. [Google Scholar] [CrossRef] [Green Version]
- Smith, M.R.; Rao, I.M.; Merchant, A. Source-sink relationships in crop plants and their influence on yield development and nutritional quality. Front. Plant. Sci. 2018, 9, 1889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yadav, S.; Kanwar, R.S.; Patil, J.A.; Tomar, D. Effects of Heterodera avenae on the absorption and translocation of N, P, K, and Zn from the soil in wheat. J. Plant. Nutr. 2020, 43, 2549–2556. [Google Scholar] [CrossRef]
- You, C.; Zhu, H.; Xu, B.; Huang, W.; Wang, S.; Ding, Y.; Zhenghui, L.; Ganghua, L.; Lin, C.; Chengqiang, D.; et al. Effect of removing superior spikelets on grain filling of inferior spikelets in rice. Front. Plant. Sci. 2016, 7, 1161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feil, B.; Fossati, D. Mineral composition of triticale grains as related to grain yield and grain protein. Crop. Sci. 1995, 35, 1426–1431. [Google Scholar] [CrossRef]
- Calderini, D.F.; Ortiz-Monasterio, I. Grain position affects grain macronutrient and micronutrient concentrations in wheat. Crop. Sci. 2003, 43, 141–151. [Google Scholar] [CrossRef]
- Welch, R.M.; Graham, R.D. Breeding crops for enhanced micronutrient content. Plant. Soil 2002, 245, 205–214. [Google Scholar] [CrossRef]
- Brinch-Pedersen, H.; Borg, S.; Tauris, B.; Holm, P.B. Molecular genetic approaches to increasing mineral availability and vitamin content of cereals. J. Cereal Sci. 2007, 46, 308–326. [Google Scholar] [CrossRef]
- Hurrell, R.F.; Reddy, M.B.; Juillerat, M.; Cook, J.D. Degradation of phytic acid in cereal porridges improves iron absorption by human subjects. Am. J. Clin. Nutr. 2003, 77, 1213–1219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Egli, I.; Davidsson, L.; Zeder, C.; Walczyk, T.; Hurrell, R. Dephytinization of a complementary food based on wheat and soy increases zinc, but not copper, apparent absorption in adults. J. Nutr. 2004, 134, 1077–1080. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Sun, L.; Wang, T.; Miao, P.; Zhu, X.; Liu, S.; Fengbin, S.; Hanping, M.; Xiangnan, L. Melatonin improves the photosynthetic carbon assimilation and antioxidant capacity in wheat exposed to Nano-ZnO stress. Molecules 2017, 22, 1727. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, L.; Zhao, J.; Song, J.; Jameson, P.E. Cytokinin dehydrogenase: A genetic target for yield improvement in wheat. Plant. Biotech. J. 2020, 18, 614–630. [Google Scholar] [CrossRef] [PubMed]
- Rivera-Amado, C.; Molero, G.; Trujillo-Negrellos, E.; Reynolds, M.; Foulkes, J. Estimating organ contribution to grain filling and potential for source upregulation in wheat cultivars with a contrasting source–sink balance. Agronomy 2020, 10, 1527. [Google Scholar] [CrossRef]
- Xie, Z.; Zhang, X.; Zhang, M.; Miao, F.; Ren, P. Effect of source-sink manipulation on grain material accumulation of cold-type and warm-type wheat. Acta Agric. Boreal Occident Sin. 2010, 19, 53–56. [Google Scholar]
- Glauser, G.; Wolfender, J.L. A non-targeted approach for extended liquid chromatography-mass spectrometry profiling of free and esterified jasmonates after wounding. Methods Mol. Biol. 2013, 1011, 123–134. [Google Scholar] [PubMed]
- Yan, C.; Fan, M.; Yang, M.; Zhao, J.; Zhang, W.; Su, Y.; Langtao, X.; Haiteng, D.; Daoxin, X. Injury activates Ca2+/calmodulin-dependent phosphorylation of JAV1-JAZ8-WRKY51 complex for jasmonate biosynthesis. Mol. Cell. 2018, 70, 136–149. [Google Scholar] [CrossRef] [Green Version]
- Shao, Y.; Zhou, H.; Wu, Y.; Zhang, H.; Lin, J.; Jiang, X.; Qiuju, H.; Jianshu, Z.; Yong, L.; Hao, Y.; et al. OsSPL3, an SBP-domain protein, regulates crown root development in rice. Plant. Cell 2019, 31, 1257–1275. [Google Scholar] [CrossRef] [Green Version]
- Haug, W.; Lantzsch, H.J. Sensitive method for the rapid determination of phytate in cereals and cereal products. J. Sci. Food Agric. 1983, 34, 1423–1426. [Google Scholar] [CrossRef]
Treatments | Single Panicle Weight (g) | Kernel Number Per Spike | Thousand Kernel Weight (g) | Total Grain Weight (g) |
---|---|---|---|---|
Zn Application Rate (kg·ha–1) | ||||
ZnSO4˙7H2O (0) | 1.6 | 30.4 | 42.5 | 38.3 |
ZnSO4˙7H2O (30) | 1.6 | 30.3 | 42.9 | 38.5 |
LSD0.05 | 0.1 | 1.2 | 1.6 | 2.5 |
Cultivar (C) | ||||
Jimai 22 | 1.7a | 32.4a | 42.4 | 40.6a |
Jimai 44 | 1.5b | 28.3b | 43.0 | 36.2b |
LSD0.05 | 0.1 | 1.2 | 1.6 | 2.5 |
Source–Sink Treatment (SS) | ||||
Control | 2.2a | 38.6a | 45.1b | 52.2a |
Flag leaf removal | 1.7b | 34.2b | 38.7c | 39.6b |
Half spikelets removal | 1.3d | 19.4d | 49.7a | 29.0d |
Spike shading | 1.4c | 29.2c | 37.5c | 32.9c |
LSD0.05 | 0.1 | 1.7 | 2.3 | 3.5 |
ANOVA | ||||
Zn | 0.6016 | 0.9573 | 0.6063 | 0.8436 |
C | <0.0001 | <0.0001 | 0.4486 | 0.0009 |
SS | <0.0001 | <0.0001 | <0.0001 | <0.0001 |
Zn × C | 0.8687 | 0.9866 | 0.3948 | 0.6383 |
Zn × SS | 0.1414 | 0.0213 | 0.4815 | 0.1067 |
C × SS | 0.0074 | 0.0649 | 0.1021 | 0.0942 |
Zn × C × SS | 0.3890 | 0.3733 | 0.6299 | 0.4968 |
Treatments | Zn | Fe | Mn | Cu |
---|---|---|---|---|
(mg·kg−1) | ||||
Zn application rate (kg·ha−1) | ||||
ZnSO4˙7H2O (0) | 41.1b | 49.8 | 46.4 | 5.6a |
ZnSO4˙7H2O (30) | 43.2a | 42.5 | 46.2 | 5.3b |
LSD0.05 | 2.0 | 9.2 | 2.2 | 0.2 |
Cultivar (C) | ||||
Jimai 22 | 40.6b | 44.8 | 45.1b | 5.1b |
Jimai 44 | 43.7a | 47.5 | 47.5a | 5.8a |
LSD0.05 | 2.0 | 9.2 | 2.2 | 0.2 |
Source–Sink Treatment (SS) | ||||
Control | 35.8c | 42.1 | 45.4b | 4.9b |
Flag leaf removal | 35.7c | 44.1 | 41.2c | 5.0b |
Half spikelet removal | 53.2a | 52.8 | 59.6a | 5.9a |
Spike shading | 43.6b | 45.6 | 39.0c | 6.0a |
LSD0.05 | 2.9 | 13.0 | 3.2 | 0.3 |
ANOVA | ||||
Zn | 0.0420 | 0.1125 | 0.8720 | 0.0007 |
C | 0.0040 | 0.5612 | 0.0332 | <0.0001 |
SS | <0.0001 | 0.3744 | <0.0001 | <0.0001 |
Zn × C | 0.0417 | 0.3430 | 0.4459 | 0.0148 |
Zn × SS | 0.7241 | 0.9119 | 0.3553 | 0.2445 |
C × SS | <0.0001 | 0.4729 | 0.2124 | 0.0469 |
Zn × C × SS | 0.0449 | 0.4959 | 0.3544 | 0.1657 |
Treatments | N | P | K | Ca | Mg | C/N | Phytate-P | PA/Zn | PA × Ca/Zn | PA/Fe | PA × Ca/Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
(g·kg−1) | (g·kg−1) | (g·kg−1) | (mg·kg−1) | (mg·kg−1) | (g·kg−1) | ||||||
Zn Application Rate (kg·ha−1) | |||||||||||
ZnSO4˙7H2O (0) | 17.1b | 3.4 | 3.8b | 458.9 | 1533.9 | 26.3 | 3.1 | 30.3 | 348.0 | 22.7 | 261.9 |
ZnSO4˙7H2O (30) | 19.2a | 3.3 | 4.3a | 461.3 | 1566.0 | 24.7 | 3.2 | 29.1 | 336.1 | 25.6 | 294.8 |
LSD0.05 | 0.5 | 0.4 | 0.2 | 10.9 | 54.2 | 1.8 | 0.2 | 2.1 | 25.8 | 3.4 | 41.6 |
Cultivar (C) | |||||||||||
Jimai 22 | 17.8b | 3.2 | 4.3a | 474.7a | 1543.3 | 26.0 | 3.2 | 31.3a | 371.2a | 25.9a | 307.1a |
Jimai 44 | 18.5a | 3.4 | 3.8b | 445.5b | 1556.6 | 25.0 | 3.1 | 28.0b | 312.9b | 22.4b | 249.6b |
LSD0.05 | 0.5 | 0.4 | 0.2 | 10.9 | 54.2 | 1.8 | 0.2 | 2.1 | 25.8 | 3.4 | 41.6 |
Source–Sink Treatment (SS) | |||||||||||
Control | 17.0c | 2.6b | 3.6b | 495.2a | 1439.2c | 27.4a | 2.8c | 31.0a | 383.4a | 23.4 | 289.8ab |
Flag leaf removal | 16.2d | 2.9b | 3.9b | 491.7ab | 1524.5b | 27.6a | 2.9c | 32.1a | 393.9a | 25.6 | 315.8a |
Half spikelets removal | 20.1a | 4.0a | 3.2c | 477.5b | 1820.7a | 24.0b | 3.6a | 26.1b | 312.8b | 22.8 | 274.3ab |
Spike shading | 19.2b | 3.8a | 5.5a | 376.0c | 1415.3c | 23.0b | 3.3b | 29.7a | 278.7b | 24.9 | 233.6b |
LSD0.05 | 0.7 | 0.5 | 0.3 | 15.4 | 76.7 | 2.5 | 0.2 | 3.3 | 39.1 | 4.8 | 58.9 |
ANOVA | |||||||||||
Zn | <0.0001 | 0.6780 | 0.0007 | 0.6502 | 0.2367 | 0.0751 | 0.3775 | 0.2692 | 0.3507 | 0.0917 | 0.1176 |
C | 0.0157 | 0.1611 | 0.0003 | <0.0001 | 0.6197 | 0.2441 | 0.3197 | 0.0032 | <0.0001 | 0.0421 | 0.0085 |
T | <0.0001 | <0.0001 | <0.0001 | <0.0001 | <0.0001 | 0.0006 | <0.0001 | 0.0023 | <0.0001 | 0.6304 | 0.0540 |
Zn × C | 0.5808 | 0.0532 | 0.1328 | 0.0883 | 0.4575 | 0.2489 | 0.8534 | 0.1911 | 0.1263 | 0.5354 | 0.3964 |
Zn × SS | 0.4284 | 0.1946 | 0.2364 | 0.0004 | 0.2855 | 0.3302 | 0.4835 | 0.5974 | 0.8836 | 0.8139 | 0.9642 |
C × SS | 0.1999 | 0.0593 | 0.0084 | 0.0064 | 0.1488 | 0.0592 | 0.0837 | 0.2684 | 0.5623 | 0.9104 | 0.9586 |
Zn × C × SS | 0.3281 | 0.4752 | 0.3643 | 0.0695 | 0.5977 | 0.4837 | 0.1155 | 0.0274 | 0.0538 | 0.7255 | 0.6029 |
Treatments | ABA (ng·g−1) | ACC (ng·g−1) | ABA/ACC |
---|---|---|---|
Zn application rate (kg·ha−1) | |||
ZnSO4˙7H2O (0) | 25.2b | 41.0a | 0.7b |
ZnSO4˙7H2O (30) | 31.0a | 35.3b | 1.0a |
LSD0.05 | 6.3 | 5.2 | 0.2 |
Cultivar (C) | |||
Jimai 22 | 30.9 | 32.6b | 1.1a |
Jimai 44 | 25.3 | 43.7a | 0.7b |
LSD0.05 | 6.3 | 5.2 | 0.2 |
Source–Sink treatment (SS) | |||
Control | 28.4b | 34.4b | 0.9b |
Flag leaf removal | 25.8b | 34.5b | 0.8b |
Half spikelet removal | 42.6a | 30.9b | 1.5a |
Spike shading | 15.4c | 52.7a | 0.3c |
LSD0.05 | 9.0 | 7.4 | 0.3 |
ANOVA | |||
Zn | 0.0700 | 0.0349 | 0.0152 |
C | 0.0811 | 0.0002 | 0.0029 |
SS | <0.0001 | <0.0001 | <0.0001 |
Zn × C | 0.2616 | 0.0125 | 0.2208 |
Zn × SS | 0.2612 | 0.6570 | 0.0634 |
C × SS | 0.1900 | 0.7373 | 0.1347 |
Zn × C × SS | 0.5728 | 0.3375 | 0.8401 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, L.; Xia, H.; Li, X.; Qiao, Y.; Xue, Y.; Jiang, X.; Yan, W.; Liu, Y.; Xue, Y.; Kong, L. Source–Sink Manipulation Affects Accumulation of Zinc and Other Nutrient Elements in Wheat Grains. Plants 2021, 10, 1032. https://doi.org/10.3390/plants10051032
Wang L, Xia H, Li X, Qiao Y, Xue Y, Jiang X, Yan W, Liu Y, Xue Y, Kong L. Source–Sink Manipulation Affects Accumulation of Zinc and Other Nutrient Elements in Wheat Grains. Plants. 2021; 10(5):1032. https://doi.org/10.3390/plants10051032
Chicago/Turabian StyleWang, Lan, Haiyong Xia, Xiaojing Li, Yuetong Qiao, Yanhui Xue, Xilong Jiang, Wei Yan, Yumin Liu, Yanfang Xue, and Lingan Kong. 2021. "Source–Sink Manipulation Affects Accumulation of Zinc and Other Nutrient Elements in Wheat Grains" Plants 10, no. 5: 1032. https://doi.org/10.3390/plants10051032