Fruit Characteristics, Peel Nutritional Compositions, and Their Relationships with Mango Peel Pectin Quality
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physical Characteristics of Mango Fruit Varieties
2.2. Physicochemical Characteristics of Mango Peel
2.2.1. FT-IR
2.2.2. Scanning Electron Microscopy (SEM) and Light Microscopy (LM)
2.2.3. Proximate and Sugar Compositions
2.3. Chemical Characteristics of Mango Peel Pectin
2.4. Chemometric Studies of Fruit Physiological and Peel Proximate Compositions with Pectin Qualities
3. Materials and Methods
3.1. Physical Characteristics of Mango Fruit Varieties
3.1.1. Collection of Mango Samples
3.1.2. CIE Color Spacing
3.1.3. Physical Properties
3.2. Physicochemical Characteristics of Mango Peel
3.2.1. Preparation of Mango Peel Powder
3.2.2. Fourier-Transform Infrared Spectrophotometry (FT-IR)
3.2.3. Scanning Electron Microscopy (SEM)
3.2.4. Light Microscopy (LM)
3.2.5. Proximate Compositions
3.2.6. Sugar Compositions
3.3. Chemical Characteristics of Mango Peel Pectin
3.3.1. Extraction of Pectin from Mango Peel Using Microwave Technique
3.3.2. Mango Peel Pectin Characterizations
Equivalent Weight (Eq.W)
Methoxyl Content (Mox) and Degree of Esterification (DE)
3.4. Statistical Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dick, E.; N’DaAdopo, A.; Camara, B.; Moudioh, E. Influence of maturity stage of mango at harvest on its ripening quality. Fruits 2009, 64, 13–18. [Google Scholar] [CrossRef] [Green Version]
- Evans, E.; Ballen, F.; Siddiq, M. Mango Production, Global Trade, Consumption Trends, and Postharvest Processing and Nutrition; John Wiley & Sons: Chichester, UK, 2017; pp. 1–16. [Google Scholar]
- Tharanathan, R.N.; Hosakote, Y.; Prabha, T.N. Mango (Mangifera indica L.), “The King of Fruits”—An Overview. Food Rev. Int. 2006, 22, 95–123. [Google Scholar] [CrossRef]
- Maneenpun, S.; Yunchalad, M. Developing processed mango products for international markets. Acta Hortic. 2004, 645, 93–105. [Google Scholar] [CrossRef]
- Siafunda, M. Study of marketing and processing of mango enterprise with a view toreduce wastage among local mango producers in Zambia. Texila Int. J. Manag. 2019, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Wongkaew, M.; Sangta, J.; Chansakaow, S.; Jantanasakulwong, K.; Rachtanapun, P.; Sommano, S.R. Volatile profiles from over-ripe purée of Thai mango varieties and their physiochemical properties during heat processing. PLoS ONE 2021, 16, e0248657. [Google Scholar] [CrossRef]
- Rojas, R.; Alvarez-Pérez, O.B.; Contreras-Esquivel, J.C.; Vicente, A.; Flores, A.; Sandoval, J.; Aguilar, C.N. Valorisation of mango peels: Extraction of pectin and antioxidant and antifungal polyphenols. Waste Biomass Valoriz. 2020, 11, 89–98. [Google Scholar] [CrossRef] [Green Version]
- Chaiwarit, T.; Masavang, S.; Mahe, J.; Sommano, S.; Ruksiriwanich, W.; Brachais, C.-H.; Chambin, O.; Jantrawut, P. Mango (cv. Nam Dokmai) peel as a source of pectin and its potential use as a film-forming polymer. Food Hydrocoll. 2020, 102, 105611. [Google Scholar] [CrossRef]
- Min, B.; Lim, J.; Ko, S.; Lee, K.-G.; Lee, S.H.; Lee, S. Environmentally friendly preparation of pectins from agricultural byproducts and their structural/rheological characterization. Bioresour. Technol. 2011, 102, 3855–3860. [Google Scholar] [CrossRef]
- Vieira, W.A.; Michereff, S.; Morais, M.; Hyde, K.; Câmara, M. Endophytic species of Colletotrichum associated with mango in northeastern Brazil. Fungal Divers. 2014, 67. [Google Scholar] [CrossRef]
- Sommano, S.; Ounamornmas, P.; Nisoa, M.; Sriwattana, S. Bioactive functionality of pectin from peels of seven Thai mango cultivars. Acta Hortic. 2018, 423–428. [Google Scholar] [CrossRef]
- Sommano, S.; Ounamornmas, P.; Nisoa, M.; Sriwattana, S.; Page, P.; Colelli, G. Characterisation and physiochemical properties of mango peel pectin extracted by conventional and phase control microwave-assisted extractions. Int. Food Res. J. 2018, 25, 2657–2665. [Google Scholar]
- Wongkaew, M.; Sommano, S.; Tangpao, T.; Rachtanapun, P.; Jantanasakulwong, K. Mango peel pectin by microwave-assisted extraction and its use as fat replacement in dried Chinese sausage. Foods 2020, 9, 450. [Google Scholar] [CrossRef] [Green Version]
- Ajila, C.M.; Prasada Rao, U.J.S. Mango peel dietary fibre: Composition and associated bound phenolics. J. Funct. Foods 2013, 5, 444–450. [Google Scholar] [CrossRef]
- De Lourdes Garcia-Magana, M.; Garcia, H.S.; Bello-Perez, L.A.; Sayago-Ayerdi, S.G.; de Oca, M.M. Functional properties and dietary fiber characterization of mango processing by-products (Mangifera indica L., cv Ataulfo and Tommy Atkins). Plant Foods Hum. Nutr. 2013, 68, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Manthey, J.A.; Perkins-Veazie, P. Influences of harvest date and location on the levels of beta-carotene, ascorbic acid, total phenols, the in vitro antioxidant capacity, and phenolic profiles of five commercial varieties of mango (Mangifera indica L.). J. Agric. Food Chem. 2009, 57, 10825–10830. [Google Scholar] [CrossRef] [PubMed]
- Schieber, A.; Berardini, N.; Carle, R. Identification of flavonol and xanthone glycosides from mango (Mangifera indica L. Cv. “Tommy Atkins”) peels by high-performance liquid chromatography-electrospray ionization mass spectrometry. J. Agric. Food Chem. 2003, 51, 5006–5011. [Google Scholar] [CrossRef]
- Nagel, A.; Sirisakulwat, S.; Carle, R.; Neidhart, S. An acetate-hydroxide gradient for the quantitation of the neutral sugar and uronic acid profile of pectins by HPAEC-PAD without postcolumn pH adjustment. J. Agric. Food Chem. 2014, 62, 2037–2048. [Google Scholar] [CrossRef]
- Panouillé, M.; Ralet, M.C.; Bonnin, E.; Thibault, J.F. 16—Recovery and reuse of trimmings and pulps from fruit and vegetable processing. In Handbook of Waste Management and Co-Product Recovery in Food Processing; Waldron, K., Ed.; Woodhead Publishing: Cambridge, UK, 2007; pp. 417–447. [Google Scholar]
- Ajila, C.M.; Bhat, S.G.; Prasada Rao, U.J.S. Valuable components of raw and ripe peels from two Indian mango varieties. Food Chem. 2007, 102, 1006–1011. [Google Scholar] [CrossRef]
- Beerh, O.P.; Raghuramaiah, B.; Krishnamurthy, G.; Giridhar, N. Utilization of mango waste: Recovery of juice from waste pulp and peel. J. Food Sci. Technol. 1976, 13, 138–141. [Google Scholar]
- Singthong, J.; Cui, S.; Ningsanond, S.; Goff, H. Structural characterization, degree of esterification and some gelling properties of Krueo Ma Noy (Cissampelos pareira) pectin. Carbohydr. Polym. 2004, 58, 391–400. [Google Scholar] [CrossRef]
- Al-Sheraji, S.H.; Ismail, A.; Manap, M.Y.; Mustafa, S.; Yusof, R.M.; Hassan, F.A. Functional properties and characterization of dietary fiber from Mangifera pajang Kort. fruit pulp. J. Agric. Food Chem. 2011, 59, 3980–3985. [Google Scholar] [CrossRef] [PubMed]
- Nguyễn, H.; Savage, G. The effects of temperature and pH on the extraction of oxalate and pectin from green kiwifruit (Actinidia deliciosa L.), golden kiwifruit (Actinidia chinensis L.), kiwiberry (Actinidia arguta) and persimmon (Diospyros kaki). Int. J. Food Sci. Technol. 2012, 48, 794–800. [Google Scholar] [CrossRef]
- Sogi, D.S.; Siddiq, M.; Greiby, I.; Dolan, K.D. Total phenolics, antioxidant activity, and functional properties of ‘Tommy Atkins’ mango peel and kernel as affected by drying methods. Food Chem. 2013, 141, 2649–2655. [Google Scholar] [CrossRef] [PubMed]
- El Bulk, R.E.; Babiker, E.F.E.; El Tinay, A.H. Changes in chemical composition of guava fruits during development and ripening. Food Chem. 1997, 59, 395–399. [Google Scholar] [CrossRef]
- Zhou, H.C.; Li, G.; Zhao, X.; Li, L.J. Comparative analysis of polygalacturonase in the fruit of strawberry cultivars. Genet. Mol. Res. 2015, 14, 12776–12787. [Google Scholar] [CrossRef]
- Willats, W.G.T.; Knox, J.P.; Mikkelsen, J.D. Pectin: New insights into an old polymer are starting to gel. Trends Food Sci. Technol. 2006, 17, 97–104. [Google Scholar] [CrossRef]
- Schols, H.A.; Voragen, A.G.J. Complex Pectins: Structure elucidation using enzymes. In Progress in Biotechnology; Visser, J., Voragen, A.G.J., Eds.; Elsevier: Amsterdam, The Netherlands, 1996; Volume 14, pp. 3–19. [Google Scholar]
- Thakur, B.R.; Singh, R.K.; Handa, A.K. Chemistry and uses of pectin—A review. Crit. Rev. Food Sci. Nutr. 1997, 37, 47–73. [Google Scholar] [CrossRef]
- May, C.D. Industrial pectins: Sources, production and applications. Carbohydr. Polym. 1990, 12, 79–99. [Google Scholar] [CrossRef]
- Güzel, M.; Akpınar, Ö. Valorisation of fruit by-products: Production characterization of pectins from fruit peels. Food Bioprod. Process. 2019, 115, 126–133. [Google Scholar] [CrossRef]
- Robledo, V.R.; Vázquez, L.I.C. Pectin—Extraction, Purification, Characterization and Applications; IntechOpen: London, UK, 2020; pp. 1–19. [Google Scholar] [CrossRef] [Green Version]
- Fishman, M.L.; Chau, H.K.; Hoagland, P.D.; Hotchkiss, A.T. Microwave-assisted extraction of lime pectin. Food Hydrocoll. 2006, 20, 1170–1177. [Google Scholar] [CrossRef]
- Adetunji, L.R.; Adekunle, A.; Orsat, V.; Raghavan, V. Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocoll. 2017, 62, 239–250. [Google Scholar] [CrossRef]
- Guolin, H.; Jeffrey, S.; Kai, Z.; Xiaolan, H. Application of ionic liquids in the microwave-assisted extraction of pectin from lemon peels. J. Anal. Methods Chem. 2012, 2012, 302059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, S.; Chen, F.; Wu, J.; Wang, Z.; Liao, X.; Hu, X. Optimization of pectin extraction assisted by microwave from apple pomace using response surface methodology. J. Food Eng. 2007, 78, 693–700. [Google Scholar] [CrossRef]
- Swamy, G.J.; Muthukumarappan, K. Optimization of continuous and intermittent microwave extraction of pectin from banana peels. Food Chem. 2017, 220, 108–114. [Google Scholar] [CrossRef] [PubMed]
- Hosseini, S.S.; Khodaiyan, F.; Yarmand, M.S. Optimization of microwave assisted extraction of pectin from sour orange peel and its physicochemical properties. Carbohydr. Polym. 2016, 140, 59–65. [Google Scholar] [CrossRef]
- Matharu, A.; Houghton, J.; Lucas-Torres, C.; Moreno, A. Acid-free microwave-assisted hydrothermal extraction of pectin and porous cellulose from mango peel waste—Towards a zero waste mango biorefinery. Green Chem. 2016, 18. [Google Scholar] [CrossRef] [Green Version]
- Sarıçoban, C.; Özalp, B.; Yılmaz, M.T.; Özen, G.; Karakaya, M.; Akbulut, M. Characteristics of meat emulsion systems as influenced by different levels of lemon albedo. Meat Sci. 2008, 80, 599–606. [Google Scholar] [CrossRef] [PubMed]
- León, K.; Mery, D.; Pedreschi, F.; León, J. Color measurement in L∗a∗b∗ units from RGB digital images. Food Res. Int. 2006, 39, 1084–1091. [Google Scholar] [CrossRef]
- Jha, S.N.; Chopra, S.; Kingsly, A.R.P. Modeling of color values for nondestructive evaluation of maturity of mango. J. Food Eng. 2007, 78, 22–26. [Google Scholar] [CrossRef]
- Malevski, Y.; Brito, L.; Peleg, M.; Silberg, M. External color as maturity index of mango. J. Food Sci. 2006, 42, 1316–1318. [Google Scholar] [CrossRef]
- Nambi, E.; Kulandasamy, T.; Jesudas, M. Scientific classification of ripening period and development of colourgrade chart for Indian mangoes (Mangifera indica L.) using multivariate cluster analysis. Sci. Hortic. 2015. [Google Scholar] [CrossRef]
- Liang, D.; Lin, F.; Yang, G.; Yue, X.; Zhang, Q.; Zhang, Z.; Chen, H. Advantages of immersion freezing for quality preservation of litchi fruit during frozen storage. LWT Food Sci. Technol. 2015, 60, 948–956. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, J.-H.; Ding, Y.; Nie, Y.; Xiao, H.-W.; Zhu, Z.; Tang, X.-M. Effects of state/phase transitions on the quality attributes of mango (Mangifera indica L.) during frozen storage. Int. J. Food Sci. Technol. 2017, 52, 239–246. [Google Scholar] [CrossRef]
- Ribeiro, S.; Queiroz, J.; Queiroz, M.; Campos, F.; Pinheiro-Sant’Ana, H. Antioxidant in mango (Mangifera indica L.) pulp. Plant Foods Hum. Nutr. 2007, 62, 13–17. [Google Scholar] [CrossRef]
- Ornelas-Paz, J.D.J.; Yahia, E.M.; Gardea, A.A. Changes in external and internal color during postharvest ripening of ‘Manila’ and ‘Ataulfo’ mango fruit and relationship with carotenoid content determined by liquid chromatography–APcI+-time-of-flight mass spectrometry. Postharvest Biol. Technol. 2008, 50, 145–152. [Google Scholar] [CrossRef]
- Medlicott, A.; Sigrist, J.; Reynolds, S.; Thompson, A. Effect of ethylene and acetylene on mango fruit ripening. Ann. Appl. Biol. 2008, 111, 439–444. [Google Scholar] [CrossRef]
- Su, L.; Diretto, G.; Purgatto, E.; Danoun, S.; Zouine, M.; Li, Z.; Roustan, J.-P.; Bouzayen, M.; Giuliano, G.; Chervin, C. Carotenoid accumulation during tomato fruit ripening is modulated by the auxin-ethylene balance. BMC Plant Biol. 2015, 15, 114. [Google Scholar] [CrossRef] [PubMed]
- Gorial, B.Y.; O’Callaghan, J.R. Aerodynamic properties of grain/straw materials. J. Agric. Eng. Res. 1990, 46, 275–290. [Google Scholar] [CrossRef]
- Sunmonu, M.O.; Iyanda, M.O.; Odewole, M.; Ajala, O.; Aduba, J. Determination of physical properties of almond seed related to the design of food processing machines. Niger. J. Pure Appl. Sci. 2016, 29, 2730–2740. [Google Scholar]
- Osadare, T.; Koyenikan, O.; Akinola, F. Physical and mechanical properties of three varieties of mango. Asian Food Sci. J. 2019, 1–8. [Google Scholar] [CrossRef]
- Spreer, W.; Müller, J. Estimating the mass of mango fruit (Mangifera indica, cv. ChokAnan) from its geometric dimensions by optical measurement. Comput. Electron. Agric. 2011, 75, 125–131. [Google Scholar] [CrossRef]
- Navaphattra, N.; Suesut, T. Measuring geometric mean diameter of fruits and vegetables using light sectioning method. Songklanakarin J. Sci. Technol. 2010, 31, 629–633. [Google Scholar]
- Nordey, T.; Mathieu, L.; Saudreau, M.; Joas, J.; Genard, M. Model-assisted analysis of spatial and temporal variations in fruit temperature and transpiration highlighting the role of fruit development. PLoS ONE 2014, 9, e92532. [Google Scholar] [CrossRef] [Green Version]
- Athmaselvi, K.; Jenney, P.; Pavithra, C.; Roy, I. Physical and biochemical properties of selected tropical fruits. Int. Agrophys. 2014, 28. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.D.H.; Nguyen, H.V.H.; Savage, G.P. Properties of pectin extracted from Vietnamese mango peels. Foods 2019, 8, 629. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sista Kameshwar, A.; Qin, W. Structural and functional properties of pectin and lignin–carbohydrate complexes de-esterases: A review. Bioresour. Bioprocess. 2018, 5. [Google Scholar] [CrossRef]
- Voragen, A.; Coenen, G.-J.; Verhoef, R.; Schols, H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef] [Green Version]
- Abdualrahm, M. Physico-chemical characteristics of different types of mango (Mangifera indica L.) fruits grown in drafur regions and its use in jam processing. Sci. Int. 2013, 1, 144–147. [Google Scholar] [CrossRef]
- Anila, R.; Radha, T. Physico-chemical analysis of mango varieties under Kerala conditions. J. Trop. Agric. 2006, 41, 20–22. [Google Scholar]
- Rodriguez, C.; Durán Zuazo, V.; Fernández, J.; Tarifa, D. Physico-chemical quality parameters of mango (Mangifera indica L.) fruits grown in a mediterranean subtropical climate (SE Spain). J. Agric. Sci. Technol. 2012, 14, 365–374. [Google Scholar]
- Tesfaye, T. Valorisation of mango fruit by-products: Physicochemical characterisation and future prospect. Chem. Process Eng. Res. 2017, 50, 22–34. [Google Scholar]
- Jiang, Y.; Du, Y.; Zhu, X.; Xiong, H.; Woo, M.W.; Hu, J. Physicochemical and comparative properties of pectins extracted from Akebia trifoliata var. australis peel. Carbohydr. Polym. 2012, 87, 1663–1669. [Google Scholar] [CrossRef]
- Khaskheli, M.I.; Memon, S.Q.; Siyal, A.N.; Khuhawar, M.Y. Use of orange peel waste for arsenic remediation of drinking water. Waste Biomass Valoriz. 2011, 2, 423. [Google Scholar] [CrossRef]
- Posé, S.; Kirby, A.; Mercado, J.; Morris, V.; Quesada, M. Structural characterization of cell wall pectin fractions in ripe strawberry fruits using AFM. Carbohydr. Polym. 2012, 88, 882–890. [Google Scholar] [CrossRef]
- Abid, M.; Cheikhrouhou, S.; Renard, C.; Sylvie, B.; Cuvelier, G.; Attia, H.; Ayadi, M. Characterization of pectins extracted from pomegranate peel and their gelling properties. Food Chem. 2016, 215. [Google Scholar] [CrossRef]
- Černá, M.; Barros, A.S.; Nunes, A.; Rocha, S.l.M.; Delgadillo, I.; Čopı́ková, J.; Coimbra, M.A. Use of FT-IR spectroscopy as a tool for the analysis of polysaccharide food additives. Carbohydr. Polym. 2003, 51, 383–389. [Google Scholar] [CrossRef]
- Rodsamran, P.; Sothornvit, R. Microwave heating extraction of pectin from lime peel: Characterization and properties compared with the conventional heating method. Food Chem. 2019, 278, 364–372. [Google Scholar] [CrossRef]
- Devi, S.; Nand, K. Microbiological pretreatment of mango peel for biogas production. J. Microb. Biotechnol. 1989, 4, 110–115. [Google Scholar]
- O’Brien, T.P.; Feder, N.; McCully, M.E. Polychromatic staining of plant cell walls by toluidine blue O. Protoplasma 1964, 59, 368–373. [Google Scholar] [CrossRef]
- Mori, B.; Bellani, L.M. Differential staining for cellulosic and modified plant cell walls. Biotech. Histochem. 1996, 71, 71–72. [Google Scholar] [CrossRef]
- Amnuaysin, N.; Seraypheap, K.; Kidyoo, M. Anatomical changes in peel structure of ‘Hom Thong’ banana during fruit development and ripening. Trop. Nat. Hist. 2012, 12, 127–136. [Google Scholar]
- Harker, F.R.; Redgwell, R.J.; Hallett, I.C.; Murray, S.H.; Carter, G. Texture of fresh fruit. Hortic. Rev. 1997, 20, 121–224. [Google Scholar]
- Ratule, M.; Osman, A.; Saari, N.; Ahmad, H.S. Microstructure of peel cell wall and selected physico-chemical characteristics of ‘Berangan’ banana (Musa cv. Berangan (AAA)) ripened at high temperature. Asia Pac. J. Mol. Biol. Biotechnol. 2007, 15, 8–13. [Google Scholar]
- Brummell, D.; Harpster, M. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants. Plant Mol. Biol. 2001, 47, 311–340. [Google Scholar] [CrossRef]
- Goulao, L.F.; Oliveira, C.M. Cell wall modifications during fruit ripening: When a fruit is not the fruit. Trends Food Sci. Technol. 2008, 19, 4–25. [Google Scholar] [CrossRef] [Green Version]
- Mercado, J.; Pliego-Alfaro, F.; Quesada, M. Fruit shelf life and potential for its genetic improvement. In Breeding for Fruit Quality; John Wiley & Sons: Hoboken, NJ, USA, 2011; pp. 81–104. [Google Scholar]
- Lohani, S.; Trivedi, P.K.; Nath, P. Changes in activities of cell wall hydrolases during ethylene-induced ripening in banana: Effect of 1-MCP, ABA and IAA. Postharvest Biol. Technol. 2004, 31, 119–126. [Google Scholar] [CrossRef]
- Paniagua, C.; Posé, S.; Morris, V.J.; Kirby, A.R.; Quesada, M.A.; Mercado, J.A. Fruit softening and pectin disassembly: An overview of nanostructural pectin modifications assessed by atomic force microscopy. Ann. Bot. 2014, 114, 1375–1383. [Google Scholar] [CrossRef] [Green Version]
- Wakabayashi, K.; Chun, J.-P.; Huber, D.J. Extensive solubilization and depolymerization of cell wall polysaccharides during avocado (Perseaamericana) ripening involves concerted action of polygalacturonase and pectinmethylesterase. Physiol. Plant. 2000, 108, 345–352. [Google Scholar] [CrossRef]
- Brummell, D.A. Cell wall disassembly in ripening fruit. Funct. Plant Biol. 2006, 33, 103–119. [Google Scholar] [CrossRef]
- Offem, J.O.; Thomas, O.O. Chemical changes in relation to mode and degree of maturation of plantain (Musa paradisiaca) and banana (Musa sapientum) fruits. Food Res. Int. 1993, 26, 187–193. [Google Scholar] [CrossRef]
- John, K.S.; Bhat, S.G.; Prasada Rao, U.J. Biochemical characterization of sap (latex) of a few Indian mango varieties. Phytochemistry 2003, 62, 13–19. [Google Scholar] [CrossRef]
- Tokas, J.; Punia, H.; Baloda, S.; Sheokand, R.N. Mango peel: A potential source of bioactive compounds. Austin Food Sci. 2020, 5, 1–7. [Google Scholar]
- Bello-Pérez, L.A.; Garcia-Suarez, F.; Agama-Acevedo, E. Mango Carbohydrates. Food 2009, 1, 36–40. [Google Scholar]
- Saleem Dar, M.; Oak, P.; Chidley, H.; Deshpande, A.; Giri, A.; Gupta, V. Chapter 19—Nutrient and flavor content of mango (Mangifera indica L.) cultivars: An appurtenance to the list of staple foods. In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 445–467. [Google Scholar]
- Prasanna, V.; Prabha, T.N.; Tharanathan, R.N. Pectic polysaccharides of mango (Mangifera indica L): Structural studies. J. Sci. Food Agric. 2004, 84, 1731–1735. [Google Scholar] [CrossRef]
- Sánchez-Camargo, A.D.P.; Gutiérrez, L.-F.; Vargas, S.M.; Martinez-Correa, H.A.; Parada-Alfonso, F.; Narváez-Cuenca, C.-E. Valorisation of mango peel: Proximate composition, supercritical fluid extraction of carotenoids, and application as an antioxidant additive for an edible oil. J. Supercrit. Fluids 2019, 152, 104574. [Google Scholar] [CrossRef]
- Redgwell, R.J.; Melton, L.D.; Brasch, D.J. Cell wall dissolution in ripening kiwifruit (Actinidia deliciosa): Solubilization of the pectic polymers. Plant Physiol. 1992, 98, 71–81. [Google Scholar] [CrossRef] [Green Version]
- Carrington, C.M.S.; Greve, L.C.; Labavitch, J.M. Cell wall metabolism in ripening fruit (vi. effect of the antisense polygalacturonase gene on cell wall changes accompanying ripening in transgenic tomatoes). Plant Physiol. 1993, 103, 429–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cheng, G.W.; Huber, D.J. Alterations in structural polysaccharides during liquefaction of tomato locule tissue. Plant Physiol. 1996, 111, 447–457. [Google Scholar] [CrossRef] [Green Version]
- Rose, J.K.; Hadfield, K.A.; Labavitch, J.M.; Bennett, A.B. Temporal sequence of cell wall disassembly in rapidly ripening melon fruit. Plant Physiol. 1998, 117, 345–361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muda, P.; Seymour, G.B.; Errington, N.; Tucker, G.A. Compositional changes in cell wall polymers during mango fruit ripening. Carbohydr. Polym. 1995, 26, 255–260. [Google Scholar] [CrossRef]
- Roe, B.; Bruemmer, J.H. Changes in pectic substances and enzymes during ripening and storage of “Keitt” mangos. J. Food Sci. 1981, 46, 186–189. [Google Scholar] [CrossRef]
- Maldonado-Celis, M.E.; Yahia, E.M.; Bedoya, R.; Landázuri, P.; Loango, N.; Aguillón, J.; Restrepo, B.; Guerrero Ospina, J.C. Chemical composition of mango (Mangifera indica L.) fruit: Nutritional and phytochemical compounds. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef]
- Romelle, F.D.; Rani, A.; Manohar, R.S. Chemical composition of some selected fruit peels. Eur. J. Food Sci. Technol. 2016, 4, 12–21. [Google Scholar]
- Giraldo, L.M.; Correa, H.M.; Gutiérrez, J.B.; Castano, C.C. Aprovechamiento del residuo agroindustrial del mango común (Mangifera indica L.) en la obtención de azúcares fermentables. Ingeniería Ciencia 2007, 3, 41–62. [Google Scholar]
- Bandyopadhyay, C.; Gholap, A.S. Changes in fatty acids in ripening mango pulp (var Alphonso). J. Agric. Food Chem. 1973, 21, 496–497. [Google Scholar] [CrossRef]
- Khan, D.N.; Ruqia, B.; Hussain, J.; Jamila, D.N.; Rehman, N.; Hussain, S. Nutritional assessment and proximate analysis of selected vegetables from parachinar kurram agency. Am. J. Res. Commun. 2013, 1, 184–198. [Google Scholar]
- Van Dyk, J.S.; Pletschke, B.I. A review of lignocellulose bioconversion using enzymatic hydrolysis and synergistic cooperation between enzymes—Factors affecting enzymes, conversion and synergy. Biotechnol. Adv. 2012, 30, 1458–1480. [Google Scholar] [CrossRef]
- Kumar, C.S.C.; Mythily, R.; Chandraju, S. Utilization of mango peels (Mangifera indica) for the extraction of sugars. Der Pharma Chem. 2012, 4, 2422–2426. [Google Scholar]
- Taylor, K.A.C.C. A colorimetric method for the quantitation of galacturonic acid. Appl. Biochem. Biotechnol. 1993, 43, 51–54. [Google Scholar] [CrossRef]
- Wathoni, N.; Shan, C.Y.; Shan, W.Y.; Rostinawati, T.; Indradi, R.B.; Pratiwi, R.; Muchtaridi, M. Characterization and antioxidant activity of pectin from Indonesian mangosteen (Garcinia mangostana L.) rind. Heliyon 2019, 5, e02299. [Google Scholar] [CrossRef]
- Azad, M.A.K.; Ali, M.; Akter, M.; Rahman, M.J.; Ahmed, M. Isolation and characterization of pectin extracted from lemon pomace during ripening. J. Food Nutr. Sci. 2014, 2, 30–35. [Google Scholar] [CrossRef]
- Selvaraj, Y.; Kumar, R. Studies on fruit softening enzymes and polyphenol oxidase activity in ripening mango (Mangifera indica L.) fruit. J. Food Sci. Technol. 1989, 26, 218–222. [Google Scholar]
- Shaha, R.K.; Nayagi, Y.; Punichelvana, A.; Afandi, A. Optimized extraction condition and characterization of pectin from kaffir lime (Citrus hystrix). Res. J. Agric. For. Sci. 2013, 1, 1–11. [Google Scholar]
- Israel, K.A.; Baguio, S.F.; Diasanta, M.D.B.; Lizardo, R.C.; Dizon, E.; Mejico, M.I.F. Extraction and characterization of pectin from Saba banana [Musa ‘saba’ (Musa acuminata × Musa balbisiana)] peel wastes: A preliminary study. Int. Food Res. J. 2015, 22, 202–207. [Google Scholar]
- Constenla, D.; Lozano, J. Kinetic model of pectin demethylation. Lat. Am. Appl. Res. 2003, 33, 91–95. [Google Scholar]
- Rouse, A.H.; Atkins, C.D.; Moore, E.L. The occurrence and evaluation of pectin in component parts of valencia oranges during maturation. Proc. Fla. State Hortic. Soc. 2007, 75, 307–311. [Google Scholar]
- Mesbahi, G.; Jamalian, J.; Farahnaky, A. A comparative study on functional properties of beet and citrus pectins in food systems. Food Hydrocoll. 2005, 19, 731–738. [Google Scholar] [CrossRef]
- Tandee, K.; Kittiwachana, S.; Mahatheeranont, S. Antioxidant activities and volatile compounds in longan (Dimocarpus longan Lour.) wine produced by incorporating longan seeds. Food Chem. 2021, 348, 128921. [Google Scholar] [CrossRef] [PubMed]
- Mamiro, P.; Fweja, L.; Chove, B.; Kinabo, J.; George, V.; Mtebe, K. Physical and chemical characteristics of off vine ripened mango (Mangifera indica L.) fruit (Dodo). Afr. J. Biotechnol. 2007, 6. [Google Scholar] [CrossRef]
- Appiah, F.; Patrick, K.; Idun, I. Effect of ripening stage on composition, sensory qualities and acceptability of keitt mango (Mangifera indica L.) chips. Afr. J. Food Agric. Nutr. Dev. 2011, 11, 5096–5109. [Google Scholar] [CrossRef] [Green Version]
- Othman, O.; Mbogo, G. Physico-chemical characteristics of storage-ripened mango (Mangifera indica L.) fruits varieties of Eastern Tanzania. Tanzan. J. Sci. 2009, 35, 57–66. [Google Scholar]
- Tscheuschner, H.-D.N.N. Mohsenin: Physical properties of plant and animal materials: Structure, physical characteristics and mechanical properties. 2. Aufl. 891 Seiten, zahlr. Abb. und Table Gordon and Breach Science Publishers, New York u. a. 1986. Preis: 140—£. Food Nahrung 1987, 31, 702. [Google Scholar] [CrossRef]
- Razavi, S.; Bahram-Parvar, M. Some physical and mechanical properties of kiwifruit. Int. J. Food Eng. 2007, 3, 1–16. [Google Scholar] [CrossRef]
- Tabar, F.J.; Lorestani, A.N.; Gholami, R.; Behzadi, A.; Fereidoni, M. Physical and mechanical properties of Oak (Quercus Persica) fruits. Agric. Eng. Int. CIGR J. 2012, 13, 1–4. [Google Scholar]
- Pandit, S.G.; Vijayanand, P.; Kulkarni, S.G. Pectic principles of mango peel from mango processing waste as influenced by microwave energy. LWT Food Sci. Technol. 2015, 64, 1010–1014. [Google Scholar] [CrossRef]
- Bagherian, H.; Zokaee Ashtiani, F.; Fouladitajar, A.; Mohtashamy, M. Comparisons between conventional, microwave- and ultrasound-assisted methods for extraction of pectin from grapefruit. Chem. Eng. Process. Process Intensif. 2011, 50, 1237–1243. [Google Scholar] [CrossRef]
- Maran, J.P.; Swathi, K.; Jeevitha, P.; Jayalakshmi, J.; Ashvini, G. Microwave-assisted extraction of pectic polysaccharide from waste mango peel. Carbohydr. Polym. 2015, 123, 67–71. [Google Scholar] [CrossRef] [PubMed]
- Rongkaumpan, G.; Amsbury, S.; Andablo-Reyes, E.; Linford, H.; Connell, S.; Knox, J.P.; Sarkar, A.; Benitez-Alfonso, Y.; Orfila, C. Cell wall polymer composition and spatial distribution in ripe banana and mango fruit: Implications for cell adhesion and texture perception. Front. Plant Sci. 2019, 10. [Google Scholar] [CrossRef]
- Horwitz, W. Official Methods of Analysis of AOAC International; AOAC International: Gaithersburg, MD, USA, 2000. [Google Scholar]
- Kumar, C.S.C.; Mythily, R.; Chandraju, S. A rapid and sensitive extraction of sugars from papaya peels (Carica Papaya). Der Pharma Chem. 2012, 4, 1631–1636. [Google Scholar]
- Guandalini, B.B.V.; Rodrigues, N.P.; Marczak, L.D.F. Sequential extraction of phenolics and pectin from mango peel assisted by ultrasound. Food Res. Int. 2019, 119, 455–461. [Google Scholar] [CrossRef]
- Pinheiro, E.S.R.; Silva, I.M.D.A.; Gonzaga, L.V.; Amante, E.R.; Teófilo, R.F.; Ferreira, M.M.C.; Amboni, R.D.M.C. Optimization of extraction of high-ester pectin from passion fruit peel (Passiflora edulis flavicarpa) with citric acid by using response surface methodology. Bioresour. Technol. 2008, 99, 5561–5566. [Google Scholar] [CrossRef]
- Funsueb, S.; Krongchai, C.; Mahatheeranont, S.; Kittiwachana, S. Prediction of 2-acetyl-1-pyrroline content in grains of Thai Jasmine rice based on planting condition, plant growth and yield component data using chemometrics. Chemom. Intell. Lab. Syst. 2016, 156, 203–210. [Google Scholar] [CrossRef]
Parameters | Mahachanok | Chok Anan | Nam Dok Mai | Kaew |
---|---|---|---|---|
L* | 68.83 ± 2.02 b | 69.98 ± 2.72 b | 72.26 ± 1.85 a | 67.68 ± 3.07 b |
a* | 3.28 ± 2.68 b | 5.55 ± 0.73 a | 6.74 ± 0.86 a | 3.41 ± 2.69 b |
b* | 40.66 ± 2.86 a b | 43.09 ± 6.68 a | 36.63 ± 1.48 b | 39.70 ± 4.49 a b |
Dg (cm) | 85.50 ± 4.10 a | 80.57 ± 2.86 b | 84.61 ± 3.93 a | 78.66 ± 3.80 b |
Da (cm) | 96.30 ± 5.96 a | 83.33 ± 2.94 c | 90.95 ± 4.11 b | 81.76 ± 3.85 c |
Ra (%) | 40.79 ± 2.06 d | 66.98 ± 3.05 a | 50.44 ± 3.10 c | 63.32 ± 6.27 b |
Φ(%) | 258.13 ± 19.16 b | 297.95 ± 16.29 a | 279.41 ± 22.26 a | 280.02 ± 21.38 a |
S (cm2) | 213.31 ± 19.29 a | 188.70 ± 13.40 c | 208.09 ± 19.61 a | 180.13 ± 16.78 c |
Peel-to-fruit ratio (%) | 16.64 ± 0.67 a | 14.39 ± 0.57 c | 14.42 ± 1.41 c | 15.60 ± 0.66 b |
Flesh weight (%) | 66.69 ± 2.79 c | 67.32 ± 2.63 c | 73.15 ± 3.75 a | 70.32 ± 1.88 b |
Peel weight (%) | 16.64 ± 0.67 a | 14.39 ± 0.57 c | 14.42 ± 1.41 c | 15.60 ± 0.66 b |
Seed weight (%) | 16.66 ± 2.63 a | 18.29 ± 2.37 a | 12.43 ± 2.71 b | 14.08 ± 2.02 b |
Total waste (%) | 33.31 ± 2.79 a | 32.68 ± 2.63 a | 26.85 ± 3.75 c | 29.68 ± 1.88 b |
Anatomical Components | Mango Varieties | |||
---|---|---|---|---|
Mahachanok | Chok Anan | Nam Dok Mai | Kaew | |
1. Epidermis thickness | +++ | ++++ | ++ | ++ |
2. Cell density (0.01 mm2) | ++++ | ++ | +++ | + |
3. Number of intercellular space | ++++ | +++ | ++ | ++ |
4. Size of intercellular space | + | ++++ | +++ | ++ |
5. Cell compartment size (μm) | 200–400 | 400–500 | 300–400 | 400–500 |
Mango Varieties | Proximate Composition (% w/w) | Sugar Types (% w/w) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Moisture in Fresh | Carbohydrate 1,2,3 | Crude Protein 1,2 | Crude Fat 1,2 | Crude Fiber 1,2 | Ash 1,2 | Fructose 1,2 | Xylose 1,2 | Glucose | Sucrose | |
Mahachanok | 66.51 ± 0.06 b | 10.53 ± 0.45 b | 7.50 ± 0.01 b | 2.48 ± 0.02 a | 12.44 ± 0.59 b | 0.54 ± 0.03 a | 31.23 ± 0.02 a | 29.88 ± 0.02 b | n/d | n/d |
Chok anan | 68.88 ± 0.33 a | 11.23 ± 0.43 a b | 7.18 ± 0.02 c | 1.51 ± 0.02 d | 10.92 ± 0.37 c | 0.27 ± 0.01 b | 31.57 ± 0.03 a | 29.44 ± 0.06 b | n/d | n/d |
Nam dok mai | 59.50 ± 0.06 d | 11.45 ± 0.28 a | 7.03 ± 0.41 d | 1.86 ± 0.02 b | 19.90 ± 0.28 a | 0.25 ± 0.04 b | 31.41 ± 0.07 a | 30.03 ± 0.03 a | n/d | n/d |
Kaew | 60.54 ± 0.44 c | 8.93 ± 0.43 c | 8.06 ± 0.04 a | 1.68 ± 0.03 c | 20.53 ± 0.10 a | 0.24 ± 0.03 b | 31.35 ± 0.03 a | 29.73 ± 0.05 b | n/d | n/d |
Mango Varieties | Pectin Yield (%) | Eq.W (mg/mol) | Mox (%) | DE (%) |
---|---|---|---|---|
Mahachanok | 13.67 ± 0.08 b | 1423.81 ± 41.24 a | 23.95 ± 16.55 a b | 89.85 ± 3.08 a |
Chok anan | 15.07 ± 0.29 a | 1037.30 ± 4.96 b | 3.99 ± 0.02 b | 56.88 ± 0.78 c |
Nam dok mai | 12.76 ± 0.71 b | 605.26 ± 9.12 c | 13.90 ± 2.57 b | 68.91 ± 6.38 b |
Kaew | 7.65 ± 0.84 c | 1041.67 ± 38.19 b | 41.00 ± 14.74 a | 92.93 ± 1.76 a |
Properties | Pectin Qualities | R2 | Q2 | RMSEC | RMSECV |
---|---|---|---|---|---|
Physiological properties | Eq.W | 0.9782 | 0.4171 | 42.93 | 160.81 |
Mox | 0.6882 | −0.2376 | 9.17 | 18.15 | |
DE | 0.7682 | −0.3614 | 7.32 | 22.57 | |
%Pectin | 0.7823 | −0.1145 | 1.33 | 3.08 | |
Proximate compositions of peel | Eq.W | 0.9841 | 0.5867 | 36.7 | 74.01 |
Mox | 0.9148 | 0.418 | 4.8 | 14.73 | |
DE | 0.9617 | −0.5432 | 2.98 | 4.18 | |
%Pectin | 0.9849 | 0.7695 | 0.35 | 1.04 | |
Physiological and proximate compositions of peel | Eq.W | 0.9958 | 0.5534 | 18.84 | 116.28 |
Mox | 0.7456 | −0.2376 | 8.29 | 18.26 | |
DE | 0.9839 | 0.8323 | 1.93 | 5.26 | |
%Pectin | 0.9826 | 0.4262 | 0.37 | 1.24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wongkaew, M.; Kittiwachana, S.; Phuangsaijai, N.; Tinpovong, B.; Tiyayon, C.; Pusadee, T.; Chuttong, B.; Sringarm, K.; Bhat, F.M.; Sommano, S.R.; et al. Fruit Characteristics, Peel Nutritional Compositions, and Their Relationships with Mango Peel Pectin Quality. Plants 2021, 10, 1148. https://doi.org/10.3390/plants10061148
Wongkaew M, Kittiwachana S, Phuangsaijai N, Tinpovong B, Tiyayon C, Pusadee T, Chuttong B, Sringarm K, Bhat FM, Sommano SR, et al. Fruit Characteristics, Peel Nutritional Compositions, and Their Relationships with Mango Peel Pectin Quality. Plants. 2021; 10(6):1148. https://doi.org/10.3390/plants10061148
Chicago/Turabian StyleWongkaew, Malaiporn, Sila Kittiwachana, Nutthatida Phuangsaijai, Bow Tinpovong, Chantalak Tiyayon, Tonapha Pusadee, Bajaree Chuttong, Korawan Sringarm, Farhan M. Bhat, Sarana Rose Sommano, and et al. 2021. "Fruit Characteristics, Peel Nutritional Compositions, and Their Relationships with Mango Peel Pectin Quality" Plants 10, no. 6: 1148. https://doi.org/10.3390/plants10061148
APA StyleWongkaew, M., Kittiwachana, S., Phuangsaijai, N., Tinpovong, B., Tiyayon, C., Pusadee, T., Chuttong, B., Sringarm, K., Bhat, F. M., Sommano, S. R., & Cheewangkoon, R. (2021). Fruit Characteristics, Peel Nutritional Compositions, and Their Relationships with Mango Peel Pectin Quality. Plants, 10(6), 1148. https://doi.org/10.3390/plants10061148