Growth and Biochemical Responses of Potato Cultivars under In Vitro Lithium Chloride and Mannitol Simulated Salinity and Drought Stress
Abstract
:1. Introduction
2. Results
2.1. Shoot and Root Parameters
2.1.1. Effect of LiCl Levels on Shoot and Root Parameters
2.1.2. Effect of Mannitol Levels on Shoots and Roots
2.2. Biochemical Analysis under Different Levels of LiCl and Mannitol
2.2.1. Total Phenol Contents
2.2.2. Total Flavonoids Contents (TFC)
2.2.3. Antioxidant Activity (DPPH Assay)
2.2.4. Polyphenol Oxidase (PPO)
2.2.5. Peroxidase (POD)
3. Discussion
4. Materials and Methods
4.1. Plantlets and In Vitro Conditions
4.2. Plantlets Treatment with LiCl and Mannitol
4.3. Shoot and Root Parameters
4.4. Biochemical Analysis
4.4.1. Methanolic Extract preparation for Estimation of Total Phenols Concentration (TPC), Total Flavonoids Concentration (TFC), and Antioxidant Activity
4.4.2. Total Phenol Concentration (TPC) Estimation
4.4.3. Total Flavonoids Concentration (TFC) Estimation
4.4.4. Antioxidant Capacity by DPPH Radical Scavenging Assay
4.4.5. Enzymes Activity Evaluation
4.4.6. Peroxidase (POD) Assay
4.4.7. Polyphenol Oxidase (PPO) Assay
4.5. Statistical Analysis of Data
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Birch, P.R.; Bryan, G.; Fenton, B.; Gilroy, E.M.; Hein, I.; Jones, J.T.; Prashar, A.; Taylor, M.A.; Torrance, L.; Toth, I.K. Crops That Feed the World 8: Potato: Are the Trends of Increased Global Production Sustainable? Food Secur. 2012, 4, 477–508. [Google Scholar] [CrossRef]
- Faostat, Food and Agriculture Organization. Available online: http://www.fao.org/Faostat/En/#data.qc (accessed on 15 February 2019).
- Bach, S.; Yada, R.Y.; Bizimungu, B.; Sullivan, J.A. Genotype by Environment Interaction Effects on Fibre Components in Potato (Solanum tuberosum L.). Euphytica 2012, 187, 77–86. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, J.; Pereira, S. High Salinity and Drought Act on an Organ-Dependent Manner on Potato Glutamine Synthetase Expression and Accumulation. Environ. Exp. Bot. 2007, 60, 121–126. [Google Scholar] [CrossRef]
- Monneveux, P.; Ramírez, D.A.; Pino, M.-T. Drought Tolerance in Potato (S. tuberosum L.): Can We Learn from Drought Tolerance Research in Cereals? Plant Sci. 2013, 205, 76–86. [Google Scholar] [CrossRef] [PubMed]
- Aghaei, K.; Ehsanpour, A.A.; Komatsu, S. Potato Responds to Salt Stress by Increased Activity of Antioxidant Enzymes. J. Integr. Plant Biol. 2009, 51, 1095–1103. [Google Scholar] [CrossRef]
- Haritha, H. Evaluation of Salinity and Water Stress Tolerance in Potato Genotypes: Biochemical Characterization of the Tolerance Response; University of Agricultural Sciences GKVK: Bengaluru, India, 2017. [Google Scholar]
- Rai, M.K.; Kalia, R.K.; Singh, R.; Gangola, M.P.; Dhawan, A.K. Developing Stress Tolerant Plants through in Vitro Selection—An Overview of the Recent Progress. Environ. Exp. Bot. 2011, 71, 89–98. [Google Scholar] [CrossRef]
- Yamaguchi, T.; Blumwald, E. Developing Salt-Tolerant Crop Plants: Challenges and Opportunities. Trends Plant Sci. 2005, 10, 615–620. [Google Scholar] [CrossRef]
- Wang, W.; Vinocur, B.; Altman, A. Plant Responses to Drought, Salinity and Extreme Temperatures: Towards Genetic Engineering for Stress Tolerance. Planta 2003, 218, 1–14. [Google Scholar] [CrossRef]
- Hijmans, R.J. The Effect of Climate Change on Global Potato Production. Am. J. Potato Res. 2003, 80, 271–279. [Google Scholar] [CrossRef]
- Zhu, J.-K. Salt and Drought Stress Signal Transduction in Plants. Annu. Rev. Plant Biol. 2002, 53, 247–273. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, P.M.; Bressan, R.A.; Zhu, J.-K.; Bohnert, H.J. Plant Cellular and Molecular Responses to High Salinity. Annu. Rev. Plant Biol. 2000, 51, 463–499. [Google Scholar] [CrossRef] [Green Version]
- Mousa, M.A.; Al-Qurashi, A.D.; Bakhashwain, A.A. Response of Tomato Genotypes at Early Growing Stages to Irrigation Water Salinity. J. Food Agric. Env. 2013, 11, 501–507. [Google Scholar]
- Munns, R.; Tester, M. Mechanisms of Salinity Tolerance. Annu. Rev. Plant Biol. 2008, 59, 651–681. [Google Scholar] [CrossRef] [Green Version]
- Demirel, U.; Morris, W.L.; Ducreux, L.J.; Yavuz, C.; Asim, A.; Tindas, I.; Campbell, R.; Morris, J.A.; Verrall, S.R.; Hedley, P.E. Physiological, Biochemical, and Transcriptional Responses to Single and Combined Abiotic Stress in Stress-Tolerant and Stress-Sensitive Potato Genotypes. Front. Plant Sci. 2020, 11, 169. [Google Scholar] [CrossRef]
- Türkan, I.; Demiral, T. Recent Developments in Understanding Salinity Tolerance. Environ. Exp. Bot. 2009, 67, 2–9. [Google Scholar] [CrossRef]
- Ashraf, M. Biotechnological Approach of Improving Plant Salt Tolerance Using Antioxidants as Markers. Biotechnol. Adv. 2009, 27, 84–93. [Google Scholar] [CrossRef]
- Al Kharusi, L.; Al Yahyai, R.; Yaish, M.W. Antioxidant Response to Salinity in Salt-Tolerant and Salt-Susceptible Cultivars of Date Palm. Agriculture 2019, 9, 8. [Google Scholar] [CrossRef] [Green Version]
- Purohit, M.; Srivastava, S.; Srivastava, P.S. Stress Tolerant Plants through Tissue Culture in Plant Tissue Culture and Molecular Biology: Application and Prospects; Narosa Publishing House: New Delhi, India, 1998; pp. 554–578. [Google Scholar]
- Shah, A.H.; Shah, S.H.; Ahmad, H.; Baig, A.; Swati, Z.A.; Aiman, U.; Din, I.; Khalid, Q. Co Adaptation of LiCl Tolerant Solanum tuberosum L. Callus Cultures to NaCl Stress. Afr. J. Biotechnol. 2011, 10, 13444–13452. [Google Scholar]
- Daneshmand, F.; Arvin, M.J.; Kalantari, K.M. Physiological Responses to NaCl Stress in Three Wild Species of Potato in Vitro. Acta Physiol. Plant. 2010, 32, 91. [Google Scholar] [CrossRef]
- Gopal, J.; Khurana, S.M. Handbook of Potato Production, Improvement, and Postharvest Management; CRC Press: Boca Raton, FL, USA, 2006; ISBN 1-00-006501-4. [Google Scholar]
- Dita, M.A.; Rispail, N.; Prats, E.; Rubiales, D.; Singh, K.B. Biotechnology Approaches to Overcome Biotic and Abiotic Stress Constraints in Legumes. Euphytica 2006, 147, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Sakhanokho, H.F.; Kelley, R.Y. Influence of Salicylic Acid on in Vitro Propagation and Salt Tolerance in Hibiscus Acetosella and Hibiscus Moscheutos (Cv ‘Luna Red’). Afr. J. Biotechnol. 2009, 8, 1474–1481. [Google Scholar]
- Al-Rowaily, S.R.; Assaeed, A.M.; Al-Khateeb, S.A.; Al-Qarawi, A.A.; Al Arifi, F.S. Vegetation and Condition of Arid Rangeland Ecosystem in Central Saudi Arabia. Saudi J. Biol. Sci. 2018, 25, 1022–1026. [Google Scholar] [CrossRef]
- Pérez-Clemente, R.M.; Gómez-Cadenas, A. In Vitro Tissue Culture, a Tool for the Study and Breeding of Plants Subjected to Abiotic Stress Conditions. Recent Adv. Plant Vitro Cult. 2012, 1, 92–108. [Google Scholar]
- Chutipaijit, S. Changes in Physiological and Antioxidant Activity of Indica Rice Seedlings in Response to Mannitol-Induced Osmotic Stress. Chil. J. Agric. Res. 2016, 76, 455–462. [Google Scholar] [CrossRef]
- Albiski, F.; Najla, S.; Sanoubar, R.; Alkabani, N.; Murshed, R. In Vitro Screening of Potato Lines for Drought Tolerance. Physiol. Mol. Biol. Plants 2012, 18, 315–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aliche, E.B.; Prusova-Bourke, A.; Ruiz-Sanchez, M.; Oortwijn, M.; Gerkema, E.; Van As, H.; Visser, R.G.; van der Linden, C.G. Morphological and Physiological Responses of the Potato Stem Transport Tissues to Dehydration Stress. Planta 2020, 251, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Luitel, B.P.; Khatri, B.B.; Choudhary, D.; Paudel, B.P.; Jung-Sook, S.; Hur, O.-S.; Baek, H.J.; Cheol, K.H.; Yul, R.K. Growth and Yield Characters of Potato Genotypes Grown in Drought and Irrigated Conditions of Nepal. Int. J. Appl. Sci. Biotechnol. 2015, 3, 513–519. [Google Scholar] [CrossRef]
- Farooq, M.; Wahid, A.; Kobayashi, N.; Fujita, D.; Basra, S.M.A. Plant drought stress: Effects, mechanisms and management. In Sustainable Agriculture; Springer: Berlin, Germany, 2009; pp. 153–188. [Google Scholar]
- Ahmed, H.A.A.; Şahin, N.K.; Akdoğan, G.; Yaman, C.; Köm, D.; Uranbey, S. Variability in Salinity Stress Tolerance of Potato (Solanum tuberosum L.) Varieties Using in Vitro Screening. Ciênc. E Agrotecnologia 2020, 44, e004220. [Google Scholar] [CrossRef]
- Rashid, M.H.O.; Islam, S.M.S.; Bari, M.A. In Vitro Screening for Salt Stress Tolerance of Native and Exotic Potato Genotypes by Morphological and Physiological Parameters. J. Bio Sci. 2020, 28, 21–32. [Google Scholar] [CrossRef]
- Nistor, A.; Chiru, N.; Cioloca, M.; Badarau, C. The growth and development of “in vitro” potato plantlets belonging to different romanian varieties under the influence of water stress caused by mannitol. Stud. Univ. Vasile Goldis Arad Ser. Stiintele Vietii Life Sci. Ser. 2015, 25, 99. [Google Scholar]
- Muñoz, M.; Díaz, O.; Reinún, W.; Winkler, A.; Quevedo, R. Slow Growth in Vitro Culture for Conservation of Chilotanum Potato Germplasm. Chil. J. Agric. Res. 2019, 79, 26–35. [Google Scholar] [CrossRef] [Green Version]
- Naik, P.S.; Widholm, J.M. Comparison of Tissue Culture and Whole Plant Responses to Salinity in Potato. Plant Cell Tissue Organ Cult. 1993, 33, 273–280. [Google Scholar] [CrossRef]
- Chen, C.C.; Plant, A.L. Salt-Induced Protein Synthesis in Tomato Roots: The Role of ABA. J. Exp. Bot. 1999, 50, 677–687. [Google Scholar] [CrossRef]
- Akula, R.; Ravishankar, G.A. Influence of Abiotic Stress Signals on Secondary Metabolites in Plants. Plant Signal. Behav. 2011, 6, 1720–1731. [Google Scholar] [CrossRef] [PubMed]
- Keles, Y.; Öncel, I. Growth and Solute Composition in Two Wheat Species Experiencing Combined Influence of Stress Conditions 1. Russ. J. Plant Physiol. 2004, 51, 203–209. [Google Scholar] [CrossRef]
- Keutgen, A.J.; Pawelzik, E. Quality and Nutritional Value of Strawberry Fruit under Long Term Salt Stress. Food Chem. 2008, 107, 1413–1420. [Google Scholar] [CrossRef]
- Ksouri, R.; Megdiche, W.; Debez, A.; Falleh, H.; Grignon, C.; Abdelly, C. Salinity Effects on Polyphenol Content and Antioxidant Activities in Leaves of the Halophyte Cakile Maritima. Plant Physiol. Biochem. 2007, 45, 244–249. [Google Scholar] [CrossRef] [PubMed]
- Gharibi, S.; Tabatabaei, B.E.S.; Saeidi, G.; Goli, S.A.H. Effect of Drought Stress on Total Phenolic, Lipid Peroxidation, and Antioxidant Activity of Achillea Species. Appl. Biochem. Biotechnol. 2016, 178, 796–809. [Google Scholar] [CrossRef]
- Hamooh, B.T.; Sattar, F.A.; Wellman, G.; Mousa, M.A.A. Metabolomic and Biochemical Analysis of Two Potato (Solanum tuberosum L.) Cultivars Exposed to In Vitro Osmotic and Salt Stresses. Plants 2021, 10, 98. [Google Scholar] [CrossRef]
- Roussos, P.A. Growth and Biochemical Responses of Jojoba (Simmondsia Chinensis (Link) Schneid) Explants Cultured under Mannitol-Simulated Drought Stress in Vitro. Plant Biosyst. Int. J. Deal. Asp. Plant Biol. 2013, 147, 272–284. [Google Scholar]
- Bettaieb, I.; Hamrouni-Sellami, I.; Bourgou, S.; Limam, F.; Marzouk, B. Drought Effects on Polyphenol Composition and Antioxidant Activities in Aerial Parts of Salvia Officinalis L. Acta Physiol. Plant. 2011, 33, 1103–1111. [Google Scholar] [CrossRef]
- Fini, A.; Brunetti, C.; Di Ferdinando, M.; Ferrini, F.; Tattini, M. Stress-Induced Flavonoid Biosynthesis and the Antioxidant Machinery of Plants. Plant Signal. Behav. 2011, 6, 709–711. [Google Scholar] [CrossRef] [PubMed]
- Munne-Bosch, S.; Penuelas, J. Photo-and Antioxidative Protection, and a Role for Salicylic Acid during Drought and Recovery in Field-Grown Phillyrea Angustifolia Plants. Planta 2003, 217, 758–766. [Google Scholar] [CrossRef]
- Foyer, C.H.; Lelandais, M.; Kunert, K.J. Photooxidative Stress in Plants. Physiol. Plant. 1994, 92, 696–717. [Google Scholar] [CrossRef]
- Bor, M.; Özdemir, F.; Türkan, I. The Effect of Salt Stress on Lipid Peroxidation and Antioxidants in Leaves of Sugar Beet Beta Vulgaris L. and Wild Beet Beta Maritima L. Plant Sci. 2003, 164, 77–84. [Google Scholar] [CrossRef]
- Kim, H.-J.; Fonseca, J.M.; Choi, J.-H.; Kubota, C.; Kwon, D.Y. Salt in Irrigation Water Affects the Nutritional and Visual Properties of Romaine Lettuce (Lactuca sativa L.). J. Agric. Food Chem. 2008, 56, 3772–3776. [Google Scholar] [CrossRef]
- Bowler, C.; van Montagu, M.; Inze, D. Superoxide Dismutase and Stress Tolerance. Annu. Rev. Plant Biol. 1992, 43, 83–116. [Google Scholar] [CrossRef]
- Meloni, D.A.; Oliva, M.A.; Martinez, C.A.; Cambraia, J. Photosynthesis and Activity of Superoxide Dismutase, Peroxidase and Glutathione Reductase in Cotton under Salt Stress. Environ. Exp. Bot. 2003, 49, 69–76. [Google Scholar] [CrossRef]
- Esmaeili, N.; Ebrahimzadeh, H.; Abdi, K. Correlation between Polyphenol Oxidase (PPO) Activity and Total Phenolic Contents in Crocus sativus L. Corms during Dormancy and Sprouting Stages. Pharmacogn. Mag. 2017, 13, S519. [Google Scholar]
- Rivero, R.M.; Ruiz, J.M.; Garcıa, P.C.; Lopez-Lefebre, L.R.; Sánchez, E.; Romero, L. Resistance to Cold and Heat Stress: Accumulation of Phenolic Compounds in Tomato and Watermelon Plants. Plant Sci. 2001, 160, 315–321. [Google Scholar] [CrossRef]
- García-Rodríguez, R.; Romero-Segura, C.; Sanz, C.; Sánchez-Ortiz, A.; Pérez, A.G. Role of Polyphenol Oxidase and Peroxidase in Shaping the Phenolic Profile of Virgin Olive Oil. Food Res. Int. 2011, 44, 629–635. [Google Scholar] [CrossRef]
- Liu, S.; Chen, S.; Chen, Y.; Guan, Z.; Yin, D.; Chen, F. In Vitro Induced Tetraploid of Dendranthema Nankingense (Nakai) Tzvel. Shows an Improved Level of Abiotic Stress Tolerance. Sci. Hortic. 2011, 127, 411–419. [Google Scholar] [CrossRef]
- Rahnama, H.; Ebrahimzadeh, H. The Effect of NaCl on Antioxidant Enzyme Activities in Potato Seedlings. Biol. Plant. 2005, 49, 93–97. [Google Scholar] [CrossRef]
- Niu, L.; Qin, Q.; Wang, L.; Gai, Q.; Jiao, J.; Zhao, C.; Fu, Y. Chemical Profiling of Volatile Components of Micropropagated Santolina chamaecyparissus L. Ind. Crops Prod. 2019, 137, 162–170. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A Revised Medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Kumlay, A.M.; Ercisli, S. Callus Induction, Shoot Proliferation and Root Regeneration of Potato (Solanum tuberosum L.) Stem Node and Leaf Explants under Long-Day Conditions. Biotechnol. Biotechnol. Equip. 2015, 29, 1075–1084. [Google Scholar] [CrossRef] [Green Version]
- Sabbah, S.; Tal, M. Development of Callus and Suspension Cultures of Potato Resistant to NaCl and Mannitol and Their Response to Stress. Plant Cell Tissue Organ Cult. 1990, 21, 119–128. [Google Scholar] [CrossRef]
- Hoff, J.E.; Singleton, K.I. A Method for Determination of Tannins in Foods by Means of Immobilized Protein. J. Food Sci. 1977, 42, 1566–1569. [Google Scholar] [CrossRef]
- Zhishen, J.; Mengcheng, T.; Jianming, W. The Determination of Flavonoid Contents in Mulberry and Their Scavenging Effects on Superoxide Radicals. Food Chem. 1999, 64, 555–559. [Google Scholar] [CrossRef]
- Ao, C.; Li, A.; Elzaawely, A.A.; Xuan, T.D.; Tawata, S. Evaluation of Antioxidant and Antibacterial Activities of Ficus Microcarpa L. Fil. Extract. Food Control 2008, 19, 940–948. [Google Scholar] [CrossRef]
- Awad, M.A.; Al-Qurashi, A.D.; Mohamed, S.A.; El-Shishtawy, R.M.; Ali, M.A. Postharvest Chitosan, Gallic Acid and Chitosan Gallate Treatments Effects on Shelf Life Quality, Antioxidant Compounds, Free Radical Scavenging Capacity and Enzymes Activities of ‘Sukkari’Bananas. J. Food Sci. Technol. 2017, 54, 447–457. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mar’ia, V.M.; Cascone, O. Horseradish Peroxidase Extraction and Purification by Aqueous Two-Phase Partition. Appl. Biochem. Biotechnol. 1995, 53, 147–154. [Google Scholar]
- Jiang, Y.; Zhang, Z.; Joyce, D.C.; Ketsa, S. Postharvest Biology and Handling of Longan Fruit (Dimocarpus Longan Lour.). Postharvest Biol. Technol. 2002, 26, 241–252. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sattar, F.A.; Hamooh, B.T.; Wellman, G.; Ali, M.A.; Shah, S.H.; Anwar, Y.; Mousa, M.A.A. Growth and Biochemical Responses of Potato Cultivars under In Vitro Lithium Chloride and Mannitol Simulated Salinity and Drought Stress. Plants 2021, 10, 924. https://doi.org/10.3390/plants10050924
Sattar FA, Hamooh BT, Wellman G, Ali MA, Shah SH, Anwar Y, Mousa MAA. Growth and Biochemical Responses of Potato Cultivars under In Vitro Lithium Chloride and Mannitol Simulated Salinity and Drought Stress. Plants. 2021; 10(5):924. https://doi.org/10.3390/plants10050924
Chicago/Turabian StyleSattar, Farooq Abdul, Bahget Talat Hamooh, Gordon Wellman, Md. Arfan Ali, Saad Hussain Shah, Yasir Anwar, and Magdi Ali Ahmed Mousa. 2021. "Growth and Biochemical Responses of Potato Cultivars under In Vitro Lithium Chloride and Mannitol Simulated Salinity and Drought Stress" Plants 10, no. 5: 924. https://doi.org/10.3390/plants10050924
APA StyleSattar, F. A., Hamooh, B. T., Wellman, G., Ali, M. A., Shah, S. H., Anwar, Y., & Mousa, M. A. A. (2021). Growth and Biochemical Responses of Potato Cultivars under In Vitro Lithium Chloride and Mannitol Simulated Salinity and Drought Stress. Plants, 10(5), 924. https://doi.org/10.3390/plants10050924