Phytochemical Content, Antioxidant, Alpha-Glucosidase Inhibitory and Antibacterial Activities of Spineless Cactus Pear Cultivars
Abstract
:1. Introduction
2. Results and Discussion
2.1. Cladode Extraction Yield
2.2. Total Phenolic and Flavonoid Contents
2.3. Antioxidant Activity of Cladode Extracts
2.4. Alpha-Glucosidase Inhibitory Activity
2.5. Correlation Analysis of Phytochemical Content, Antioxidant and Alpha-Glucosidae Inhibitory Activities
2.6. Antibacterial Activity
3. Materials and Methods
3.1. Plant Material Collection and Preparation
3.2. Total Phenolic and Flavonoid Content Determination
3.3. Antioxidant Assays
3.3.1. DPPH (2,2-diphenyl-1-picrylhydrazyl) Free Radical Scavenging Activity
3.3.2. Antioxidant Activity Using β-Carotene Linoleic Acid Assay
3.4. Alpha-Glucosidase Inhibitory Activity
3.5. Antibacterial Activity
3.6. Data Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shai, L.; Masoko, P.; Mokgotho, M.; Magano, S.; Mogale, A.; Boaduo, N.; Eloff, J. Yeast alpha glucosidase inhibitory and antioxidant activities of six medicinal plants collected in Phalaborwa, South Africa. S. Afr. J. Bot. 2010, 76, 465–470. [Google Scholar] [CrossRef] [Green Version]
- International Diabetes Federation. IDF Diabetes Atlas, 9th ed.; IDF: Brussels, Belgium, 2019. [Google Scholar]
- World Health Organization. Noncommunicable Diseases Country Profiles 2018; WHO: Geneva, Switzerland, 2018. [Google Scholar]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9th edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [Green Version]
- Rao, M.M.V.; Hariprasad, T.P.N. In silico analysis of a potential antidiabetic phytochemical erythrin against therapeutic targets of diabetes. Silico Pharmacol. 2021, 9, 5. [Google Scholar] [CrossRef]
- Talib, A.; Manzoor, K.N.; Ali, W.; Saeed, M.; Gondal, M.A.; Badshah, M.; Khan, A.A. Biogenic copper nanoparticles as a nanoscale solution to address multiple drug resistance in bacteria. Pak. J. Zool. 2021, 53, 201–208. [Google Scholar]
- Takó, M.; Kerekes, E.B.; Zambrano, C.; Kotogán, A.; Papp, T.; Krisch, J.; Vágvölgyi, C. Plant Phenolics and Phenolic-Enriched Extracts as Antimicrobial Agents against Food-Contaminating Microorganisms. Antioxidants 2020, 9, 165. [Google Scholar] [CrossRef] [Green Version]
- Logan, N. Bacillus and relatives in foodborne illness. J. Appl. Microbiol. 2011, 112, 417–429. [Google Scholar] [CrossRef]
- Welegerima, G.; Zemene, A.; Tilahun, Y. Phytochemical composition and antibacterial activity of Opuntia Ficus Indica cladodes extracts. J. Med. Plants Stud. 2018, 6, 243–246. [Google Scholar]
- Alarcon-Aguilar, F.J.; Valdes-Arzate, A.; Xolalpa-Molina, S.; Banderas-Dorantes, T.; Jimenez-Estrada, M.; Hernandez-Galicia, E.; Roman-Ramos, R. Hypoglycemic activity of two polysaccharides isolated from Opuntia Ficus Indica and O. streptacantha. Proc. West. Pharmacol. Soc. 2003, 46, 139–142. [Google Scholar]
- Abdel-Hameed, E.-S.S.; Nagaty, M.A.; Salman, M.S.; Bazaid, S.A. Phytochemicals, nutritionals and antioxidant properties of two prickly pear cactus cultivars (Opuntia ficus indica Mill.) growing in Taif, KSA. Food Chem. 2014, 160, 31–38. [Google Scholar] [CrossRef]
- Luo, C.; Zhang, W.; Sheng, C.; Zheng, C.; Yao, J.; Miao, Z. Chemical Composition and Antidiabetic Activity of Opuntia Milpa Alta Extracts. Chem. Biodivers. 2010, 7, 2869–2879. [Google Scholar] [CrossRef]
- Du Toit, A.; de Wit, M.; Osthoff, G.; Hugo, A. Antioxidant properties of fresh and processed cactus pear cladodes from selected Opuntia ficus-indica and O. robusta cultivars. S. Afr. J. Bot. 2018, 118, 44–51. [Google Scholar] [CrossRef]
- Tesoriere, L.; Fazzari, M.; Allegra, M.; Livrea, M.A. Biothiols, Taurine, and Lipid-Soluble Antioxidants in the Edible Pulp of Sicilian Cactus Pear (Opuntia ficus-indica) Fruits and Changes of Bioactive Juice Components upon Industrial Processing. J. Agric. Food Chem. 2005, 53, 7851–7855. [Google Scholar] [CrossRef]
- Osuna-Martínez, U.; Reyes-Esparza, J.; Rodríguez-Fragoso, L. Cactus (Opuntia ficus-indica): A review on its antioxidants properties and potential pharmacological use in chronic diseases. Nat. Prod. Chem. Res. 2014, 2, 6. [Google Scholar]
- Stintzing, F.C.; Schieber, A.; Carle, R. Phytochemical and nutritional significance of cactus pear. Eur. Food Res. Technol. 2001, 212, 396–407. [Google Scholar] [CrossRef]
- El Feghali, P.A.R.; Ibrahim, R.; Nawas, T. Antibacterial activity of Curcuma longa, Opuntia ficus-indica and Linum usitatissimum. MOJ Toxicol. 2018, 4, 214–220. [Google Scholar]
- Sánchez, E.; Dávila-Aviña, J.; Castillo, S.L.; Heredia, N.; Vázquez-Alvarado, R.; Garcia, S. Antibacterial and Antioxidant Activities in Extracts of Fully Grown Cladodes of 8 Cultivars of Cactus Pear. J. Food Sci. 2014, 79, M659–M664. [Google Scholar] [CrossRef]
- Kim, S.; Kwon, N.; Kim, J.; Lim, J.; Bae, W.; Kim, J.; Noh, K.; Hur, J.; Jung, W.; Park, K. Antimicrobial activity of natural product made by Opuntia ficus-indica var. Saboten against Salmonella spp. and Escherichia coli O157: H7. J. Food Hyg. Saf. 2002, 17, 71–78. [Google Scholar]
- Kim, H.-N.; Kwon, D.-H.; Jun, H.-K. Antimicrobial Activities of Opuntia ficus-indica var. saboten Makino Methanol Extract. J. Life Sci. 2005, 15, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Aruwa, C.E.; Amoo, S.; Kudanga, T. Opuntia (Cactaceae) plant compounds, biological activities and prospects—A comprehensive review. Food Res. Int. 2018, 112, 328–344. [Google Scholar] [CrossRef] [PubMed]
- Ayoub, T.M.; El-Hady, E.-S.A.A.; Omran, H.T.; El-Samahy, S.K.; Kroh, L.W.; Rohn, S. Influence of cultivar and origin on the flavonol profile of fruits and cladodes from cactus Opuntia ficus-indica. Food Res. Int. 2014, 64, 864–872. [Google Scholar] [CrossRef] [PubMed]
- Truong, D.-H.; Nguyen, D.H.; Ta, N.T.A.; Bui, A.V.; Do, T.H.; Nguyen, H.C. Evaluation of the Use of Different Solvents for Phytochemical Constituents, Antioxidants, and In Vitro Anti-Inflammatory Activities of Severinia buxifolia. J. Food Qual. 2019, 2019, 8178294. [Google Scholar] [CrossRef] [Green Version]
- Alves, F.A.L.; De Andrade, A.P.; Bruno, R.D.L.A.; Silva, M.G.D.V.; Souza, M.D.F.V.D.; Dos Santos, D.C. Seasonal variability of phenolic compounds and antioxidant activity in prickly pear cladodes of Opuntia and Nopalea genres. Food Sci. Technol. 2017, 37, 536–543. [Google Scholar] [CrossRef] [Green Version]
- Guevara-Figueroa, T.; Jiménez-Islas, H.; Reyes-Escogido, M.L.; Mortensen, A.G.; Laursen, B.B.; Lin, L.W.; De León-Rodríguez, A.; Fomsgaard, I.S.; Barba de la Rosa, A.P. Proximate composition, phenolic acids, and flavonoids characterization of commercial and wild nopal (Opuntia spp.). J. Food Comps. Anal. 2010, 23, 525–532. [Google Scholar] [CrossRef]
- Rodríguez-Garcia, M.E.; De Lira, C.; Hernández-Becerra, E.; Villegas, M.D.L.A.C.; Palacios-Fonseca, A.J.; Rojas-Molina, I.; Reynoso, R.; Quintero, L.C.; Del-Real, A.; Zepeda, T.A.; et al. Physicochemical Characterization of Nopal Pads (Opuntia ficus indica) and Dry Vacuum Nopal Powders as a Function of the Maturation. Plant Foods Hum. Nutr. 2007, 62, 107–112. [Google Scholar] [CrossRef]
- De Wit, M.; du Toit, A.; Osthoff, G.; Hugo, A. Cactus pear antioxidants: A comparison between fruit pulp, fruit peel, fruit seeds and cladodes of eight different cactus pear cultivars (Opuntia ficus-indica and Opuntia robusta). J. Food Meas. Charact. 2019, 13, 2347–2356. [Google Scholar] [CrossRef]
- Haile, K.; Mehari, B.; Atlabachew, M.; Chandravanshi, B.S. Phenolic composition and antioxidant activities of cladodes of the two varieties of cactus pear (Opuntia ficus-indica) grown in Ethiopia. Bull. Chem. Soc. Ethiop. 2017, 30, 347. [Google Scholar] [CrossRef]
- Sarikurkcu, C.; Tepe, B.; Yamaç, M. Evaluation of the antioxidant activity of four edible mushrooms from the Central Anatolia, Eskisehir—Turkey: Lactarius deterrimus, Suillus collitinus, Boletus edulis, Xerocomus chrysenteron. Bioresour. Technol. 2008, 99, 6651–6655. [Google Scholar] [CrossRef] [PubMed]
- Mwinga, J.L.; Asong, J.A.; Amoo, S.; Nkadimeng, S.; McGaw, L.J.; Aremu, A.O.; Otang-Mbeng, W. In vitro antimicrobial effects of Hypoxis hemerocallidea against six pathogens with dermatological relevance and its phytochemical characterization and cytotoxicity evaluation. J. Ethnopharmacol. 2019, 242, 112048. [Google Scholar] [CrossRef] [PubMed]
- Hancock, J.; Desikan, R.; Neill, S. Role of reactive oxygen species in cell signalling pathways. Biochem. Soc. Trans. 2001, 29, 345–350. [Google Scholar] [CrossRef]
- Apak, R. Current Issues in Antioxidant Measurement. J. Agric. Food Chem. 2019, 67, 9187–9202. [Google Scholar] [CrossRef]
- Yehye, W.A.; Rahman, N.A.; Ariffin, A.; Hamid, S.B.A.; Alhadi, A.A.; Kadir, F.A.; Yaeghoobi, M. Understanding the chemistry behind the antioxidant activities of butylated hydroxytoluene (BHT): A review. Eur. J. Med. Chem. 2015, 101, 295–312. [Google Scholar] [CrossRef]
- Kahl, R.; Kappus, H. Toxicology of the synthetic antioxidants BHA and BHT in comparison with the natural antioxidant vitamin E. Z. Lebensm. Unters. Forsch. 1993, 196, 329–338. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo, J.M.; Rodriguez, J.M.L.; Sánchez, M.; Amado, I.R.; Franco, D. Effects of natural (grape seed and chestnut extract) and synthetic antioxidants (buthylatedhydroxytoluene, BHT) on the physical, chemical, microbiological and sensory characteristics of dry cured sausage “chorizo”. Food Res. Int. 2013, 54, 611–620. [Google Scholar] [CrossRef] [Green Version]
- Pokorny, J. Are natural antioxidants better—And safer—Than synthetic antioxidants? Eur. J. Lipid Sci. Technol. 2007, 109, 629–642. [Google Scholar] [CrossRef]
- Kammeyer, A.; Luiten, R. Oxidation events and skin aging. Ageing Res. Rev. 2015, 21, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Tuyen, D.T.; Yew, G.Y.; Cuong, N.T.; Hoang, L.T.; Yen, H.T.; Hong Thao, P.T.; Thao, N.T.; Sy Le Thanh, N.; Hien Trang, N.T.; Trung, N.T.; et al. Selection, purification, and evaluation of acarbose−an α-glucosidase inhibitor from Actinoplanes spp. Chemosphere 2021, 265, 129167. [Google Scholar] [CrossRef]
- Vadivelan, R.; Krishnan, R.G.; Kannan, R. Antidiabetic potential of Asparagus racemosus Willd leaf extracts through inhibition of α-amylase and α-glucosidase. J. Tradit. Complement. Med. 2019, 9, 1–4. [Google Scholar] [CrossRef]
- Rengasamy, K.R.; Aderogba, M.A.; Amoo, S.; Stirk, W.A.; Van Staden, J. Potential antiradical and alpha-glucosidase inhibitors from Ecklonia maxima (Osbeck) Papenfuss. Food Chem. 2013, 141, 1412–1415. [Google Scholar] [CrossRef]
- Abd El-Razek, F.H.; Hassan, A.A. Nutritional value and hypoglycemic effect of prickly cactus pear (Opuntia ficus-indica) fruit juice in alloxan-induced diabetic rats. Aust. J. Basic Appl. Sci. 2011, 5, 356–377. [Google Scholar]
- Abdallah, I.Z. Evaluation of Hypoglycemic Activity of Opuntia dillenii Haw Fruit Juice in Streptozotocin-Induced Diabetic Rats. Egypt. J. Hosp. Med. 2008, 33, 544–558. [Google Scholar] [CrossRef]
- Davì, G.; Falco, A.; Patrono, C. Lipid Peroxidation in Diabetes Mellitus. Antioxid. Redox Signal. 2005, 7, 256–268. [Google Scholar] [CrossRef]
- Fatani, S.H.; Babakr, A.T.; Noureldin, E.M.; AlMarzouki, A.A. Lipid peroxidation is associated with poor control of type-2 diabetes mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2016, 10, S64–S67. [Google Scholar] [CrossRef] [PubMed]
- Ríos, J.L.; Recio, M.C. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef] [PubMed]
- Matu, E.N.; van Staden, J. Antibacterial and anti-inflammatory activities of some plants used for medicinal purposes in Kenya. J. Ethnopharmacol. 2003, 87, 35–41. [Google Scholar] [CrossRef]
- Rabe, T.; van Staden, J. Antibacterial activity of South African plants used for medicinal purposes. J. Ethnopharmacol. 1997, 56, 81–87. [Google Scholar] [CrossRef]
- Umar, M.I.; Javeed, A.; Ashraf, M.; Riaz, A.; Mukhtar, M.M.; Afzal, S.; Altaf, R. Polarity-based solvents extraction of Opuntia dillenii and Zingiber officinale for in vitro antimicrobial activities. Int. J. Food Prop. 2013, 16, 114–124. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.-H.E.; Almakhmari, M.A.; Alameri, S.I.; Chin, S.-Y.; Abushelaibi, A.; Mai, C.-W.; Lai, K.-S. Antibacterial Activity of Clinacanthus nutans Polar and Non-Polar Leaves and Stem Extracts. Biomed. Pharmacol. J. 2020, 13, 1169–1174. [Google Scholar] [CrossRef]
- Rayan, M.; Abu-Farich, B.; Basha, W.; Rayan, A.; Abu-Lafi, S. Correlation between Antibacterial Activity and Free-Radical Scavenging: In-Vitro Evaluation of Polar/Non-Polar Extracts from 25 Plants. Processes 2020, 8, 117. [Google Scholar] [CrossRef] [Green Version]
- Eloff, J.N. A proposal on expressing the antibacterial activity of plant extracts a small first step in applying scientific knowledge to rural primary health care in South Africa. S. Afr. J. Sci. 2000, 96, 116–118. [Google Scholar]
- Eloff, J. Quantification the bioactivity of plant extracts during screening and bioassay guided fractionation. Phytomedicine 2004, 11, 370–371. [Google Scholar] [CrossRef] [PubMed]
- Amoo, S.; Ndhlala, A.; Finnie, J.; Van Staden, J. Antifungal, acetylcholinesterase inhibition, antioxidant and phytochemical properties of three Barleria species. S. Afr. J. Bot. 2011, 77, 435–445. [Google Scholar] [CrossRef] [Green Version]
- Amoo, S.; O Aremu, A.; Moyo, M.; Van Staden, J. Antioxidant and acetylcholinesterase-inhibitory properties of long-term stored medicinal plants. BMC Complement. Altern. Med. 2012, 12, 87. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makkar, H.P.S. Quantification of Tannins in Tree and Shrub Foliage: A laboratory Manual; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2003. [Google Scholar]
- Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and total flavonoids in Bulgarian fruits and vegetables. J. Univ. Chem. Technol. Metall. 2005, 40, 255–260. [Google Scholar]
- Durazzo, A. Study Approach of Antioxidant Properties in Foods: Update and Considerations. Foods 2017, 6, 17. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, O.P.; Bhat, T.K. DPPH antioxidant assay revisited. Food Chem. 2009, 113, 1202–1205. [Google Scholar] [CrossRef]
- Amarowicz, R.; Karamać, M.; Shahidi, F. Antioxidant activity of phenolic fractions of lentil (Lens culinaris). J. Food Lipids 2003, 10, 1–10. [Google Scholar] [CrossRef]
- Li, X.; Zhu, L.-J.; Chen, J.-P.; Shi, C.-Y.; Niu, L.-T.; Zhang, X.; Yao, X.-S. C-Methylated flavanones from the rhizomes of Matteuccia intermedia and their α-glucosidase inhibitory activity. Fitoterapia 2019, 136, 104147. [Google Scholar] [CrossRef]
- Eloff, J.N. A Sensitive and Quick Microplate Method to Determine the Minimal Inhibitory Concentration of Plant Extracts for Bacteria. Planta Med. 1998, 64, 711–713. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Cultivar | Extract Yield (% w/w) | Cultivar | Extract Yield (% w/w) | ||
---|---|---|---|---|---|
50% Methanol | Petroleum Ether | 50% Methanol | Petroleum Ether | ||
Algerian | 21.30 | 0.33 | Nudosa | 19.66 | 0.19 |
American giant | 6.75 | 0.76 | Ofer | 15.24 | 0.19 |
Amersfoort | 15.95 | 0.80 | Polypoly | 14.28 | 0.14 |
Arbiter | 11.97 | 0.89 | Postmasburg | 13.00 | 0.48 |
Berg x Mexican | 21.10 | 0.32 | R1 251 | 22.50 | 0.55 |
Blue Motto | 18.63 | 0.41 | R1 259 | 13.63 | 0.22 |
Corfu | 8.57 | 0.25 | R1 260 | 18.86 | 0.21 |
Cross x | 22.04 | 0.88 | Robusta | 15.79 | 0.78 |
Direkteur | 15.03 | 0.24 | Robusta x Castilo | 17.59 | 0.57 |
Ficus indice | 17.38 | 0.18 | Roedtan | 9.29 | 0.23 |
Fresno | 13.46 | 0.47 | Rossa | 25.14 | 0.79 |
Fusicaulis | 13.16 | 0.52 | Santa Rossa | 26.10 | 0.58 |
Gymno Carpo | 20.22 | 0.21 | Schagen | 12.41 | 0.69 |
Malta | 25.38 | 0.95 | Sharsheet | 19.39 | 0.97 |
Messina | 14.74 | 0.86 | Sicilian Indian fig | 11.81 | 0.18 |
Mexican | 10.36 | 0.22 | Skinner Court | 15.13 | 0.35 |
Meyers | 23.83 | 0.88 | Tormentosa | 11.93 | 0.20 |
Montery | 17.83 | 0.63 | Turpin | 22.05 | 0.23 |
Murado | 17.78 | 0.22 | Van A5 | 9.65 | 0.37 |
Muscatei | 20.17 | 1.88 | Vryherd | 10.13 | 0.65 |
Nepgen | 20.27 | 0.73 | Zastron | 13.04 | 0.46 |
Cultivar | IC50 (mg/mL) | Cultivar | IC50 (mg/mL) |
---|---|---|---|
Algerian | 0.52 ± 0.002 b | Nudosa | 1.43 ± 0.017 l,m |
American Giant | 1.11 ± 0.075 f,g,h | Ofer | 0.09 ± 0.003 a |
Amersfoort | 0.10 ± 0.001 a | Polypoly | 0.08 ± 0.001 a |
Arbiter | 0.96 ± 0.021 e | Postmasburg | 0.06 ± 0.000 a |
Berg x Mexican | 0.08 ± 0.000 a | R1 251 | 0.89 ± 0.004 d,e |
Blue Motto | 0.09 ± 0.000 a | R1 259 | 1.50 ± 0.002 m |
Corfu | 1.85 ± 0.165 n | R1 260 | 1.21 ± 0.024 h,i,j |
Cross X | 0.07 ± 0.003 a | Robusta | 0.10 ± 0.000 a |
Direkteur | 0.10 ± 0.002 a | Robusta X Castilo | 1.19 ± 0.003 g,h,i |
Ficus Indice | 0.07 ± 0.004 a | Roedtan | 0.07 ± 0.002 a |
Fresno | 1.35 ± 0.088 k,l | Rossa | 0.11 ± 0.004 a |
Fusicaulis | 0.10 ± 0.000 a | Santa Rossa | 1.30 ± 0.007 i,j,k |
Gymno Carpo | 1.37 ± 0.007 k,l | Schagen | 0.12 ± 0.001 a |
Malta | 0.85 ± 0.008 d | Sharsheret | 0.09 ± 0.001 a |
Messina | 0.08 ± 0.000 a | Sicilian Indian Fig | 1.12 ± 0.013 f,g,h |
Mexican | 0.13 ± 0.003 a | Skinner Court | 1.30 ± 0.007 j,k |
Meyers | 0.11 ± 0.000 a | Tormentosa | 1.11 ± 0.120 f,g,h |
Montery | 1.09 ± 0.001 f,g,h | Turpin | 1.09 ± 0.004 f,g |
Murado | 0.12 ± 0.001 a | Van A5 | 0.66 ± 0.025 c |
Muscatei | 1.44 ± 0.003 l,m | Vryherd | 0.10 ± 0.000 a |
Nepgen | 0.08 ± 0.000 a | Zastron | 0.74 ± 0.004 c |
* Acarbose | 1.07 ± 0.058 f |
Parameters | Total Phenolic | Flavonoid | DPPH # | Antioxidant § |
---|---|---|---|---|
Total phenolic | 1.00 | |||
Flavonoid | 0.45 ** | 1.00 | ||
DPPH | 0.15 | 0.58 ** | 1.00 | |
Antioxidant | 0.17 | 0.05 | 0.18 | 1.00 |
Antidiabetic | −0.20 | 0.09 | −0.04 | 0.46 ** |
Cultivar | Bacillus subtilis | Staphylococcus aureus | Escherichia coli | Klebsiella pneumoniae | ||||
---|---|---|---|---|---|---|---|---|
MeOH | P.E. | MeOH | P.E. | MeOH | P.E. | MeOH | P.E. | |
Algerian | 6.25 | 1.56 | >6.25 | 3.13 | >6.25 | 3.13 | 3.13 | 3.13 |
American Giant | >6.25 | 3.13 | 3.13 | 3.13 | 3.13 | >6.25 | >6.25 | >6.25 |
Berg X Mexican | 6.25 | 1.56 | >6.25 | 3.13 | >6.25 | 1.56 | 3.13 | >6.25 |
Blue Motto | >6.25 | 1.56 | >6.25 | >6.25 | 3.13 | 1.56 | 6.25 | >6.25 |
Corfu | 3.13 | >6.25 | 3.13 | >6.25 | 3.13 | >6.25 | >6.25 | >6.25 |
Direkteur | >6.25 | 1.56 | 3.13 | 1.56 | 6.25 | 1.56 | >6.25 | >6.25 |
Fresno | >6.25 | >6.25 | >6.25 | 1.56 | >6.25 | 1.56 | 6.25 | >6.25 |
Gymno Carpo | 6.25 | 3.13 | >6.25 | 1.56 | >6.25 | >6.25 | 3.13 | >6.25 |
Malta | 3.13 | 0.39 | 6.25 | 0.78 | >6.25 | 0.39 | >6.25 | 3.13 |
Mexican | 6.25 | 1.56 | >6.25 | 1.56 | 1.56 | 1.56 | 6.25 | >6.25 |
Murado | >6.25 | 0.78 | >6.25 | 1.56 | >6.25 | 1.56 | >6.25 | >6.25 |
Nudosa | 3.13 | 6.25 | 6.25 | 1.56 | >6.25 | >6.25 | 3.13 | >6.25 |
Ofer | 6.25 | 1.56 | 3.13 | 1.56 | 6.25 | 1.56 | 3.13 | >6.25 |
Polypoly | 1.56 | 1.56 | >6.25 | 1.56 | 3.13 | 1.56 | 3.13 | >6.25 |
R1 251 | 6.25 | 1.56 | 3.13 | 1.56 | 1.56 | 0.78 | 3.13 | 1.56 |
R1 259 | 6.25 | 3.13 | 6.25 | 3.13 | >6.25 | >6.25 | >6.25 | >6.25 |
Roedtan | >6.25 | 0.78 | >6.25 | 1.56 | 6.25 | 0.78 | 6.25 | >6.25 |
Sicilian Indian Fig | >6.25 | 0.39 | >6.25 | 1.56 | >6.25 | 0.78 | >6.25 | >6.25 |
Tormentosa | >6.25 | 3.13 | >6.25 | 1.56 | 6.25 | 1.56 | 6.25 | 6.25 |
Turpin | >6.25 | 0.78 | 3.13 | 1.56 | >6.25 | 0.78 | >6.25 | >6.25 |
* Ciproflaxin | 0.10 | 0.10 | 0.05 | 0.10 |
Cultivar | Bacillus subtilis | Staphylococcus aureus | Escherichia coli | Klebsiella pneumoniae | ||||
---|---|---|---|---|---|---|---|---|
MeOH | P.E. | MeOH | P.E. | MeOH | P.E. | MeOH | P.E. | |
Algerian | 34.1 | 2.12 | ND | 1.05 | ND | 1.05 | 68.05 | 1.05 |
American Giant | ND | 2.43 | 21.57 | 2.43 | 21.57 | ND | ND | ND |
Berg X Mexican | 33.76 | 2.05 | ND | 1.02 | ND | 2.05 | 67.41 | ND |
Blue Motto | ND | 2.63 | ND | ND | 59.52 | 2.63 | 29.81 | ND |
Corfu | 27.38 | ND | 27.38 | ND | 27.38 | ND | ND | ND |
Direkteur | ND | 1.54 | 48.02 | 1.54 | 24.05 | 1.54 | ND | ND |
Fresno | ND | ND | ND | 3.01 | ND | 3.01 | 21.54 | ND |
Gymno Carpo | 32.35 | 0.67 | ND | 1.35 | ND | ND | 64.60 | ND |
Malta | 81.09 | 24.36 | 40.61 | 12.18 | ND | 24.36 | ND | 3.04 |
Mexican | 16.58 | 1.41 | ND | 1.41 | 66.41 | 1.41 | 16.58 | ND |
Murado | ND | 2.82 | ND | 1.41 | ND | 1.41 | ND | ND |
Nudosa | 62.81 | 0.30 | 31.46 | 1.22 | ND | ND | 62.81 | ND |
Ofer | 24.38 | 1.22 | 48.69 | 1.22 | 24.38 | 1.22 | 48.69 | ND |
Polypoly | 91.54 | 0.90 | ND | 0.90 | 45.62 | 0.90 | 45.62 | ND |
R1 251 | 36.00 | 3.53 | 71.88 | 3.53 | 144.23 | 7.05 | 71.88 | 3.53 |
R1 259 | 21.81 | 0.70 | 21.81 | 0.70 | ND | ND | ND | ND |
Roedtan | ND | 2.95 | ND | 1.47 | 14.86 | 2.95 | 14.86 | ND |
Sicilian Indian Fig | ND | 4.62 | ND | 1.15 | ND | 2.31 | ND | ND |
Tormentosa | ND | 0.64 | ND | 1.28 | 19.09 | 1.28 | 19.09 | 0.32 |
Turpin | ND | 2.95 | 70.45 | 1.47 | ND | 2.95 | ND | ND |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mabotja, M.B.; Venter, S.L.; Du Plooy, C.P.; Kudanga, T.; Amoo, S.O. Phytochemical Content, Antioxidant, Alpha-Glucosidase Inhibitory and Antibacterial Activities of Spineless Cactus Pear Cultivars. Plants 2021, 10, 1312. https://doi.org/10.3390/plants10071312
Mabotja MB, Venter SL, Du Plooy CP, Kudanga T, Amoo SO. Phytochemical Content, Antioxidant, Alpha-Glucosidase Inhibitory and Antibacterial Activities of Spineless Cactus Pear Cultivars. Plants. 2021; 10(7):1312. https://doi.org/10.3390/plants10071312
Chicago/Turabian StyleMabotja, Mologadi B., Sonja L. Venter, Christian P. Du Plooy, Tukayi Kudanga, and Stephen O. Amoo. 2021. "Phytochemical Content, Antioxidant, Alpha-Glucosidase Inhibitory and Antibacterial Activities of Spineless Cactus Pear Cultivars" Plants 10, no. 7: 1312. https://doi.org/10.3390/plants10071312
APA StyleMabotja, M. B., Venter, S. L., Du Plooy, C. P., Kudanga, T., & Amoo, S. O. (2021). Phytochemical Content, Antioxidant, Alpha-Glucosidase Inhibitory and Antibacterial Activities of Spineless Cactus Pear Cultivars. Plants, 10(7), 1312. https://doi.org/10.3390/plants10071312