Determination of Phenolic Content, Antioxidant Activity, and Tyrosinase Inhibitory Effects of Functional Cosmetic Creams Available on the Thailand Market
Abstract
:1. Introduction
2. Results
2.1. Characteristics of the Cosmetic Creams in This Study
2.2. Determination of Total Phenolic Contents in Cosmetic Creams
2.3. Determination of the Antioxidant Activity from Cream Extracts
2.4. Determination of the Tyrosinase Inhibitory Activity from Cream Extracts
3. Discussion
4. Conclusions
5. Materials and Methods
5.1. Chemicals and Reagents
5.2. Samples Used in This Study
5.3. Preparation of Cream Extract
5.4. Determination of Total Phenolic Contents
5.5. ABTS Assay for Antioxidant Properties of Cream Extracts
5.6. In Vitro Tyrosinase Inhibitory Activity of Cream Extracts
5.7. Statistical Analysis
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Leonard, C. Global beauty industry trends 2011. Skin Inc. 2011, 8, 48–50. [Google Scholar]
- Quoquab, F.; Jaini, A.; Mohammad, J. Does It Matter Who Exhibits More Green Purchase Behavior of Cosmetic Products in Asian Culture? A Multi-Group Analysis Approach. Int. J. Environ. Res. Public Health 2020, 17, 5258. [Google Scholar] [CrossRef]
- Panzella, L.; Napolitano, A. Natural and bioinspired phenolic compounds as tyrosinase inhibitors for the treatment of skin hyperpigmentation: Recent advances. Cosmetics 2019, 6, 57. [Google Scholar] [CrossRef] [Green Version]
- Yip, J.; Ainsworth, S.; Hugh, M.T. Beyond whiteness: Perspectives on the rise of the Pan-Asian beauty ideal. In Race in the Marketplace; Springer: Gewerbestr, Switzerland, 2019; pp. 73–85. [Google Scholar]
- Shevde, N. All’s fair in love and cream: A cultural case study of Fair & Lovely in India. Advert. Soc. Rev. 2008, 9, 1–9. [Google Scholar]
- Peltzer, K.; Pengpid, S. Knowledge about, attitude toward, and practice of skin lightening products use and its social correlates among university students in five Association of Southeast Asian Nations (ASEAN) countries. Int. J. Dermatol. 2017, 56, 277–283. [Google Scholar] [CrossRef]
- Giacomoni, P.U. Advancement in skin aging: The future cosmeceuticals. Clin. Dermatol. 2008, 26, 364–366. [Google Scholar] [CrossRef]
- Cavinato, M.; Waltenberger, B.; Baraldo, G.; Grade, C.V.C.; Stuppner, H.; Jansen-Dürr, P. Plant extracts and natural compounds used against UVB-induced photoaging. Biogerontology 2017, 18, 499–516. [Google Scholar] [CrossRef] [PubMed]
- Dunaway, S.; Odin, R.; Zhou, L.; Ji, L.; Zhang, Y.; Kadekaro, A.L. Natural Antioxidants: Multiple Mechanisms to Protect Skin from Solar Radiation. Front. Pharmacol. 2018, 9, 392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lorz, L.R.; Yoo, B.C.; Kim, M.-Y.; Cho, J.Y. Anti-Wrinkling and Anti-Melanogenic Effect of Pradosia mutisii Methanol Extract. Int. J. Mol. Sci. 2019, 20, 1043. [Google Scholar] [CrossRef] [Green Version]
- Ahuja, A.; Gupta, J.; Gupta, R. Miracles of Herbal Phytomedicines in Treatment of Skin Disorders: Natural Healthcare Perspective. Infect. Disord. Drug Targets 2020, 20, 1–11. [Google Scholar] [CrossRef]
- Yu, H.; Li, H.; Li, Y.; Li, M.; Chen, G. Effect of isoliquiritigenin for the treatment of atopic dermatitis-like skin lesions in mice. Arch. Dermatol. Res. 2017, 309, 805–813. [Google Scholar] [CrossRef]
- Piazza, S.; Fumagalli, M.; Khalilpour, S.; Martinelli, G.; Magnavacca, A.; Dell’Agli, M.; Sangiovanni, E. A Review of the Potential Benefits of Plants Producing Berries in Skin Disorders. Antioxidants 2020, 9, 542. [Google Scholar] [CrossRef]
- Djawad, K.; Wahab, S.; Wibisono, O.; Avanti, C.; Putranti, A.R.; Bukhari, A. Protective Effect of Mangosteen Pericarp Extract Cream Against UVB-Induced Erythema. J. Clin. Aesthet. Dermatol. 2020, 13, 59–65. [Google Scholar]
- Dias, R.; Oliveira, H.; Fernandes, I.; Simal-Gandara, J.; Perez-Gregorio, R. Recent advances in extracting phenolic compounds from food and their use in disease prevention and as cosmetics. Crit. Rev. Food Sci. Nutr. 2020, 61, 1–22. [Google Scholar] [CrossRef]
- Chiocchio, I.; Mandrone, M.; Sanna, C.; Maxia, A.; Tacchini, M.; Poli, F. Screening of a hundred plant extracts as tyrosinase and elastase inhibitors, two enzymatic targets of cosmetic interest. Ind. Crops Prod. 2018, 122, 498–505. [Google Scholar] [CrossRef]
- Oksana, S.; Marian, B.; Mahendra, R.; Bo, S.H. Plant phenolic compounds for food, pharmaceutical and cosmetics production. J. Med. Plants Res. 2012, 6, 2526–2539. [Google Scholar]
- Mapoung, S.; Arjsri, P.; Thippraphan, P.; Semmarath, W.; Yodkeeree, S.; Chiewchanvit, S.; Piyamongkol, W.; Limtrakul, P. Photochemoprotective effects of Spirulina platensis extract against UVB irradiated human skin fibroblasts. S. Afr. J. Bot. 2020, 130, 198–207. [Google Scholar] [CrossRef]
- Ruszová, E.; Cheel, J.; Pávek, S.; Moravcová, M.; Hermannová, M.; Matějková, I.; Spilková, J.; Velebný, V.; Kubala, L. Epilobium angustifolium extract demonstrates multiple effects on dermal fibroblasts in vitro and skin photo-protection in vivo. Gen. Physiol. Biophys. 2013, 32, 347–359. [Google Scholar] [CrossRef] [Green Version]
- de Lima Cherubim, D.J.; Buzanello Martins, C.V.; Oliveira Fariña, L.; da Silva de Lucca, R.A. Polyphenols as natural antioxidants in cosmetics applications. J. Cos. Der. 2020, 19, 33–37. [Google Scholar]
- Przybylska-Balcerek, A.; Stuper-Szablewska, K. Phenolic acids used in the cosmetics industry as natural antioxidants. Eur. J. Med. Technol. 2019, 4, 24–32. [Google Scholar]
- Whiting, D.A. Natural phenolic compounds 1900–2000: A bird’s eye view of a century’s chemistry. Nat. Pro. Rep. 2001, 18, 583–606. [Google Scholar] [CrossRef]
- Zillich, O.; Schweiggert-Weisz, U.; Eisner, P.; Kerscher, M. Polyphenols as active ingredients for cosmetic products. Int. J. Cos. Sci. 2015, 37, 455–464. [Google Scholar] [CrossRef]
- Smith, C. Natural antioxidants in prevention of accelerated ageing: A departure from conventional paradigms required. J. Physiol. Biochem. 2018, 74, 549–558. [Google Scholar] [CrossRef]
- Saewan, N.; Jimtaisong, A. Natural products as photoprotection. J. Cos. Dermatol. 2015, 14, 47–63. [Google Scholar] [CrossRef]
- Liu, Y.; Chan, F.; Sun, H.; Yan, J.; Fan, D.; Zhao, D.; An, J.; Zhou, D. Resveratrol protects human keratinocytes HaCaT cells from UVA-induced oxidative stress damage by downregulating Keap1 expression. Eur. J. Pharmacol. 2011, 650, 130–137. [Google Scholar] [CrossRef]
- Vicentini, F.T.; He, T.; Shao, Y.; Fonseca, M.J.; Verri, W.A., Jr.; Fisher, G.J.; Xu, Y. Quercetin inhibits UV irradiation-induced inflammatory cytokine production in primary human keratinocytes by suppressing NF-κB pathway. J. Dermatol. Sci. 2011, 61, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Sevın, A.; Öztaş, P.; Senen, D.; Han, Ü.; Karaman, C.; Tarimci, N.; Kartal, M.; Erdoǧan, B. Effects of polyphenols on skin damage due to ultraviolet A rays: An experimental study on rats. J. Eur. Acad. Dermatol. Venereol. 2007, 21, 650–656. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lee, W.; Jayawardena, T.U.; Cha, S.-H.; Jeon, Y.-J. Dieckol, an algae-derived phenolic compound, suppresses airborne particulate matter-induced skin aging by inhibiting the expressions of pro-inflammatory cytokines and matrix metalloproteinases through regulating NF-κB, AP-1, and MAPKs signaling pathways. Food Chem. Toxicol. 2020, 146, 1–10. [Google Scholar] [CrossRef]
- Chow, H.S.; Hakim, I.A.; Vining, D.R.; Crowell, J.A.; Ranger-Moore, J.; Chew, W.M.; Celaya, C.A.; Rodney, S.R.; Hara, Y.; Alberts, D.S. Effects of dosing condition on the oral bioavailability of green tea catechins after single-dose administration of Polyphenon E in healthy individuals. Clin. Cancer Res. 2005, 11, 4627–4633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aburjai, T.; Natsheh, F.M. Plants used in cosmetics. Phytother. Res. 2003, 17, 987–1000. [Google Scholar] [CrossRef]
- Lourith, N.; Kanlayavattanakul, M. Natural surfactants used in cosmetics: Glycolipids. Int. J. Cosmet. Sci. 2009, 31, 255–261. [Google Scholar] [CrossRef]
- Nattapon, K.; Orrapun, S.; Chanikan, S.; Natta, L.; Orapin, K.; Rittipun, R. Phenolic compounds and biological activities of coffee extract for cosmetic product. J. Sci. Eng. 2020, 1, 71–76. [Google Scholar]
- Panzella, L. Natural Phenolic Compounds for Health, Food and Cosmetic Applications. Antioxidants 2020, 9, 427. [Google Scholar] [CrossRef]
- Petruk, G.; Giudice, R.; Del Rigano, M.; Monti, D. Antioxidants from Plants Protect against Skin Photoaging. Oxid. Med. Cell. Longev. 2018, 2018, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Bachelor, M.A.; Bowden, G.T. UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression. Semin. Cancer Biol. 2004, 14, 131–138. [Google Scholar] [CrossRef] [PubMed]
- Valko, M.; Rhodes, C.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006, 160, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Kruk, J.; Duchnik, E. Oxidative stress and skin diseases: Possible role of physical activity. Asian Pac. J. Cancer Prev. 2014, 15, 561–568. [Google Scholar] [CrossRef] [PubMed]
- Bickers, D.R.; Athar, M. Oxidative stress in the pathogenesis of skin disease. J. Investig. Dermatol. 2006, 126, 2565–2575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Działo, M.; Mierziak, J.; Korzun, U.; Preisner, M.; Szopa, J.; Kulma, A. The potential of plant phenolics in prevention and therapy of skin disorders. Int. J. Mol. Sci. 2016, 17, 160. [Google Scholar] [CrossRef] [Green Version]
- de Gruijl, F.R. Skin cancer and solar UV radiation. Eur. J. Cancer 1999, 35, 2003–2009. [Google Scholar] [CrossRef]
- Pfeifer, G.P.; Besaratinia, A. UV wavelength-dependent DNA damage and human non-melanoma and melanoma skin cancer. Photochem. Photobiol. Sci. 2012, 11, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolick, N.L.; Geller, A.C. Epidemiology of melanoma. Hematol. Oncol. Clin. 2021, 35, 57–72. [Google Scholar] [CrossRef] [PubMed]
- Czerwińska, A.E.; Krzyścin, J.W. Climatological aspects of the increase of the skin cancer (melanoma) incidence rate in Europe. Int. J. Climatol. 2020, 40, 3196–3207. [Google Scholar] [CrossRef]
- Thrift, A.P.; Gudenkauf, F.J. Melanoma incidence among non-Hispanic Whites in all 50 US states from 2001 through 2015. J. Nat. Cancer Inst. 2020, 112, 533–539. [Google Scholar] [CrossRef] [PubMed]
- Bray, F.; Ferlay, J.; Laversanne, M.; Brewster, D.; Gombe Mbalawa, C.; Kohler, B.; Piñeros, M.; Steliarova-Foucher, E.; Swaminathan, R.; Antoni, S. Cancer Incidence in Five Continents: Inclusion criteria, highlights from Volume X and the global status of cancer registration. Int. J. Cancer 2015, 137, 2060–2071. [Google Scholar] [CrossRef] [PubMed]
- Whiteman, D.C.; Bray, C.A.; Siskind, V.; Hole, D.; MacKie, R.M.; Green, A.C. A comparison of the anatomic distribution of cutaneous melanoma in two populations with different levels of sunlight: The west of Scotland and Queensland, Australia 1982–2001. Cancer Causes Control. 2007, 18, 485–491. [Google Scholar] [CrossRef] [PubMed]
- Martin, A.; Guitera, P. Teledermatology for Skin Cancer: The Australian Experience. Curr. Dermatol. Rep. 2020, 9, 43–51. [Google Scholar] [CrossRef]
- Leiter, U.; Keim, U.; Garbe, C. Epidemiology of skin cancer: Update 2019. In Sunlight, Vitamin D and Skin Cancer; Springer: Berlin/Heidelberg, Germany, 2020; pp. 123–139. [Google Scholar]
- Perrin, D.M. A hypothesis for examining dihydroxyacetone, the active component in sunless tanning products, as a topical prophylactic against SARS-COV-2 transmission. Med. Hypotheses 2020, 144, 1–3. [Google Scholar] [CrossRef]
- Fu, J.M.; Dusza, S.W.; Halpern, A.C. Sunless tanning. J. Am. Aca. Dermatol. 2004, 50, 706–713. [Google Scholar] [CrossRef]
- Burkhart, C.G.; Burkhart, C.N. Dihydroxyacetone and methods to improve its performance as artificial tanner. Open Dermatol. J. 2009, 3, 42–43. [Google Scholar] [CrossRef]
- Xie, Q.; Zhang, M. White or tan? A cross-cultural analysis of skin beauty advertisements between China and the United States. Asian J. Commun 2013, 23, 538–554. [Google Scholar] [CrossRef]
- Couteau, C.; Coiffard, L. Overview of skin whitening agents: Drugs and cosmetic products. Cosmetics 2016, 3, 27. [Google Scholar] [CrossRef]
- Kwon, K.J.; Bae, S.; Kim, K.; An, I.S.; Ahn, K.J.; An, S.; Cha, H.J. Asiaticoside, a component of Centella asiatica, inhibits melanogenesis in B16F10 mouse melanoma. Mol. Med. Rep. 2014, 10, 503–507. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.K.; Ara, I.; Mondal, M.S.A.; Kabir, Y. Phytochemistry, pharmacological activity, and potential health benefits of Glycyrrhiza glabra. Heliyon 2021, 7, e07240. [Google Scholar] [CrossRef] [PubMed]
- Soto, M.L.; Falqué, E.; Domínguez, H. Relevance of natural phenolics from grape and derivative products in the formulation of cosmetics. Cosmetics 2015, 2, 259–276. [Google Scholar] [CrossRef] [Green Version]
- Limtrakul, P.; Yodkeeree, S.; Thippraphan, P.; Punfa, W.; Srisomboon, J. Anti-aging and tyrosinase inhibition effects of Cassia fistula flower butanolic extract. BMC Complement. Altern Med. 2016, 16, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Pan, E. Beautiful White: An Illumination of Asian Skin-Whitening Culture; Unpublished Undergraduate Dissertation; Duke University: Durham, NC, USA, 2013; Available online: https://core.ac.uk/download/pdf/37748773.pdf (accessed on 31 May 2021).
- Burger, P.; Landreau, A.; Azoulay, S.; Michel, T.; Fernandez, X. Skin whitening cosmetics: Feedback and challenges in the development of natural skin lighteners. Cosmetics 2016, 3, 36. [Google Scholar] [CrossRef] [Green Version]
- Desmedt, B.; Rogiers, V.; Courselle, P.; De Beer, J.; De Paepe, K.; Deconinck, E. Development and validation of a fast chromatographic method for screening and quantification of legal and illegal skin whitening agents. J. Pharm. Biomed. Anal. 2013, 83, 82–88. [Google Scholar] [CrossRef]
- Eradati, N.; Tajabadi, F.; Ahmadi-Ashtiani, H.R.; Rezazadeh, S.; Taherian, M.; Rastegar, H. Optimization of cleaning and analytical method for determination of arbutin, hydroquinone and kojic acid in cosmetic products. J. Med. Plants 2020, 20, 50–59. [Google Scholar]
- Baek, S.H.; Cao, L.; Jeong, S.J.; Kim, H.-R.; Nam, T.J.; Lee, S.G. The Comparison of Total Phenolics, Total Antioxidant, and Anti-Tyrosinase Activities of Korean Sargassum Species. J. Food Qual. 2021, 2021, 1–7. [Google Scholar] [CrossRef]
- Chaita, E.; Lambrinidis, G.; Cheimonidi, C.; Agalou, A.; Beis, D.; Trougakos, I.; Mikros, E.; Skaltsounis, A.-L.; Aligiannis, N. Anti-melanogenic properties of Greek plants. A novel depigmenting agent from Morus alba wood. Molecules 2017, 22, 514. [Google Scholar] [CrossRef] [Green Version]
- Li, H.X.; Park, J.U.; Su, X.D.; Kim, K.T.; Kang, J.S.; Kim, Y.R.; Kim, Y.H.; Yang, S.Y. Identification of anti-melanogenesis constituents from Morus alba L. leaves. Molecules 2018, 23, 2559. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thitimuta, S.; Pithayanukul, P.; Nithitanakool, S.; Bavovada, R.; Leanpolchareanchai, J.; Saparpakorn, P. Camellia sinensis L. Extract and its potential beneficial effects in antioxidant, anti-inflammatory, anti-hepatotoxic, and anti-tyrosinase activities. Molecules 2017, 22, 401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pullar, J.M.; Carr, A.C.; Vissers, M. The roles of vitamin C in skin health. Nutrients 2017, 9, 866. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rincón-Fontán, M.; Rodríguez-López, L.; Vecino, X.; Cruz, J.; Moldes, A. Potential application of a multifunctional biosurfactant extract obtained from corn as stabilizing agent of vitamin C in cosmetic formulations. Sustain. Chem. Pharm. 2020, 16, 1–7. [Google Scholar] [CrossRef]
- Lin, J.-Y.; Selim, M.A.; Shea, C.R.; Grichnik, J.M.; Omar, M.M.; Monteiro-Riviere, N.A.; Pinnell, S.R. UV photoprotection by combination topical antioxidants vitamin C and vitamin E. J. Am. Acad. Dermatol. 2003, 48, 866–874. [Google Scholar] [CrossRef] [Green Version]
- Padilla, M.; Palma, M.; Barroso, C.G. Determination of phenolics in cosmetic creams and similar emulsions. J. Chromatogr A 2005, 1091, 83–88. [Google Scholar] [CrossRef]
- Abbood, A. Determination of phenolic content and antioxidant activity of some cosmetic creams available in Syrian market. J. Chem. Pharm. Sci. 2018, 11, 280–283. [Google Scholar] [CrossRef]
- Kaale, E.; Van Schepdael, A.; Roets, E.; Hoogmartens, J. Determination of capsaicinoids in topical cream by liquid–liquid extraction and liquid chromatography. J. Pharm. Biomed. Anal. 2002, 30, 1331–1337. [Google Scholar] [CrossRef]
- Mikami, E.; Goto, T.; Ohno, T.; Matsumoto, H.; Nishida, M. Simultaneous analysis of dehydroacetic acid, benzoic acid, sorbic acid and salicylic acid in cosmetic products by solid-phase extraction and high-performance liquid chromatography. J. Pharm. Biomed. Anal. 2002, 28, 261–267. [Google Scholar] [CrossRef]
- Shih, Y.; Cheng, F.-C. Determination of sunscreen agents in cosmetic products using microwave-assisted extraction and liquid chromatography. J. Chromatogr. A 2000, 876, 243–246. [Google Scholar] [CrossRef]
- Wang, S.-P.; Lee, W.-T. Determination of benzophenones in a cosmetic matrix by supercritical fluid extraction and capillary electrophoresis. J. Chromatogr. A 2003, 987, 269–275. [Google Scholar] [CrossRef]
- Karim, A.A.; Azlan, A.; Ismail, A.; Hashim, P.; Abd Gani, S.S.; Zainudin, B.H.; Abdullah, N.A. Phenolic composition, antioxidant, anti-wrinkles and tyrosinase inhibitory activities of cocoa pod extract. BMC Complement. Altern Med. 2014, 14, 1–13. [Google Scholar]
- Safia, A.; Aamir, Z.; Iqbal, A.; Rafi, S.; Zafar, M. Assessment of rose water and evaluation of antioxidant and anti-inflammatory properties of a rose water based cream formulation. Int. J. Pharm. Clin. Res. 2019, 11, 43–48. [Google Scholar]
- Kumar, S. Exploratory analysis of global cosmetic industry: Major players, technology and market trends. Technovation 2005, 25, 1263–1272. [Google Scholar] [CrossRef]
- Qian, W.; Liu, W.; Zhu, D.; Cao, Y.; Tang, A.; Gong, G.; Su, H. Natural skin-whitening compounds for the treatment of melanogenesis. Exp. Ther. Med. 2020, 20, 173–185. [Google Scholar] [CrossRef] [Green Version]
- Hakozaki, T.; Minwalla, L.; Zhuang, J.; Chhoa, M.; Matsubara, A.; Miyamoto, K.; Greatens, A.; Hillebrand, G.G.; Bissett, D.L.; Boissy, R.E. The effect of niacinamide on reducing cutaneous pigmentation and suppression of melanosome transfer. Br. J. Dermatol. 2002, 147, 20–31. [Google Scholar] [CrossRef]
- Khan, B.A.; Mahmood, T.; Menaa, F.; Shahzad, Y.; Yousaf, A.M.; Hussain, T.; Ray, S.D. New Perspectives on the Efficacy of Gallic Acid in Cosmetics & Nanocosmeceuticals. Curr. Pharm. Des. 2018, 24, 5181–5187. [Google Scholar] [CrossRef]
- Lobine, D.; Cummins, I.; Govinden-Soulange, J.; Ranghoo-Sanmukhiya, M.; Lindsey, K.; Chazot, P.L.; Ambler, C.A.; Grellscheid, S.; Sharples, G.; Lall, N.; et al. Medicinal Mascarene Aloes: An audit of their phytotherapeutic potential. Fitoterapia 2018, 124, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Sangkaew, O.; Yompakdee, C. Fermented unpolished black rice (Oryza sativa L.) inhibits melanogenesis via ERK, p38, and AKT phosphorylation in B16F10 melanoma cells. J. Microbiol. Biotechnol. 2020, 30, 1184–1194. [Google Scholar] [CrossRef]
- Muddathir, A.; Yamauchi, K.; Batubara, I.; Mohieldin, E.; Mitsunaga, T. Anti-tyrosinase, total phenolic content and antioxidant activity of selected Sudanese medicinal plants. S. Afr. J. Bot. 2017, 109, 9–15. [Google Scholar] [CrossRef]
- Hinkle, D.E.; Wiersma, W.; Jurs, S.G. Applied Statistics for the Behavioral Sciences; Houghton Mifflin College Division: Boston, MA, USA, 2003; Volume 663. [Google Scholar]
- Łopaciuk, A.; Łoboda, M. Global beauty industry trends in the 21st century. In Proceedings of the Management, Knowledge and Learning International Conference, Zadar, Croatia, 19–21 June 2013; pp. 19–21. [Google Scholar]
- Gilbert, L.; Savary, G.; Grisel, M.; Picard, C. Predicting sensory texture properties of cosmetic emulsions by physical measurements. Chemom. Intell. Lab. Syst. 2013, 124, 21–31. [Google Scholar] [CrossRef]
- Zolghadri, S.; Bahrami, A.; Hassan Khan, M.T.; Munoz-Munoz, J.; Garcia-Molina, F.; Garcia-Canovas, F.; Saboury, A.A. A comprehensive review on tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 2019, 34, 279–309. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- San Miguel-Chávez, R. Phenolic antioxidant capacity: A review of the state of the art. In Phenolic Compounds-Biological Activity; IntechOpend: London, UK, 2017; pp. 59–74. [Google Scholar]
- Rolim, P.; Fidelis, G.; Padilha, C.; Santos, E.; Rocha, H.; Macedo, G. Phenolic profile and antioxidant activity from peels and seeds of melon (Cucumis melo L. var. reticulatus) and their antiproliferative effect in cancer cells. Braz. J. Med. Biol. Res. 2018, 51, 1–14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jeon, J.; Sung, J.; Lee, H.; Kim, Y.; Jeong, H.S.; Lee, J. Protective activity of caffeic acid and sinapic acid against UVB-induced photoaging in human fibroblasts. J. Food Biochem. 2019, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Merecz-Sadowska, A.; Sitarek, P.; Kucharska, E.; Kowalczyk, T.; Zajdel, K.; Cegliński, T.; Zajdel, R. Antioxidant Properties of Plant-Derived Phenolic Compounds and Their Effect on Skin Fibroblast Cells. Antioxidants 2021, 10, 726. [Google Scholar] [CrossRef]
- Villarama, C.; Maibach, H. Glutathione as a depigmenting agent: An overview. Int. J. Cos. Sci. 2005, 27, 147–153. [Google Scholar] [CrossRef]
- Zhou, S.; Sakamoto, K. Citric acid promoted melanin synthesis in B16F10 mouse melanoma cells, but inhibited it in human epidermal melanocytes and HMV-II melanoma cells via the GSK3beta/beta-catenin signaling pathway. PLoS ONE 2020, 15, e0243565. [Google Scholar] [CrossRef]
- Klimek-Szczykutowicz, M.; Szopa, A.; Ekiert, H. Citrus limon (Lemon) Phenomenon-A Review of the Chemistry, Pharmacological Properties, Applications in the Modern Pharmaceutical, Food, and Cosmetics Industries, and Biotechnological Studies. Plants 2020, 9, 119. [Google Scholar] [CrossRef] [Green Version]
- Lopez, A.; de Tangil, M.S.; Vega-Orellana, O.; Ramirez, A.S.; Rico, M. Phenolic constituents, antioxidant and preliminary antimycoplasmic activities of leaf skin and flowers of Aloe vera (L.) Burm. f. (syn. A. barbadensis Mill.) from the Canary Islands (Spain). Molecules 2013, 18, 4942–4954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olennikov, D.; Chirikova, N.; Tankhaeva, L. Phenolic compounds of Scutellaria baicalensis Georgi. Russ. J. Bioorganic Chem. 2010, 36, 816–824. [Google Scholar] [CrossRef]
- Kopustinskiene, D.M.; Bernatoniene, J. Antioxidant Effects of Schisandra chinensis Fruits and Their Active Constituents. Antioxidants 2021, 10, 620. [Google Scholar] [CrossRef] [PubMed]
- Koyu, H.; Kazan, A.; Ozturk, T.K.; Yesil-Celiktas, O.; Haznedaroglu, M.Z. Optimizing subcritical water extraction of Morus nigra L. fruits for maximization of tyrosinase inhibitory activity. J. Supercrit Fluids 2017, 127, 15–22. [Google Scholar] [CrossRef]
- Tourino, S.; Lizarraga, D.; Carreras, A.; Lorenzo, S.; Ugartondo, V.; Mitjans, M.; Vinardell, M.P.; Julia, L.; Cascante, M.; Torres, J.L. Highly galloylated tannin fractions from witch hazel (Hamamelis virginiana) bark: Electron transfer capacity, in vitro antioxidant activity, and effects on skin-related cells. Chem. Res. Toxicol. 2008, 21, 696–704. [Google Scholar] [CrossRef] [PubMed]
- Cle, C.; Hill, L.M.; Niggeweg, R.; Martin, C.R.; Guisez, Y.; Prinsen, E.; Jansen, M.A. Modulation of chlorogenic acid biosynthesis in Solanum lycopersicum; consequences for phenolic accumulation and UV-tolerance. Phytochemistry 2008, 69, 2149–2156. [Google Scholar] [CrossRef]
- Vojdani, A.; Bazargan, M.; Vojdani, E.; Wright, J. New evidence for antioxidant properties of vitamin C. Cancer Detect. Prev. 2000, 24, 508–523. [Google Scholar]
- Ab Aziz, N.A.; Salim, N.; Zarei, M.; Saari, N.; Yusoff, F.M. Extraction, anti-tyrosinase, and antioxidant activities of the collagen hydrolysate derived from Rhopilema hispidum. Prep. Biochem. Biotechnol. 2021, 51, 44–53. [Google Scholar] [CrossRef]
- Smit, N.; Vicanova, J.; Pavel, S. The hunt for natural skin whitening agents. Int. J. Mol. Sci 2009, 10, 5326–5349. [Google Scholar] [CrossRef] [PubMed]
- Caesar, L.K.; Cech, N.B. Synergy and antagonism in natural product extracts: When 1 + 1 does not equal 2. Nat. Prod. Rep. 2019, 36, 869–888. [Google Scholar] [CrossRef] [Green Version]
- Junio, H.A.; Sy-Cordero, A.A.; Ettefagh, K.A.; Burns, J.T.; Micko, K.T.; Graf, T.N.; Richter, S.J.; Cannon, R.E.; Oberlies, N.H.; Cech, N.B. Synergy-directed fractionation of botanical medicines: A case study with goldenseal (Hydrastis canadensis). J. Nat. Prod. 2011, 74, 1621–1629. [Google Scholar] [CrossRef] [Green Version]
- Ulrich-Merzenich, G.; Panek, D.; Zeitler, H.; Vetter, H.; Wagner, H. Drug development from natural products: Exploiting synergistic effects. Indian J. Exp. Biol. 2010, 48, 208–219. [Google Scholar]
- Wagner, H.; Ulrich-Merzenich, G. Synergy research: Approaching a new generation of phytopharmaceuticals. Phytomedicine 2009, 16, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
Functional Cream (Individual Sample Code) | Important Active Ingredients (Declared in the Product’s Label) | Total Phenolic Contents (mg GAE/30 g Cream) | Antioxidant Capacity (mg Trolox Equivalent/30 g Cream) |
---|---|---|---|
No. 1 | Vitis vinifera, Ascorbyl glucoside and Tocopherol | 47.92 ± 3.94 | 43.98 ± 7.48 |
No. 2 | Citrus limon, Ascorbyl glucoside and Citric acid | 19.04 ± 1.06 | 35.83 ± 10.95 |
No. 3 | Prunus armeniaca, Simmondsia chinensis, Aloe barbadensis, Ascorbyl glucoside, Tocopheryl acetate and Niacinamide | 0.46 ± 0.23 | 3.61 ± 0.02 |
No. 4 | Limonia acidissima, Hibiscus sabdariffa, Morus alba, Aloe barbadensis, Cucumis sativus, Helianthus annuus, Ascobic acid and Tocopherol | 2.03 ± 0.95 | 10.35 ± 0.92 |
No. 5 | Morus nigra, Rubus idaeus, Prunus avium, Lavendula stoechas, Centella asiatica, Panex ginseng, Zingiber officinale, Buddleja officinalis, Fragaria vesca and Tocopheryl acetate | 1.02 ± 0.03 | 11.61 ± 2.76 |
No. 6 | Daucus carota sativa, Sodium ascorbyl phosphate and Tocopheryl acetate | 4.10 ± 1.68 | 14.33 ± 6.58 |
No. 7 | Solanum lycopersicum, Hamamelis virginiana, Ascorbyl palmitate, Tocopherol, Arbutin, Glutathione and Niacinamide | 4.07 ± 1.41 | 13.76 ± 6.60 |
No. 8 | Passiflora laurifolia and Caprylyl 2-glyceryl ascorbate | 3.74 ± 0.70 | 19.87 ± 0.48 |
No. 9 | Ascorbyl glucoside and Tocopheryl acetate | 3.40 ± 0.27 | 34.59 ± 1.41 |
No. 10 | Centella asiatica, Allum cepa bulb, Aloe barbadensis and Simmondsia chinensis | 14.89 ± 2.92 | 23.86 ± 6.09 |
No. 11 | Leontopodium alpinum, Opuntia streptacantha, Brassica napus and Cynara scolymus | 3.10 ± 0.26 | 1.09 ± 1.54 |
No. 12 | Thymus serpyllum, Aloe barbadensis, Lepidium sativum L., Cynara scolymus, Borago officinalis, Ascorbyl tetraisopalmitate, Tocopheryl acetate, Niacinamide and citric acid | 11.68 ± 3.44 | 55.98 ± 10.29 |
No. 13 | Lepidium sativum L. | 4.01 ± 0.25 | 25.44 ± 0.35 |
No. 14 | Aloe barbadensis, Hamamelis virginiana, Artemia salina, Helianthus annuus, Enantia chlorantha, Epilobium fleischeri, Ribes nigrum, Pinus pinaster, Cardiospermum halicacabum, Chlorella vulgaris, Rosmarinus officinalis, Tocopherol, Tocopheryl acetate, Kojic dipalmitate and Niacinamide | 11.10 ± 0.29 | 15.43 ± 3.13 |
No. 15 | Carthamus tinctorius, Morus alba, Peaonia suffruticosa, Thuja orientalis, Prunus persica, Ganoderma lucidum, Lilium tigrinum, Oryza sativa, Helianthus annuus, Lavandula angustifolia, Illicium verum, Scutellaria baicalensis and Tocopherol | 4.40 ± 2.50 | 19.44 ± 6.10 |
No. 16 | Oryza sativa and Tocopherol | 6.70 ± 1.44 | 5.86 ± 0.81 |
No. 17 | Oryza sativa, Saxifraga stolonifera, Paeonia suffruticosa, Scutellaria baicalensis, Citric acid, Arbutin, Glutathione and Niacinamide | 2.49 ± 0.65 | 6.08 ± 2.32 |
No. 18 | Glycyrrhiza glabra, Myrciaria dubia, Ascorbic acid, Sodium ascorbyl phosphate and Citric acid | 21.84 ± 0.52 | 39.95 ± 13.30 |
No. 19 | Dioscorea villossa, Oryza sativa, Dunaliella salina, Crocus chrysanthus buld, Sativum Sprout, Tocopheryl acetate and Niacinamide | 7.27 ± 9.67 | 13.31 ± 1.43 |
No. 20 | Schizandra chinenisi, Lilium candidum, Saxifraga sarmentosa, Raeonia suffrutocosa, Scutellaria baicalensis, Glutathione, Arbutin and Citric acid | 14.89 ± 0.64 | 25.86 ± 10.98 |
No. 21 | Niacinamide and Glutathione | 10.01 ± 1.23 | 37.84 ± 10.39 |
No. 22 | Jellyfish extract and Niacinamide | 5.87 ± 1.83 | 17.48 ± 2.32 |
No. 23 | Myrciaria dubia, Citrus aurantium dulcis, Solanum lycopersicum, Arctostaphylos uva-ursi, Ascorbyl palmitate, Tocopheryl acetate, Arbutin, Glutathione and Niacinamide | 22.26 ± 0.19 | 23.73 ± 5.28 |
Functional Cosmetic Cream (Individual Sample Code) | Antioxidant Capacity (mg Trolox/30 g Cream) | % Tyrosinase Inhibition |
---|---|---|
No. 1 | 43.98 ± 7.48 | ND |
No. 2 | 35.83 ± 10.95 | 91.84 ± 0.50 |
No. 3 | 3.61 ± 0.02 | 3.66 ± 0.11 |
No. 4 | 10.35 ± 0.92 | 2.58 ± 0.81 |
No. 5 | 11.61 ± 2.76 | ND |
No. 6 | 14.33 ± 6.58 | ND |
No. 7 | 13.76 ± 6.60 | ND |
No. 8 | 19.87 ± 0.48 | ND |
No. 9 | 34.59 ± 1.41 | ND |
No. 10 | 23.86 ± 6.09 | ND |
No. 11 | 1.09 ± 1.54 | 14.20 ± 0.23 |
No. 12 | 55.98 ± 10.29 | 97.37 ± 0.81 |
No. 13 | 25.44 ± 0.35 | ND |
No. 14 | 15.43 ± 3.13 | 12.97 ± 1.03 |
No. 15 | 19.44 ± 6.10 | 17.42 ± 1.88 |
No. 16 | 5.86 ± 0.81 | 8.20 ± 0.49 |
No. 17 | 6.08 ± 2.32 | ND |
No. 18 | 39.95 ± 13.30 | 6.01 ± 1.50 |
No. 19 | 13.31 ± 1.43 | 2.59 ± 1.43 |
No. 20 | 25.86 ± 10.98 | ND |
No. 21 | 37.84 ± 10.39 | ND |
No. 22 | 17.48 ± 2.32 | 27.11 ± 1.73 |
No. 23 | 23.73 ± 5.28 | 7.37 ± 1.77 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mapoung, S.; Semmarath, W.; Arjsri, P.; Umsumarng, S.; Srisawad, K.; Thippraphan, P.; Yodkeeree, S.; Limtrakul, P. Determination of Phenolic Content, Antioxidant Activity, and Tyrosinase Inhibitory Effects of Functional Cosmetic Creams Available on the Thailand Market. Plants 2021, 10, 1383. https://doi.org/10.3390/plants10071383
Mapoung S, Semmarath W, Arjsri P, Umsumarng S, Srisawad K, Thippraphan P, Yodkeeree S, Limtrakul P. Determination of Phenolic Content, Antioxidant Activity, and Tyrosinase Inhibitory Effects of Functional Cosmetic Creams Available on the Thailand Market. Plants. 2021; 10(7):1383. https://doi.org/10.3390/plants10071383
Chicago/Turabian StyleMapoung, Sariya, Warathit Semmarath, Punnida Arjsri, Sonthaya Umsumarng, Kamonwan Srisawad, Pilaiporn Thippraphan, Supachai Yodkeeree, and Pornngarm Limtrakul (Dejkriengkraikul). 2021. "Determination of Phenolic Content, Antioxidant Activity, and Tyrosinase Inhibitory Effects of Functional Cosmetic Creams Available on the Thailand Market" Plants 10, no. 7: 1383. https://doi.org/10.3390/plants10071383
APA StyleMapoung, S., Semmarath, W., Arjsri, P., Umsumarng, S., Srisawad, K., Thippraphan, P., Yodkeeree, S., & Limtrakul, P. (2021). Determination of Phenolic Content, Antioxidant Activity, and Tyrosinase Inhibitory Effects of Functional Cosmetic Creams Available on the Thailand Market. Plants, 10(7), 1383. https://doi.org/10.3390/plants10071383