Phenotyping Latin American Open-Pollinated Varieties of Popcorn for Environments with Low Water Availability
Abstract
:1. Introduction
2. Results
2.1. Populations’ Performance in Well-Irrigated and Water Stress Conditions
2.2. GT Biplot Analysis
3. Discussion
4. Materials and Methods
4.1. Plant Material
4.2. Experimental Design, Cultural Practices and Environmental Conditions
4.3. Phenotyping
4.4. Data Analysis
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Dias, K.O.D.G.; Gezan, S.A.; Guimarães, C.T.; Nazarian, A.; da Costa e Silva, L.; Parentoni, S.N.; de Oliveira Guimarães, P.E.; de Oliveira Anoni, C.; Pádua, J.M.V.; de Oliveira Pinto, M.; et al. Improving accuracies of genomic predictions for drought tolerance in maize by joint modeling of additive and dominance effects in multi-environment trials. Heredity 2018, 121, 24–37. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabagh, A.E.L.; Hossain, A.; Barutçular, C.; Khaled, A.A.; Fahad, S.; Anjorin, F.B.; Islam, M.S.; Ratnasekera, D.; Kizilgeçi, F.; Yadav, G.S.; et al. Sustainable Maize (Zea mays L.) Production Under Drought Stress by Understanding Its Adverse Effect, Survival Mechanism and Drought Tolerance Indices. J. Exp. Biol. Agric. Sci. 2018, 6, 282–295. [Google Scholar] [CrossRef]
- IPCC. The IPCC 2013 report. In Climate Change; Cambridge University Press: Cambridge, UK, 2013; p. 1585. [Google Scholar]
- FAO. Water for Sustainable Food and Agriculture: A Report Produced for the G20 Presidency of Germany; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; ISBN 978-92-5-109977-3. [Google Scholar]
- FAO. Information System on Water and Agriculture–AQUASTAT. Available online: http://www.fao.org/aquastat/en/ (accessed on 27 May 2021).
- Dalal, M.; Sharma, T.R. Biotechnological Applications for Improvement of Drought Tolerance. In Abiotic Stress Management for Resilient Agriculture; Springer: Singapore, 2017; pp. 299–312. [Google Scholar]
- DeJonge, K.C.; Taghvaeian, S.; Trout, T.J.; Comas, L.H. Comparison of canopy temperature-based water stress indices for maize. Agric. Water Manag. 2015, 156, 51–62. [Google Scholar] [CrossRef]
- Avramova, V.; AbdElgawad, H.; Zhang, Z.; Fotschki, B.; Casadevall, R.; Vergauwen, L.; Knapen, D.; Taleisnik, E.; Guisez, Y.; Asard, H.; et al. Drought Induces Distinct Growth Response, Protection, and Recovery Mechanisms in the Maize Leaf Growth Zone. Plant Physiol. 2015, 169, 1382–1396. [Google Scholar] [CrossRef] [PubMed]
- Mageto, E.K.; Makumbi, D.; Njoroge, K.; Nyankanga, R. Genetic analysis of early-maturing maize (Zea mays L.) inbred lines under stress and nonstress conditions. J. Crop Improv. 2017, 31, 560–588. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; do Amaral Júnior, A.T.; de Lima, V.J.; Santos, P.H.A.D.; Rodrigues, W.P.; Vivas, J.M.S.; Gonçalves, G.M.B.; Schmitt, K.F.M.; Leite, J.T.; Vivas, M.; et al. Comparison of Selection Traits for Effective Popcorn (Zea mays L. var. everta) Breeding Under Water Limiting Conditions. Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- de Lima, V.J.; do Amaral Júnior, A.T.; Kamphorst, S.H.; Bispo, R.B.; Leite, J.T.; Santos, T.d.O.; Schmitt, K.F.M.; Chaves, M.M.; de Oliveira, U.A.; Santos, P.H.A.D.; et al. Combined Dominance and Additive Gene Effects in Trait Inheritance of Drought-Stressed and Full Irrigated Popcorn. Agronomy 2019, 9, 782. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, C.; Kist, B.B.; Beling, R.R. Anuário Brasileiro do Milho-2020, 1st ed.; Beling, R.R., Ed.; Editora Gazeta Santa Cruz: Santa Cruz do Su, Brazil, 2019. [Google Scholar]
- de Oliveira, E.J.; de Tarso Aidar, S.; Morgante, C.V.; de Melo Chaves, A.R.; Cruz, J.L.; Coelho Filho, M.A. Genetic parameters for drought-tolerance in cassava. Pesqui. Agropecuária Bras. 2015, 50, 233–241. [Google Scholar] [CrossRef]
- Challinor, A.J.; Koehler, A.-K.; Ramirez-Villegas, J.; Whitfield, S.; Das, B. Current warming will reduce yields unless maize breeding and seed systems adapt immediately. Nat. Clim. Chang. 2016, 6, 954–958. [Google Scholar] [CrossRef]
- Amaral, C.B.; de Oliveira, G.H.F.; Môro, G.V. Phenotyping open-pollinated maize varieties for environments with low nitrogen availability. Arch. Agron. Soil Sci. 2018, 64, 1465–1472. [Google Scholar] [CrossRef]
- Ali, F.; Ahsan, M.; Ali, Q.; Kanwal, N. Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress. Front. Plant Sci. 2017, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yan, W. GGEbiplot—A Windows Application for Graphical Analysis of Multienvironment Trial Data and Other Types of Two-Way Data. Agron. J. 2001, 93, 1111. [Google Scholar] [CrossRef] [Green Version]
- dos Santos, A.; do Amaral Júnior, A.T.; do Nascimento Ferreira Kurosawa, R.; Gerhardt, I.F.S.; Fritsche Neto, R. GGE Biplot projection in discriminating the efficiency of popcorn lines to use nitrogen. Ciência E Agrotecnologia 2017, 41, 22–31. [Google Scholar] [CrossRef] [Green Version]
- Yihunie, T.A.; Gesesse, C.A. GGE Biplot Analysis of Genotype by Environment Interaction in Field Pea (Pisum sativum L.) Genotypes in Northwestern Ethiopia. J. Crop Sci. Biotechnol. 2018, 21, 67–74. [Google Scholar] [CrossRef]
- Yan, W.; Rajcan, I. Biplot Analysis of Test Sites and Trait Relations of Soybean in Ontario. Crop Sci. 2002, 42, 11. [Google Scholar] [CrossRef] [PubMed]
- Yan, W.; Kang, M.S.; Ma, B.; Woods, S.; Cornelius, P.L. GGE Biplot vs. AMMI Analysis of Genotype-by-Environment Data. Crop Sci. 2007, 47, 643. [Google Scholar] [CrossRef]
- Yan, W.; Tinker, N.A. Biplot analysis of multi-environment trial data: Principles and applications. Can. J. Plant Sci. 2006, 86, 623–645. [Google Scholar] [CrossRef] [Green Version]
- Hasanuzzaman, M.; Bhuyan, M.H.M.B.; Zulfiqar, F.; Raza, A.; Mohsin, S.M.; Mahmud, J.A.; Fujita, M.; Fotopoulos, V. Reactive Oxygen Species and Antioxidant Defense in Plants under Abiotic Stress: Revisiting the Crucial Role of a Universal Defense Regulator. Antioxidants 2020, 9, 681. [Google Scholar] [CrossRef] [PubMed]
- Laxa, M.; Liebthal, M.; Telman, W.; Chibani, K.; Dietz, K.-J. The Role of the Plant Antioxidant System in Drought Tolerance. Antioxidants 2019, 8, 94. [Google Scholar] [CrossRef] [Green Version]
- Cairns, J.E.; Sanchez, C.; Vargas, M.; Ordoñez, R.; Araus, J.L. Dissecting Maize Productivity: Ideotypes Associated with Grain Yield under Drought Stress and Well-watered Conditions. J. Integr. Plant Biol. 2012, 54, 1007–1020. [Google Scholar] [CrossRef]
- Kamphorst, S.H.; de Lima, V.J.; do Amaral Júnior, A.T.; Schmitt, K.F.M.; Leite, J.T.; Carvalho, C.M.; Silva, R.M.R.; Xavier, K.B.; Fereira, F.R.A.; Santos, P.H.A.; et al. Research Article Popcorn breeding for water-stress tolerance or for agronomic water-use efficiency? Genet. Mol. Res. 2018, 17. [Google Scholar] [CrossRef]
- Durães, F.O.M.; dos Santos, M.X.; e Gama, E.E.G.; Magalhães, P.C.; Albuquerque, P.E.P.; Guimarães, C.T. Fenotipagem Associada a Tolerância à Seca em Milho para Uso em Melhoramento, Estudos Genômicos e Seleção Assistida por Marcadores; Embrapa Milho e Sorgo: Sete Lagoan, Brazil, 2004. [Google Scholar]
- Monneveux, P.; Sánchez, C.; Beck, D.; Edmeades, G.O. Drought Tolerance Improvement in Tropical Maize Source Populations: Evidence of Progress. Crop Sci. 2006, 46, 180–191. [Google Scholar] [CrossRef]
- Bolaños, J.; Edmeades, G.O. Eight cycles of selection for drought tolerance in lowland tropical maize. I. Responses in grain yield, biomass, and radiation utilization. F. Crop. Res. 1993, 31, 233–252. [Google Scholar] [CrossRef]
- Komatuda, A.S.; dos Santos, C.M.; De Santana, D.G.; de Souza, M.A.; Brito, C.H. De Influência de métodos de despendoamento na produtividade e na qualidade das sementes de milho. Rev. Bras. Milho E Sorgo 2006, 5, 359–368. [Google Scholar] [CrossRef]
- Magalhães, P.C.; Durães, F.O.M.; de Oliveira, A.C.; Gama, E.E.G. Eefeitos de diferentes técnicas de despendoamento na produção de milho. Sci. Agric. 1999, 56, 77–82. [Google Scholar] [CrossRef]
- Hunter, R.B.; Daynard, T.B.; Hume, D.J.; Tanner, J.W.; Curtis, J.D.; Kannenberg, L.W. Effect of Tassel Removal on Grain Yield of Corn (Zea mays L.) 1. Crop Sci. 1969, 9, 405–406. [Google Scholar] [CrossRef]
- Leon, N.; Coors, J.G. Twenty-Four Cycles of Mass Selection for Prolificacy in the Golden Glow Maize Population. Crop Sci. 2002, 42, 325–333. [Google Scholar] [CrossRef]
- Mickelson, S.M.; Stuber, C.S.; Senior, L.; Kaeppler, S.M. Quantitative Trait Loci Controlling Leaf and Tassel Traits in a B73 × Mo17 Population of Maize. Crop Sci. 2002, 42, 1902–1909. [Google Scholar] [CrossRef]
- Daryanto, S.; Wang, L.; Jacinthe, P.-A. Global Synthesis of Drought Effects on Maize and Wheat Production. PLoS ONE 2016, 11, e0156362. [Google Scholar] [CrossRef]
- Jiang, P.; Cai, F.; Zhao, Z.-Q.; Meng, Y.; Gao, L.-Y.; Zhao, T.-H. Physiological and Dry Matter Characteristics of Spring Maize in Northeast China under Drought Stress. Water 2018, 10, 1561. [Google Scholar] [CrossRef] [Green Version]
- Yang, J.; Zhang, J. Grain filling of cereals under soil drying. New Phytol. 2006, 169, 223–236. [Google Scholar] [CrossRef] [PubMed]
- Sehgal, A.; Sita, K.; Siddique, K.H.M.; Kumar, R.; Bhogireddy, S.; Varshney, R.K.; HanumanthaRao, B.; Nair, R.M.; Prasad, P.V.V.; Nayyar, H. Drought or/and Heat-Stress Effects on Seed Filling in Food Crops: Impacts on Functional Biochemistry, Seed Yields, and Nutritional Quality. Front. Plant Sci. 2018, 9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.; Gu, X.; Ding, M.; Lu, W.; Lu, D. Activities of starch synthetic enzymes and contents of endogenous hormones in waxy maize grains subjected to post-silking water deficit. Sci. Rep. 2019, 9, 7059. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamphorst, S.H.; de Lima, V.J.; Schimitt, K.F.M.; Leite, J.T.; Azeredo, V.C.; Pena, G.F.; Santos, P.H.A.D.; Júnior, D.R.S.; da Silva Júnior, S.B.; Bispo, R.B.; et al. Research Article Water stress adaptation of popcorn roots and association with agronomic traits. Genet. Mol. Res. 2018, 17. [Google Scholar] [CrossRef]
- York, L.M.; Nord, E.A.; Lynch, J.P. Integration of root phenes for soil resource acquisition. Front. Plant Sci. 2013, 4. [Google Scholar] [CrossRef] [Green Version]
- Gao, Y.; Lynch, J.P. Reduced crown root number improves water acquisition under water deficit stress in maize (Zea mays L.). J. Exp. Bot. 2016, 67, 4545–4557. [Google Scholar] [CrossRef] [Green Version]
- Yu, P.; White, P.J.; Hochholdinger, F.; Li, C. Phenotypic plasticity of the maize root system in response to heterogeneous nitrogen availability. Planta 2014, 240, 667–678. [Google Scholar] [CrossRef]
- da Silva, S.C.; Sbrissia, A.F. Análise de componentes principais entre características morfogênicas e estruturais em capim-marandu sob lotação contínua. Ciência Rural 2010, 40, 690–693. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.-C.; Crossa, J.; Cornelius, P.L.; Burgueño, J. Biplot Analysis of Genotype × Environment Interaction: Proceed with Caution. Crop Sci. 2009, 49, 1564. [Google Scholar] [CrossRef] [Green Version]
- Miranda, G.V.; de Souza, L.V.; Galvão, J.C.C.; Guimarães, L.J.M.; de Melo, A.V.; dos Santos, I.C. Genetic variability and heterotic groups of Brazilian popcorn populations. Euphytica 2008, 162, 431–440. [Google Scholar] [CrossRef]
- Melo, P.G.S.; Alvares, R.C.; Pereira, H.S.; Braz, A.J.B.P.; Faria, L.C.; Melo, L.C. Adaptability and stability of common bean genotypes in family farming systems. Pesqui. Agropecuária Bras. 2018, 53, 189–196. [Google Scholar] [CrossRef] [Green Version]
- Opitz, N.; Marcon, C.; Paschold, A.; Malik, W.A.; Lithio, A.; Brandt, R.; Piepho, H.-P.; Nettleton, D.; Hochholdinger, F. Extensive tissue-specific transcriptomic plasticity in maize primary roots upon water deficit. J. Exp. Bot. 2016, 67, 1095–1107. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Scapim, C.A.; Pacheco, C.A.P.; Tonet, A.; Braccini, A.D.L.; Pinto, R.J.B. Análise dialélica e heterose de populações de milho-pipoca. Bragantia 2002, 61, 219–230. [Google Scholar] [CrossRef]
- Larish, L.B.; Brewbaker, J.L. Diallel analyses of temperate and tropical popcorn. Maydica 1999, 44, 279–284. [Google Scholar]
- Kamphorst, S.H.; do Amaral Júnior, A.T.; de Lima, V.J.; Guimarães, L.J.M.; Schmitt, K.F.M.; Leite, J.T.; Santos, P.H.A.D.; Chaves, M.M.; Mafra, G.S.; dos Santos Junior, D.R.; et al. Can Genetic Progress for Drought Tolerance in Popcorn Be Achieved by Indirect Selection? Agronomy 2019, 9, 792. [Google Scholar] [CrossRef] [Green Version]
- De Castro, F.A.; Campostrini, E.; Netto, A.T.; De Menezes De Assis Gomes, M.; Ferraz, T.M.; Glenn, D.M. Portable chlorophyll meter (PCM-502) values are related to total chlorophyll concentration and photosynthetic capacity in papaya (Carica papaya L.). Theor. Exp. Plant Physiol. 2014, 26, 201–210. [Google Scholar] [CrossRef]
- Miglani, G.S.; Kaur, R.; Sharma, P.; Gupta, N. Leveraging photosynthetic efficiency toward improving crop yields. J. Crop Improv. 2020, 1–42. [Google Scholar] [CrossRef]
- Ceccarelli, S.; Grando, S.; Baum, M. Participatory Plant Breeding in Water-Limited Environments. Exp. Agric. 2007, 43, 411–435. [Google Scholar] [CrossRef]
- Brito, G.G.; Sofiatti, V.; Brandão, Z.N.; Silva, V.B.; Silva, F.M.; Silva, D.A. Non-destructive analysis of photosynthetic pigments in cotton plants. Acta Sci. Agron. 2011, 33. [Google Scholar] [CrossRef]
- Chimungu, J.G.; Brown, K.M.; Lynch, J.P. Large Root Cortical Cell Size Improves Drought Tolerance in Maize. Plant Physiol. 2014, 166, 2166–2178. [Google Scholar] [CrossRef] [Green Version]
- Avramova, V.; Nagel, K.A.; AbdElgawad, H.; Bustos, D.; DuPlessis, M.; Fiorani, F.; Beemster, G.T.S. Screening for drought tolerance of maize hybrids by multi-scale analysis of root and shoot traits at the seedling stage. J. Exp. Bot. 2016, 67, 2453–2466. [Google Scholar] [CrossRef] [PubMed]
- Joshi, B.K.; Gardner, R.G.; Panthee, D.R. GGE Biplot Analysis of Tomato F 1 Hybrids Evaluated Across Years for Marketable Fruit Yield. J. Crop Improv. 2011, 25, 488–496. [Google Scholar] [CrossRef]
- Gedif, M.; Yigzaw, D. Genotype by Environment Interaction Analysis for Tuber Yield of Potato (Solanum tuberosum L.) Using a GGE Biplot Method in Amhara Region, Ethiopia. Agric. Sci. 2014, 5, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Sarkar, B.; Sharma, R.C.; Verma, R.P.S.; Sarkar, A.; Sharma, I. Identifying superior feed barley genotypes using GGE biplot for diverse environments in India. Indian J. Genet. Plant Breed. 2014, 74, 26. [Google Scholar] [CrossRef]
- Santos, T.O.; Moulin, M.M.; Rangel, L.H.; Pirovani, R.O.L.; Valadares, F.V.; de Almeida, R.N.; Silva, L.O.E. Characterization and Diversity of Peppers (Capsicum spp.) Genotypes Based on Morphological Traits Using Multivariate Analysis. J. Exp. Agric. Int. 2019, 1–10. [Google Scholar] [CrossRef]
- Oliveira, T.R.A.; de Amaral Gravina, G.; de Oliveira, G.H.F.; Araújo, K.C.; de Araújo, L.C.; Daher, R.F.; Vivas, M.; Gravina, L.M.; da Cruz, D.P. The GT biplot analysis of green bean traits. Ciência Rural 2018, 48. [Google Scholar] [CrossRef]
- INMET. Instituto Nacional de Meteorologia-INMET. Available online: https://portal.inmet.gov.br/ (accessed on 20 December 2018).
- Trachsel, S.; Kaeppler, S.M.; Brown, K.M.; Lynch, J.P. Shovelomics: High throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 2011, 341, 75–87. [Google Scholar] [CrossRef]
- Cruz, C.D. GENES-a software package for analysis in experimental statistics and quantitative genetics. Acta Sci. Agron. 2013, 35. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and ENVIRONMENT for Statistical Computing 2021; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: http://www.R-project.org/ (accessed on 27 May 2021).
Trait | Water Regime (A) | Mean Squares | Mean ± SD | CV (%) | |
---|---|---|---|---|---|
Genotype (G) | G × A | ||||
(DF = 14) | (DF = 14) | ||||
SPAD | WW | 73.84 ns | 109.19 ** | 33.25 ± 6.44 | 19.35 |
WS | 159.92 ** | 28.02 ± 5.49 | 19.60 | ||
PH | WW | 1074.06 ** | 192.25 ns | 181.55 ± 12.43 | 6.85 |
WS | 888.84 ** | 163.48 ± 9.32 | 5.70 | ||
TL | WW | 7.63 ** | 4.58 ** | 12.04 ± 0.42 | 3.51 |
WS | 8.20 ** | 11.95 ± 0.58 | 4.88 | ||
NTB | WW | 14.26 ** | 7.33 ** | 19.31 ± 2.06 | 5.97 |
WS | 9.74 ** | 16.02 ± 1.15 | 12.85 | ||
EL | WW | 4.56 ** | 2.55 ** | 12.79 ± 0.86 | 6.73 |
WS | 5.62 ** | 11.30 ± 1.02 | 8.99 | ||
NRG | WW | 4.28 ** | 1.43 ns | 13.24 ± 0.94 | 7.07 |
WS | 4.79 ns | 12.64 ± 1.59 | 12.58 | ||
NGR | WW | 22.16 ** | 28.22 * | 27.41 ± 2.84 | 10.36 |
WS | 60.97 ** | 23.24 ± 4.10 | 17.63 | ||
100GW | WW | 12.33 ** | 2.01 ns | 15.99 ± 1.33 | 8.29 |
WS | 25.49 ** | 15.07 ± 1.15 | 7.65 | ||
GY | WW | 1,776,800.80 ** | 288,045.29 ** | 2684.28 ± 349.06 | 13.00 |
WS | 760,443.71 ** | 1862.62 ± 254.88 | 13.68 | ||
PE | WW | 207.50 ** | 5.48 ns | 20.87 ± 2.04 | 9.77 |
WS | 166.59 ** | 20.14 ± 1.63 | 8.08 | ||
DM | WW | 8706.63 ** | 3392.40 ** | 201.69 ± 32.48 | 16.11 |
WS | 6384.97 ** | 191.49 ± 32.07 | 16.75 | ||
SRA | WW | 147.95 ** | 1.12 ns | 61.24 ± 2.64 | 4.32 |
WS | 139.86 ** | 60.87 ± 2.38 | 3.90 | ||
CRA | WW | 49.34 ns | 10.73 ns | 68.76 ± 6.69 | 9.73 |
WS | 93.51 ** | 67.71 ± 2.44 | 3.60 | ||
NSR | WW | 16.47 ** | 1.10 ns | 12.96 ± 0.99 | 7.62 |
WS | 14.80 ** | 13.20 ± 1.93 | 14.65 | ||
NCR | WW | 60.90 ** | 2.53 ns | 20.16 ± 0.78 | 3.88 |
WS | 55.45 ** | 19.91 ± 1.50 | 7.51 | ||
DCR | WW | 0.93 ** | 1.54 ** | 4.32 ± 0.27 | 6.25 |
WS | 2.34 ** | 5.20 ± 0.31 | 5.87 |
Accession ID | Origin | Donor Institution | Climate Adaptation | |
---|---|---|---|---|
1 | 288POP | Guaraciaba/SC, Brazil | - | Subtropical |
2 | 574POP | Guaraciaba/SC, Brazil | - | Subtropical |
3 | 880POP | Guaraciaba/SC, Brazil | - | Subtropical |
4 | ARZM13050 | Argentina, Brazil | CIMMYT | Temperate/Tropical |
5 | BARÃOUFV | Viçosa/MG, Brazil | UFV | Temperate/Tropical |
6 | BOYA462 | Colombia | CIMMYT | Temperate/Tropical |
7 | BOZM260 | Bolívia | CIMMYT | Temperate/Tropical |
8 | BRS Angela | Sete Lagoas/MG, Brazil | Embrapa | Tropical |
9 | CHZM13134 | Chile | CIMMYT | Temperate/Tropical |
10 | ISLA | Paraná | ISLA S/A | Temperate/Tropical |
11 | PARA172 | Paraguay | CIMMYT | Temperate/Tropical |
12 | UNB2-C0 | Campos dos Goytacazes/RJ, Brazil | UENF | Tropical |
13 | UNB2-C6 | Campos dos Goytacazes/RJ, Brazil | UENF | Tropical |
14 | UNB2-C8 | Campos dos Goytacazes/RJ, Brazil | UENF | Tropical |
15 | URUG298A | Uruguay | CIMMYT | Temperate/Tropical |
Weeks after Sowing | Rainfall | Amount of Water (mm) | |||
---|---|---|---|---|---|
Well-Watered | Water Stress | ||||
Irrigation | Total | Irrigation | Total | ||
1 | 17.00 | 7.21 | 23.20 | 6.20 | 23.20 |
2 | 6.00 | 10.97 | 16.97 | 10.24 | 16.24 |
3 | 0.00 | 10.13 | 10.13 | 9.86 | 9.86 |
4 | 10.60 | 10.72 | 21.32 | 10.27 | 20.87 |
5 | 5.20 | 8.35 | 13.55 | 8.43 | 13.63 |
6 | 2.00 | 11.60 | 13.60 | 12.18 | 14.18 |
7 | 0.00 | 12.94 | 12.94 | 12.12 | 12.12 |
8 | 0.00 | 10.86 | 10.86 | - | 0.00 |
9 | 0.00 | 18.79 | 18.79 | - | 0.00 |
10 | 0.00 | 18.95 | 18.95 | - | 0.00 |
11 | 30.80 | 1.14 | 31.94 | - | 30.80 |
12 | 0.00 | 16.73 | 16.73 | - | 0.00 |
13 | 0.00 | 14.00 | 14.00 | - | 0.00 |
14 | 65.00 | 2.00 | 67.00 | - | 65.00 |
15 | 0.00 | 13.50 | 13.50 | - | 0.00 |
16 | 9.20 | 10.00 | 19.20 | - | 9.20 |
17 | 2.40 | 10.00 | 12.40 | - | 2.40 |
Total | 148.20 | 187.89 | 335.08 | 69.30 | 217.50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santos, T.d.O.; Amaral Junior, A.T.d.; Bispo, R.B.; Lima, V.J.d.; Kamphorst, S.H.; Leite, J.T.; Santos Júnior, D.R.d.; Santos, P.H.A.D.; Oliveira, U.A.d.; Schmitt, K.F.M.; et al. Phenotyping Latin American Open-Pollinated Varieties of Popcorn for Environments with Low Water Availability. Plants 2021, 10, 1211. https://doi.org/10.3390/plants10061211
Santos TdO, Amaral Junior ATd, Bispo RB, Lima VJd, Kamphorst SH, Leite JT, Santos Júnior DRd, Santos PHAD, Oliveira UAd, Schmitt KFM, et al. Phenotyping Latin American Open-Pollinated Varieties of Popcorn for Environments with Low Water Availability. Plants. 2021; 10(6):1211. https://doi.org/10.3390/plants10061211
Chicago/Turabian StyleSantos, Talles de Oliveira, Antônio Teixeira do Amaral Junior, Rosimeire Barboza Bispo, Valter Jário de Lima, Samuel Henrique Kamphorst, Jhean Torres Leite, Divino Rosa dos Santos Júnior, Pedro Henrique Araújo Diniz Santos, Uéliton Alves de Oliveira, Kátia Fabiane Medeiros Schmitt, and et al. 2021. "Phenotyping Latin American Open-Pollinated Varieties of Popcorn for Environments with Low Water Availability" Plants 10, no. 6: 1211. https://doi.org/10.3390/plants10061211
APA StyleSantos, T. d. O., Amaral Junior, A. T. d., Bispo, R. B., Lima, V. J. d., Kamphorst, S. H., Leite, J. T., Santos Júnior, D. R. d., Santos, P. H. A. D., Oliveira, U. A. d., Schmitt, K. F. M., Campostrini, E., Moulin, M. M., Viana, A. P., Gravina, G. d. A., Corrêa, C. C. G., & Gonçalves, G. M. B. (2021). Phenotyping Latin American Open-Pollinated Varieties of Popcorn for Environments with Low Water Availability. Plants, 10(6), 1211. https://doi.org/10.3390/plants10061211