Perennial Rye: Genetics of Perenniality and Limited Fertility
Abstract
:1. Introduction
2. Results
2.1. Phenotype
2.2. Marker Studies
2.3. Mapping
3. Discussion
3.1. Multivalents
3.2. Fertility
3.3. Perenniality
3.4. Species Synteny
3.5. Breeding Perspectives
4. Materials and Methods
4.1. Breeding Material
4.2. Field Trials
4.3. Marker Analysis and Linkage Map Construction
4.4. Phenotypic Analysis and Mapping Procedure
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. FAOSTAT. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 13 January 2021).
- Frederiksen, S.; Petersen, G. A Taxonomic Revision of Secale (Triticeae, Poaceae). Nord. J. Bot. 1998, 18, 399–420. [Google Scholar] [CrossRef]
- Füle, L.; Galli, Z.; Kotvics, G.; Heszky, L. Forage Quality of ‘Perenne’, a New Perennial Rye Variety (Secale cereale x Secale montanum). In Genetic Variation for Plant Breeding, Proceedings of the 17th EUCARPIA Congress, Tulln, Austria, 8–11 September 2004; BOKU—University of Natural Resources and Applied Life Sciences: Vienna, Austria; Tulln, Austria, 2004; pp. 435–438. [Google Scholar]
- Acharya, S.N.; Mir, Z.; Moyer, J.R. ACE-1 Perennial Cereal Rye. Can. J. Plant Sci. 2004, 84, 819–821. [Google Scholar] [CrossRef]
- Halász, E.; Sipos, T. Perennial Rye (Secale cereanum) Breeding in Hungary, at University of Debrecen. An. Univ. din Oradea Fasc. Protecţia Mediu. 2007, 12, 57–62. [Google Scholar]
- Oram, R.N. Secale montanum—A Wider Role in Australasia? N. Z. J. Agric. Res. 1996, 39, 629–633. [Google Scholar] [CrossRef]
- Reimann-Philipp, R. Perennial Spring Rye as a Crop Alternative. J. Agron. Crop Sci. 1986, 157, 281–285. [Google Scholar] [CrossRef]
- Reimann-Philipp, R. Breeding Perennial Rye. Plant Breed. Rev. 1995, 13, 265–292. [Google Scholar]
- Kotvics, G. Investigation on increasing the protein content of Secale cereale L. In Protein Growth by Plant Breeding; Akadémiai Kiadó: Budapest, Hungary, 1970; pp. 89–98. [Google Scholar]
- Andersen, M.R.; Depuit, E.J.; Abernethy, R.H.; Kleinman, L.H. Value Mountain Rye for Suppression of Annual Bromegrasses on Semiarid Mined Lands. J. Range Manag. 1992, 45, 345–351. [Google Scholar] [CrossRef]
- Tang, Z.X.; Ross, K.; Ren, Z.L.; Yang, Z.J.; Zhang, H.Y.; Chikmawati, T.; Gustafson, M.; Secale, J.P. Wild Crop Relatives: Genomic and Breeding Resources: Cereals; Kole, C., Ed.; Springer: Berlin/Heidelberg, Germany, 2011; pp. 367–396. ISBN 978-3-642-14228-4. [Google Scholar]
- Schiemann, E.; Nürnberg-Krüger, U. Neue Untersuchungen an Secale africanum Stapf. Naturwissenschaften 1952, 39, 136–137. [Google Scholar] [CrossRef]
- Riley, R. The Cytogenetics of the Differences between Some Secale Species. J. Agric. Sci. 1955, 46, 377–383. [Google Scholar] [CrossRef]
- Khush, G.S.; Stebbins, G.L. Cytogenetic and Evolutionary Studies in Secale. I. Some New Data on the Ancestry of S. Cereale. Am. J. Bot. 1961, 48, 723–730. [Google Scholar] [CrossRef]
- Stutz, H.C. On the Origin of Cultivated Rye. Am. J. Bot. 1972, 59, 59–70. [Google Scholar] [CrossRef]
- Singh, R.J.; Röbbelen, G. Identification by Giemsa Technique of the Translocations Separating Cultivated Rye from Three Wild Species of Secale. Chromosoma 1977, 59, 217–225. [Google Scholar] [CrossRef]
- Singh, R.J. Cross Compatibility, Meiotic Pairing and Fertility in 5 Secale Species and Their Interspecific Hybrids. Cereal Res. Commun. 1977, 5, 67–75. [Google Scholar]
- Stutz, H.C. A Cytogenetic Analysis of the Hybrid Secale cereale L. × Secale montanum Guss. and Its Progeny. Genetics 1957, 42, 199–221. [Google Scholar] [CrossRef] [PubMed]
- Dierks, W.; Reimann-Philipp, R. Die Züchtung eines perennierenden Roggens als Möglichkeit zur Verbesserung der Roggenzuchtmethodik und zur Schaffung eines mehrfach nutzbaren Grünfutter- und Körnerroggens. Z. Pflanzenzucht 1966, 343–368. [Google Scholar]
- Ossent, H.P. Perennierender Kulturroggen. Der Züchter 1930, 2, 221–227. [Google Scholar] [CrossRef]
- Lundqvist, A. Self-Incompatibility in Rye I. Genetic Control in the Diploid. Hereditas 1956, 42, 293–348. [Google Scholar] [CrossRef]
- Wricke, G.; Wehling, P. Linkage between an Incompatibility Locus and a Peroxidase Isozyme Locus (Prx 7) in Rye. Theor. Appl. Genet. 1985, 71, 289–291. [Google Scholar] [CrossRef]
- Gertz, A.; Wricke, G. Linkage between the Incompatibility Locus Z and a β-Glucosidase Locus in Rye. Plant Breed. 1989, 102, 255–259. [Google Scholar] [CrossRef]
- Hackauf, B.; Wehling, P. Approaching the Self-Incompatibility Locus Z in Rye (Secale cereale L.) via Comparative Genetics. Theor. Appl. Genet. 2005, 110, 832–845. [Google Scholar] [CrossRef]
- Fuong, F.T.; Voylokov, A.V.; Smirnov, V.G. Genetic Studies of Self-Fertility in Rye (Secale cereale L.). 2. The Search for Isozyme Marker Genes Linked to Self-Incompatibility Loci. Theor. Appl. Genet. 1993, 87, 619–623. [Google Scholar] [CrossRef]
- Voylokov, A.V.; Korzun, V.; Börner, A. Mapping of Three Self-Fertility Mutations in Rye (Secale cereale L.) Using RFLP, Isozyme and Morphological Markers. Theor. Appl. Genet. 1998, 97, 147–153. [Google Scholar] [CrossRef]
- Voylokov, A.V.; Fuong, F.T.; Smirnov, V.G. Genetic Studies of Self-Fertility in Rye (Secale cereale L.). 1. The Identification of Genotypes of Self-Fertile Lines for the Sf Alleles of Self-Incompatibility Genes. Theor. Appl. Genet. 1993, 87, 616–618. [Google Scholar] [CrossRef] [PubMed]
- Do Canto, J.; Studer, B.; Lubberstedt, T. Overcoming Self-Incompatibility in Grasses: A Pathway to Hybrid Breeding. Theor. Appl. Genet. 2016, 129, 1815–1829. [Google Scholar] [CrossRef]
- Melz, G.; Kaczmarek, J.; Szigat, G. Genetical Analysis of Rye (Secale cereale L.). Location of Self-Fertility Genes in Different Inbred Lines. Genet. Pol. 1990, 31, 1–7. [Google Scholar]
- Paterson, A.H.; Schertz, K.F.; Lin, Y.R.; Liu, S.C.; Chang, Y.L. The Weediness of Wild Plants: Molecular Analysis of Genes Influencing Dispersal and Persistence of Johnsongrass, Sorghum halepense (L.) Pers. Proc. Natl. Acad. Sci. USA 1995, 92, 6127–6131. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.Y.; Tao, D.Y.; Sacks, E.; Fu, B.Y.; Xu, P.; Li, J.; Yang, Y.; McNally, K.; Khush, G.S.; Paterson, A.H.; et al. Convergent Evolution of Perenniality in Rice and Sorghum. Proc. Natl. Acad. Sci. USA 2003, 100, 4050–4054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westerbergh, A.; Doebley, J. Quantitative Trait Loci Controlling Phenotypes Related to the Perennial versus Annual Habit in Wild Relatives of Maize. Theor. Appl. Genet. 2004, 109, 1544–1553. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, F.; Xu, P.; Li, J.; Deng, X.; Zhou, J.; Li, F.; Chen, S.; Tao, D. QTL Analysis for Hybrid Sterility and Plant Height in Interspecific Populations Derived from a Wild Rice Relative, Oryza longistaminata. Breed. Sci. 2009, 59, 441–445. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Li, J.; Xu, P.; Zhou, J.; Hu, F.; Deng, X.; Deng, W.; Tao, D. A New Gene Controlling Hybrid Sterility between Oryza sativa and Oryza longistaminata. Euphytica 2012, 187, 339–344. [Google Scholar] [CrossRef]
- Yun, L.; Larson, S.R.; Mott, I.W.; Jensen, K.B.; Staub, J.E. Genetic Control of Rhizomes and Genomic Localization of a Major-Effect Growth Habit QTL in Perennial Wildrye. Mol. Genet. Genom. 2014, 289, 383–397. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, K.; Rao, J.; Cai, Z.; Tao, L.-Z.; Fan, Y.; Yang, J. Interactions among Multiple Quantitative Trait Loci Underlie Rhizome Development of Perennial Rice. Front. Plant Sci. 2020, 11, 1757. [Google Scholar] [CrossRef]
- Jang, C.S.; Kamps, T.L.; Skinner, D.N.; Schulze, S.R.; Vencill, W.K.; Paterson, A.H. Functional Classification, Genomic Organization, Putatively Cis-Acting Regulatory Elements, and Relationship to Quantitative Trait Loci of Sorghum Genes with Rhizome-Enriched Expression. Plant Physiol. 2006, 142, 1148–1159. [Google Scholar] [CrossRef] [Green Version]
- Hu, F.; Wang, D.; Zhao, X.; Zhang, T.; Sun, H.; Zhu, L.; Zhang, F.; Li, L.; Li, Q.; Tao, D.; et al. Identification of Rhizome-Specific Genes by Genome-Wide Differential Expression Analysis in Oryza longistaminata. BMC Plant Biol. 2011, 11, 1–14. [Google Scholar] [CrossRef] [Green Version]
- He, R.; Salvato, F.; Park, J.-J.; Kim, M.-J.; Nelson, W.; Balbuena, T.S.; Willer, M.; Crow, J.A.; May, G.D.; Soderlund, C.A.; et al. A Systems-Wide Comparison of Red Rice (Oryza longistaminata) Tissues Identifies Rhizome Specific Genes and Proteins That Are Targets for Cultivated Rice Improvement. BMC Plant Biol. 2014, 14, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhang, S.; Liu, H.; Fu, B.; Li, L.; Xie, M.; Song, Y.; Li, X.; Cai, J.; Wan, W.; et al. Genome and Comparative Transcriptomics of African Wild Rice Oryza longistaminata Provide Insights into Molecular Mechanism of Rhizomatousness and Self-Incompatibility. Mol. Plant 2015, 8, 1683–1686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, E.; Schmutzer, T.; Barilar, I.; Mascher, M.; Gundlach, H.; Martis, M.M.; Twardziok, S.O.; Hackauf, B.; Gordillo, A.; Wilde, P. Towards a Whole-genome Sequence for Rye (Secale cereale L.). Plant J. 2017, 89, 853–869. [Google Scholar] [CrossRef] [Green Version]
- Bolibok-Brągoszewska, H.; Targońska, M.; Bolibok, L.; Kilian, A.; Rakoczy-Trojanowska, M. Genome-Wide Characterization of Genetic Diversity and Population Structure in Secale. BMC Plant Biol. 2014, 14, 1–15. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, X.; Starmer, J.; Martin, E.R. A Multiple Testing Correction Method for Genetic Association Studies Using Correlated Single Nucleotide Polymorphisms. Genet. Epidemiol. 2008, 32, 361–369. [Google Scholar] [CrossRef]
- Zhang, T.; Zhao, X.; Huang, L.; Liu, X.; Zong, Y.; Zhu, L.; Yang, D.; Fu, B. Tissue-Specific Transcriptomic Profiling of Sorghum propinquum Using a Rice Genome Array. PLoS ONE 2013, 8, e60202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kong, W.; Kim, C.; Goff, V.H.; Zhang, D.; Paterson, A.H. Genetic Analysis of Rhizomatousness and Its Relationship with Vegetative Branching of Recombinant Inbred Lines of Sorghum bicolor × S. propinquum. Am. J. Bot. 2015, 102, 718–724. [Google Scholar] [CrossRef] [Green Version]
- Martis, M.M.; Zhou, R.; Haseneyer, G.; Schmutzer, T.; Vrána, J.; Kubaláková, M.; König, S.; Kugler, K.G.; Scholz, U.; Hackauf, B. Reticulate Evolution of the Rye Genome. Plant Cell 2013, 25, 3685–3698. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wang, L.; Yang, J.; He, H.; Jin, H.; Li, X.; Ren, T.; Ren, Z.; Li, F.; Han, X.; et al. A High-Quality Genome Assembly Highlights Rye Genomic Characteristics and Agronomically Important Genes. Nat. Genet. 2021. [Google Scholar] [CrossRef]
- Rabanus-Wallace, M.T.; Hackauf, B.; Mascher, M.; Lux, T.; Wicker, T.; Gundlach, H.; Baez, M.; Houben, A.; Mayer, K.F.X.; Guo, L.; et al. Chromosome-Scale Genome Assembly Provides Insights into Rye Biology, Evolution and Agronomic Potential. Nat. Genet. 2021. [Google Scholar] [CrossRef]
- Reuscher, S.; Furuta, T.; Bessho-Uehara, K.; Cosi, M.; Jena, K.K.; Toyoda, A.; Fujiyama, A.; Kurata, N.; Ashikari, M. Assembling the Genome of the African Wild Rice Oryza longistaminata by Exploiting Synteny in Closely Related Oryza Species. Commun. Biol. 2018, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- von Bothmer, R.; Flink, J.; Jakobsen, N.; Kotimäki, M.; Landström, T. Interspecific Hybridization with Cultivated Barley (Hordeum vulgare L.). Hereditas 1983, 99, 219–244. [Google Scholar] [CrossRef]
- Jones, T.A.; Zhang, X.-Y.; Wang, R.R.-C. Genome Characterization of MT-2 Perennial and OK-906 Annual Wheat × Intermediate Wheatgrass Hybrids. Crop Sci. 1999, 39, 1041–1043. [Google Scholar] [CrossRef]
- Wang, R.; Farrona, S.; Vincent, C.; Joecker, A.; Schoof, H.; Turck, F.; Alonso-Blanco, C.; Coupland, G.; Albani, M.C. PEP1 Regulates Perennial Flowering in Arabis alpina. Nature 2009, 459, 423–427. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ponraj, U.; Theres, K. Keep a Distance to Be Different: Axillary Buds Initiating at a Distance from the Shoot Apical Meristem Are Crucial for the Perennial Lifestyle of Arabis alpina. New Phytol. 2020, 227, 116–131. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miedaner, T.; Longin, F. St. John’s rye—Efinitely too good for goats and sheep. In Neglected Cereals—From Ancient Grains to Superfood; ERLLING Verlag GmbH Co. KG: Clenze, Germany, 2017; pp. 111–122. [Google Scholar]
- Curwen-McAdams, C.; Jones, S.S. Breeding Perennial Grain Crops Based on Wheat. Crop Sci. 2017, 57, 1172–1188. [Google Scholar] [CrossRef] [Green Version]
- Banks, P.M.; Xu, S.J.; Wang, R.R.-C.; Larkin, P.J. Varying Chromosome Composition of 56-Chromosome Wheat × Thinopyrum intermedium Partial Amphiploids. Genome 1993, 36, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Munné-Bosch, S. Do Perennials Really Senesce? Trends Plant Sci. 2008, 13, 216–220. [Google Scholar] [CrossRef]
- Falconer, D.S.; Mackay, T.F. Introduction to Quantitative Genetics, 4th ed.; Pearson-Prentice Hall: Harlow, UK, 2008. [Google Scholar]
- Wellensiek, S.J. Rational Methods for Breeding Cross-Fertilizers. Meded. Landbouwhogesch. 1947, 7, 1–36. [Google Scholar]
- Adam, J. Der Weg Zur Züchtung einer neuen Roggensorte. In Berichte Über Die Arbeitstagungen der “Arbeitsgemeinschaft der Saatzuchtleiter"; Bundesanstalt für Alpine Landwirtschaft: Admont, Austria, 1954; pp. 137–157. [Google Scholar]
- Jungfer, E. Kurztagbehandelte Klone in der Roggenzüchtung. Der Züchter 1955, 25, 255–262. [Google Scholar] [CrossRef]
- Reuscher, S.; Furuta, T. ABHgenotypeR: Easy Visualization of ABH Genotypes R package version 1.0.1. Available online: https://CRAN.R-project.org/package=ABHgenotypeR (accessed on 6 May 2021).
- Taylor, J.; Butler, D. R Package ASMap: Efficient Genetic Linkage Map Construction and Diagnosis. J. Stat. Softw. 2017, 79, 1–29. [Google Scholar] [CrossRef] [Green Version]
- R Core Team R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2019.
- Butler, D. asreml: asreml() fits the linear mixed model. R package version 3.0. Available online: https://www.vsni.co.uk/ (accessed on 6 May 2021).
- Piepho, H.-P.; Möhring, J. Computing Heritability and Selection Response from Unbalanced Plant Breeding Trials. Genetics 2007, 177, 1881–1888. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malosetti, M.; van Eeuwijk, F.A.; Boer, M.P.; Casas, A.M.; Elía, M.; Moralejo, M.; Bhat, P.R.; Ramsay, L.; Molina-Cano, J.-L. Gene and QTL Detection in a Three-Way Barley Cross under Selection by a Mixed Model with Kinship Information Using SNPs. Theor. Appl. Genet. 2011, 122, 1605–1616. [Google Scholar] [CrossRef] [Green Version]
- Schwarz, G. Estimating the Dimension of a Model. Ann. Stat. 1978, 6, 461–464. [Google Scholar] [CrossRef]
Perenniality (1–9) | Fertility (0–100%) | |||
---|---|---|---|---|
Var. Comp. | St. Error | Var. Comp. | St. Error | |
Location (L) | 0.22 | 0.39 | n.a. | n.a. |
Replicate | 0.08 | 0.09 | 2.6 | 4.4 |
Genotype (G) | 3.72 | 0.51 | 313.7 | 38.9 |
G×L | 1.18 | 0.21 | n.a. | n.a. |
Residual | 1.39 | 0.10 | 94.9 | 9.5 |
H2 | 0.81 | 0.87 |
Name | Marker | Chr. | Pos. | CI L | CI R | Pos. [41] | Pval c | Pval d | Pval cd+d | Eff. cd | SE cd | Eff. d | SE d | nA | nB | nH | pG | pCovG |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Perenniality | ||||||||||||||||||
QTL-P2 | Contig1964 a | 2 | 121.0 | 79.2 a | 123.3 a | 153.6 * | 6.4 × 10−1 | 1.7 × 10−4 | 3.6 × 10−5 | −0.69 | 0.42 | 1.32 | 0.30 | 62 | 18 | 96 | 0.07 | 0.00 |
QTL-P3 | isotig21327 b,c | 3 | 71.1 | 66.9 c | 73.3 c | 100.5 | 1.0 × 10−2 | 2.9 × 10−1 | 3.0 × 10−1 | 0.58 | 0.19 | 0.34 | 0.27 | 45 | 44 | 87 | 0.04 | −0.08 |
QTL-P4 | C9941_1700 a | 4 | 72.0 | 70.3 a | 75.4 a | 89.0 * | 5.0 × 10−8 | 8.9 × 10−1 | 6.4 × 10−7 | 1.15 | 0.18 | 0.07 | 0.45 | 51 | 40 | 85 | 0.16 | 0.32 |
Contig1605 b,c | 4 | 74.6 | 72.0 c | 75.4 c | 94.7 * | 1.5 × 10−7 | 7.6 × 10−1 | 5.2 × 10−6 | 1.11 | 0.18 | 0.14 | 0.39 | 51 | 41 | 84 | 0.16 | 0.33 | |
QTL-P5 | C14811_2522 a,b,c | 5 | 77.0 | 71.9 a | 80.8 a | 88.8 | 8.6 × 10−11 | 9.2 × 10−1 | 6.4 × 10−8 | 1.34 | 0.17 | −0.04 | 0.29 | 40 | 49 | 87 | 0.23 | 0.39 |
QTL-P7 | isotig17332 a,b,c | 7 | 0.6 | 0.0 a | 2.3 a | 1.2 * | 3.4 × 10−4 | 5.5 × 10−7 | 4.8 × 10−8 | 0.64 | 0.18 | 1.61 | 0.27 | 50 | 36 | 90 | 0.24 | 0.09 |
Contig1964 + isotig21327 + C9941_1700 + C14811_2522 + isotig17332 | 0.74 | 0.80 | ||||||||||||||||
Fertility | ||||||||||||||||||
QTL-F1a | isotig11337 b | 1 | 29.7 | 27.2 b | 30.6 b | 62.7 * | 9.1 × 10−4 | 2.0 × 10−1 | 3.4 × 10−4 | −7.2 | 0.23 | 3.6 | 0.30 | 37 | 36 | 103 | 0.06 | 0.14 |
isotig22259 c | 1 | 33.9 | 30.6 c | 34.8 c | 68.3 * | 1.3 × 10−2 | 1.4 × 10−1 | 2.5 × 10−3 | −5.8 | 0.24 | 4.2 | 0.30 | 37 | 32 | 107 | 0.04 | 0.11 | |
QTL-F1b | Contig1017 a | 1 | 63.2 | 59.3 a | 66.6 a | 91.6 * | 1.7 × 10−4 | 3.0 × 10−3 | 3.2 × 10−6 | −7.7 | 0.22 | 8.1 | 0.29 | 37 | 38 | 101 | 0.12 | 0.17 |
QTL-F4 | isotig03456 a | 4 | 78.2 | 69.2 a | 87.7 a | 103.1 * | 2.7 × 10−5 | 7.7 × 10−3 | 1.7 × 10−6 | −7.3 | 0.20 | −7.2 | 0.29 | 53 | 38 | 85 | 0.13 | 0.29 |
Contig1437 b,c | 4 | 86.2 | 83.3 c | 87.1 c | 126.5 * | 1.6 × 10−5 | 2.4 × 10−1 | 1.3 × 10−5 | −7.9 | 0.20 | −3.2 | 0.29 | 37 | 41 | 82 | 0.11 | 0.25 | |
QTL-F5 (S5) | C28789_183 a,b,c | 5 | 41.7 | 40.6 a | 42.0 a | 44.9 * | 2.8 × 10−37 | 5.5 × 10−15 | 9.5 × 10−33 | −18.4 | 0.14 | 14.9 | 0.20 | 48 | 38 | 90 | 0.64 | 0.35 |
isotig11337 + Contig1017 + isotig03456 + C28789_183 | 0.77 | 0.71 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gruner, P.; Miedaner, T. Perennial Rye: Genetics of Perenniality and Limited Fertility. Plants 2021, 10, 1210. https://doi.org/10.3390/plants10061210
Gruner P, Miedaner T. Perennial Rye: Genetics of Perenniality and Limited Fertility. Plants. 2021; 10(6):1210. https://doi.org/10.3390/plants10061210
Chicago/Turabian StyleGruner, Paul, and Thomas Miedaner. 2021. "Perennial Rye: Genetics of Perenniality and Limited Fertility" Plants 10, no. 6: 1210. https://doi.org/10.3390/plants10061210
APA StyleGruner, P., & Miedaner, T. (2021). Perennial Rye: Genetics of Perenniality and Limited Fertility. Plants, 10(6), 1210. https://doi.org/10.3390/plants10061210