Biological Activities of In-House Developed Haloxylon griffithii Plant Extract Formulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Plant Material and Sample Preparation
2.2. Extraction
2.3. Gemmotherapeutic Formulations
2.4. Determination of Phytoconstituents
2.5. Determination of Antimicrobial Activity
2.5.1. Disc Diffusion and Agar Dilution Methods
2.5.2. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal Concentration (MBC)
2.5.3. Evaluation of Antibiosis (Bacteriostatic or Bactericidal) Mechanisms
2.5.4. Rate of Kill Determination
2.6. In-Vitro Hemolytic Activity
2.7. In-Vitro Thrombolytic Activity
2.8. Data Analysis
3. Results and Discussion
3.1. Antimicrobial Activity
3.2. Antioxidant Activity Evaluation
3.2.1. Total Flavonoid Content (TFC)
3.2.2. DPPH Radical Scavenging Assay
3.3. Thrombolytic Activity of Haloxylon Griffithii
3.4. Determination of Cytotoxicity
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bilal, M.; Rasheed, T.; Iqbal, H.M.; Hu, H.; Wang, W.; Zhang, X. Macromolecular agents with antimicrobial potentialities: A drive to combat antimicrobial resistance. Int. J. Biol. Macromol. 2017, 103, 554–574. [Google Scholar] [CrossRef] [PubMed]
- Klančnik, A.; Piskernik, S.; Jeršek, B.; Možina, S.S. Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J. Microbiol. Methods 2010, 81, 121–126. [Google Scholar] [CrossRef] [PubMed]
- Ishaq, N.; Bilal, M.; Iqbal, H.M. Medicinal Potentialities of Plant Defensins: A Review with Applied Perspectives. Medicines 2019, 6, 29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bilal, M.; Iqbal, H.M. Biologically active macromolecules: Extraction strategies, therapeutic potential and biomedical perspective. Int. J. Biol. Macromol. 2020, 151, 1–18. [Google Scholar] [CrossRef]
- Oza, G.; Reyes-Calderón, A.; Mewada, A.; Arriaga, L.G.; Cabrera, G.B.; Luna, D.E.; Iqbal, H.M.N.; Sharon, M.; Sharma, A. Plant-based metal and metal alloy nanoparticle synthesis: A comprehensive mechanistic approach. J. Mater. Sci. 2020, 55, 1309–1330. [Google Scholar] [CrossRef]
- Ahmad, F.; Taj, M.B.; Ramzan, M.; Ali, H.; Ali, A.; Adeel, M.; Iqbal, H.M.N.; Imran, M. One-pot synthesis and characterization of in-house engineered silver nanoparticles from Flacourtia jangomas fruit extract with effective antibacterial profiles. J. Nanostructure Chem. 2021, 11, 131–141. [Google Scholar] [CrossRef]
- WHO. WHO Traditional Medicine Strategy 2002–2005; WHO/EDM/TRM/2002.1; World Health Organization: Geneva, Switzerland, 2002. [Google Scholar]
- European Pharmacopeia. Europearn Directorate for the Quality of Medicines and Health Care; Council of Europe: Strasbourg, France, 2007. [Google Scholar]
- Surcel, M.; Butan, M.; Surcel, D. New Concepts Targeting the Biological and Quantum Connections in the Action Mechanism of the Gemmmotherapy. Biomed. Sci. 2021, 7, 53–59. [Google Scholar]
- Ali, Z.; Arshad, M.; Akhtar, M. Biological analysis of Mekran coastal wetlands complex, Pakistan. Proc. Pak. Congr. Zool. 2003, 23, 99–140. [Google Scholar]
- Lamchouri, F.; Benali, T.; Bennani, B.; Toufik, H.; Hassani, L.I.M.; Bouachrine, B.; Lyoussi, B. Preliminary phytochemical and antimicrobial investigations of extracts of Haloxylon scoparium. J. Mater. Environ. Sci. 2012, 3, 754–759. [Google Scholar]
- Baqi, A.; Tareen, R.B.; Mengal, A.; Khan, N.; Behlil, F.; Achakzai, A.K.K.; Faheem, M. Determination of antioxidants in two medicinally important plants, Haloxylon griffithii and Convolvulus leiocalycinus, of Balochistan. Pure Appl. Biol. 2018, 7, 296–308. [Google Scholar] [CrossRef]
- Ahmad, M.; Attiqur-Rehman, S.; Tareen, R.B.; Khan, N.; Baqi, A.; Manan, A. Qualitative and quantitative determination of phytochemicals in Convolvulus leiocalycinus and Haloxylon griffithii. Pure Appl. Biol. 2019, 8, 733–741. [Google Scholar] [CrossRef]
- Churchill, N. Gemmotherapy Ltd. British company London. Indegenous herbal medicine of South-East Regions of Iran. J. Biol. Sci. 2002, 4, 405–472. [Google Scholar]
- Verma, A.; Laakso, I.; Seppänen-Laakso, T.; Huhtikangas, A.; Riekkola, M.-L. A Simplified Procedure for Indole Alkaloid Extraction from Catharanthus roseus Combined with a Semi-synthetic Production Process for Vinblastine. Molecules 2007, 12, 1307–1315. [Google Scholar] [CrossRef] [Green Version]
- Vázquez-Castilla, S.; Jaramillo-Carmona, S.; Fuentes-Alventosa, J.M.; Jiménez-Araujo, A.; Rodriguez-Arcos, R.; Cermeño-Sacristán, P.; Guillén-Bejarano, R. Optimization of a method for the profiling and quantification of saponins in different green asparagus genotypes. J. Agri. Food Chem. 2013, 61, 6250–6258. [Google Scholar] [CrossRef]
- Zahra, S.S.; Ahmed, M.; Qasim, M.; Gul, B.; Zia, M.; Mirza, B.; Haq, I.U. Polarity based characterization of biologically active extracts of Ajuga bracteosa Wall. ex Benth. and RP-HPLC analysis. BMC Complementary Altern. Med. 2017, 17, 443. [Google Scholar]
- Proestos, C.; Boziaris, I.; Nychas, G.-J.; Komaitis, M. Analysis of flavonoids and phenolic acids in Greek aromatic plants: Investigation of their antioxidant capacity and antimicrobial activity. Food Chem. 2006, 95, 664–671. [Google Scholar] [CrossRef]
- Adrian, W.J.; Stevens, M.L. Effect of different sample preparation methods on the atomic-absorption spectrophotometric determination of calcium in plant material. Analyst 1977, 102, 446–452. [Google Scholar] [CrossRef]
- Jain, S.; Jain, A.; Vaidya, A.; Kumar, D.; Jain, V. Preliminary phytochemical, pharmacognostical and physico-chemical evaluation of Cedrus deodara heartwood. J. Pharmacogn. Phytochem. 2014, 3, 91–95. [Google Scholar]
- Pranuthi, E.K.; Narendra, K.; Swathi, J.; Sowjanya, K.M.; Reddi, K.R.; Emmanuel, R.F.S.; Satya, A.K. Qualitative assessment of bioactive compounds from a very rare medicinal plant Ficus dalhousiae Miq. J. Pharmacogn. Phytochem. 2014, 3, 57–61. [Google Scholar]
- Jain, A.; Soni, M.; Deb, L.; Jain, A.; Rout, S.P.; Gupta, V.B.; Krishna, K.L. Antioxidant and hepatoprotective activity of ethanolic and aqueous extracts of Momordica dioica Roxb. leaves. J. Ethnopharmacol. 2008, 115, 61–66. [Google Scholar] [CrossRef]
- NARMS—National Antimicrobial Resistance Monitoring System. Enteric Bacteria; CDC: Atlanta, GA, USA, 2002. [Google Scholar]
- Afolayan, A.; Meyer, J. The antimicrobial activity of 3,5,7-trihydroxyflavone isolated from the shoots of Helichrysum aureonitens. J. Ethnopharmacol. 1997, 57, 177–181. [Google Scholar] [CrossRef]
- National Committee for Clinical Laboratory Standards. Performance Standards for Antimicrobial Susceptibility Testing; Ninth Information Supplement, M100–S9; NCCLS: Wayne, PA, USA, 1999. [Google Scholar]
- Shanholtzer, C.J.; Peterson, L.R.; Mohn, M.L.; Moody, J.A.; Gerding, D.N. MBCs for Staphylococcus aureus as determined by macrodilution and microdilution techniques. Antimicrob. Agents Chemother. 1984, 26, 214–219. [Google Scholar] [CrossRef] [Green Version]
- Irkin, R.; Korukluoglu, M. Control of Aspergillus niger with garlic, onion and leek extracts. Afr. J. Biotechnol. 2007, 6. Available online: https://www.researchgate.net/publication/27797638_Control_of_Aspergillus_niger_with_garlic_onion_and_leek_extracts (accessed on 16 June 2021).
- Shanmughapriya, S.; Manilal, A.; Sujith, S.; Selvin, J.; Kiran, G.S.; Natarajaseenivasan, K. Antimicrobial activity of seaweeds extracts against multiresistant pathogens. Ann. Microbiol. 2008, 58, 535–541. [Google Scholar] [CrossRef]
- Eliopoulos, G.M.; Moellerin, R.C. Antimicrobial combinations. In Antibiotics in Laboratory Medicine; Lorain, V., Ed.; The Williams & Wilkins: Baltimore, MD, USA, 1996; pp. 330–396. [Google Scholar]
- Powell, S.R. The Antioxidant Properties of Zinc. J. Nutr. 2000, 130, 1447S–1454S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kawsar, M.H.; Sikder, M.A.A.; Rana, M.S.; Nimmi, I.; Rashid, M.A. Studies of thrombolytic, antioxidant and cytotoxic properties of two asteraceous plants of Bangladesh. Bangladesh Pharm. J. 2011, 14, 103–106. [Google Scholar]
- Dilution, A. European society of clinical microbiology and infectious diseases (ESCMID) European committee for antimicrobial susceptibility testing (EUCAST); Determination of minimum inhibitory concentration (MIC). Clin. Microbiol. Infect. 2000, 6, 509–515. [Google Scholar]
- Žilić, S.; Janković, M.; Basić, Z.; Vančetović, J.; Maksimović, V. Antioxidant activity, phenolic profile, chlorophyll and mineral matter content of corn silk (Zea mays L.): Comparison with medicinal herbs. J. Cereal Sci. 2016, 69, 363–370. [Google Scholar]
- González, C.A.; Pera, G.; Agudo, A.; Bueno-de-Mesquita, H.B.; Ceroti, M.; Boeing, H.; Riboli, E. Fruit and vegetable intake and the risk of stomach and oesophagus adenocarcinoma in the European Prospective Investigation into Cancer and Nutrition (EPIC–EURGAST). Int. J. Cancer 2006, 118, 2559–2566. [Google Scholar] [CrossRef] [Green Version]
- Fabry, W.; Okemo, P.; Ansorg, R. Antibacterial activity of East African medicinal plants. J. Ethnopharmacol. 1998, 60, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Simões, M.; Bennett, R.N.; Rosa, E.A.S. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat. Prod. Rep. 2009, 26, 746–757. [Google Scholar] [CrossRef]
- Scheetz, M.H.; Qi, C.; Warren, J.R.; Postelnick, M.J.; Zembower, T.; Obias, A.; Noskin, G.A. In Vitro Activities of Various Antimicrobials Alone and in Combination with Tigecycline against Carbapenem-Intermediate or -Resistant Acinetobacter baumannii. Antimicrob. Agents Chemother. 2007, 51, 1621–1626. [Google Scholar] [CrossRef] [Green Version]
- Pinho, E.; Ferreira, I.C.; Barros, L.; Carvalho, A.M.; Soares, G.; Henriques, M. Antibacterial potential of northeastern Portugal wild plant extracts and respective phenolic compounds. BioMed Res. Int. 2014, 2014, 814590. [Google Scholar] [CrossRef] [Green Version]
- Erdemgil, F.Z.; Ilhan, S.; Korkmaz, F.; Kaplan, C.; Mercangöz, A.; Arfan, M.; Ahmad, S. Chemical composition and biological activity of the essential oil of Perovskia atriplicifolia. from Pakistan. Pharm. Biol. 2007, 45, 324–331. [Google Scholar]
- Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complementary Altern. Med. 2012, 12, 221. [Google Scholar] [CrossRef] [Green Version]
- Capstick, T.; Henry, M.T. Efficacy of thrombolytic agents in the treatment of pulmonary embolism. Eur. Respir. J. 2005, 26, 864–874. [Google Scholar] [CrossRef] [Green Version]
- Fuentes, E.; Guzmán, L.; Alarcón, M.; Moore, R.; Palomo, I. Thrombolytic/fibrinolytic mechanism of natural products. Fibrinolysis Thrombolysis 2014, 107–121. [Google Scholar] [CrossRef] [Green Version]
- Rahman, M.A.; Sultana, R.; Bin Emran, T.; Islam, M.S.; Chakma, J.S.; Rashid, H.-U.; Hasan, C.M.M. Effects of organic extracts of six Bangladeshi plants on in vitro thrombolysis and cytotoxicity. BMC Complementary Altern. Med. 2013, 13, 25. [Google Scholar] [CrossRef] [Green Version]
Sr. No. | Constituents | Native H. Griffithi | Gemm H. Griffithi | ||
---|---|---|---|---|---|
Mass (g) | %Yield | Mass (g) | %Yield | ||
1 | Alkaloids | 0.28 | 2.8 | 0.48 | 4.8 |
2 | Saponins | 1.30 | 13 | 2.00 | 20 |
3 | Tannins | 1.20 | 12 | 0.70 | 7 |
4 | Glycosides | 2.40 | 24 | 1.70 | 17 |
5 | Flavonoids | 0.841 | 8.41 | 2.46 | 24.6 |
6 | Phenolics | 0.880 | 8.80 | 2.97 | 29.7 |
Plant Extracts | B. subtilis NCTC 10,400 | B. cereus NCTC 7464 | S. aureus NCTC 6571 | |||
---|---|---|---|---|---|---|
Disk Diffusion | Agar Dilution | Disk Diffusion | Agar Dilution | Disk Diffusion | Agar Dilution | |
Native Extract | 22.25 ± 0.045 | 5.60 ± 1.20 | 38.75 ± 0.65 | 7.98 ± 0.35 | 14.75 ± 0.25 | 2.50 ± 0.20 |
Gemm Extract | 20.86 ± 0.020 | 5.5 ± 0.80 | 26.40 ± 1.00 | 6.68 ± 0.08 | 12.30 ± 0.45 | 4.60 ± 0.70 |
Ciprofloxacin | 10.50 ± 0.00 | 1.25 ± 0.75 | 28.80 ± 0.55 | 26.75 ± 0.70 | 38.75 ± 0.90 | 18.25 ± 0.45 |
Fluconazole | ND | 0.025 ± 0.00 | ND | 0.154 ± 0.00 | ND | 0.033 ± 0.00 |
Ethanol | ND | 0.033 ± 0.00 | ND | 0.045 ± 0.00 | ND | 0.021 ± 0.00 |
Plant Extracts | E. coli ATCC 8739 | P. aeruginosa NCTC 1662 | ||
---|---|---|---|---|
Disk Diffusion | Agar Dilution | Disk Diffusion | Agar Dilution | |
Native Extract | 20.28 ± 0.75 | 5.25 ± 1.20 | 18.80 ± 0.25 | 2.1 ± 0.06 |
Gemm Extract | 18.15 ± 0.50 | 4.90 ± 0.80 | 13.85 ± 1.20 | 1.89 ± 0.05 |
Ciprofloxacin | 34.45 ± 0.00 | 5.68 ± 0.40 | 26.15 ± 0.15 | 1.42 ± 0.20 |
Fluconazole | ND | 0.078 ± 0.00 | ND | 0.073 ± 0.00 |
Ethanol | ND | 0.156 ± 0.00 | ND | 0.025 ± 0.00 |
Plant Extracts | C. krusei ATCC 6285 | A. flavus QC 6158 | C. albicans IBL-01 | |||
---|---|---|---|---|---|---|
Disk Diffusion | Agar Dilution | Disk Diffusion | Agar Dilution | Disk Diffusion | Agar Dilution | |
Native Extract | 21.45 ± 0.50 | 10.22 ± 0.02 | 5.80 ± 1.00 | 0.65 ± 0.00 | 12.00 ± 0.25 | 0.95 ± 0.00 |
Gemm Extract | 8.9 ± 1.00 | 6.95 ± 0.55 | 5.80 ± 0.080 | 0.78 ± 0.00 | 6.75 ± 0.08 | 1.25 ± 0.45 |
Ciprofloxacin | ND | 0.12 ± 0.00 | ND | 0.015 ± 0.00 | ND | 0.76 ± 0.15 |
Fluconazole | 17.46 ± 0.85 | 3.25 ± 1.008 | 22.50 ± 0.82 | 5.80 ± 1.25 | 20.05 ± 0.75 | 5.80 ± 0.02 |
Ethanol | ND | ND | ND | 0.052 ± 0.00 | ND | 0.033 ± 0.00 |
Tested Microbial Species | MIC | MBC | MICindex |
---|---|---|---|
Ciprofloxacin | |||
B. subtilis NCTC 10,400 | 10.50 ± 0.15 | 12.50 ± 0.00 | 1.2 ± 0.075 |
B. cereus NCTC 7464 | 28.80 ± 0.55 | 30.08 ± 0.10 | 1.07 ± 0.32 |
S. auresus NCTC 6571 | 38.75 ± 0.90 | 76.50 ± 0.25 | 2.00 ± 0.57 |
E. coli ATCC 8739 | 34.45 ± 0.00 | 44.00 ± 1.25 | 1.2 ± 0.62 |
P. aeruginosa ATCC 6285 | 26.15 ± 0.15 | 26.20 ± 0.20 | 1.0 ± 0.17 |
C. krusei ATCC 6285 | ND | ND | ND |
A. flavus QC 6158 | ND | ND | ND |
C. albicans IBL-01 | ND | ND | ND |
Fluconazole | |||
B. subtilis NCTC 10,400 | ND | ND | ND |
B. cereus NCTC 7464 | ND | ND | ND |
S. auresus NCTC 6571 | ND | ND | ND |
E. coli ATCC 8739 | ND | ND | ND |
P. aeruginosa ATCC 6285 | ND | ND | ND |
C. krusei ATCC 6285 | 17.46 ± 0.85 | 20.45 ± 0.50 | 1.1 ± 0.67 |
A. flavus QC 6158 | 22.50 ± 0.82 | 38.85 ± 1.45 | 1.7 ± 1.13 |
C. albicans IBL-01 | 20.01 ± 0.75 | 20.05 ± 0.28 | 1.00 ± 0.14 |
Native Extract | |||
B. subtilis NCTC 10,400 | 22.25 ± 0.045 | 44.25 ± 0.42 | 2.00 ± 0.23 |
B. cereus NCTC 7464 | 38.75 ± 0.65 | 77.5 ± 0.40 | 2 ± 0.52 |
S. auresus NCTC 6571 | 14.75 ± 1.00 | 14.70 ± 0.35 | 1.00 ± 0.67 |
E. coli ATCC 8739 | 20.28 ± 0.75 | 52.30 ± 1.00 | 2.00 ± 0.87 |
P. aeruginosa ATCC 6285 | 18.80 ± 0.25 | 18.90 ± 0.25 | 1.00 ± 0.25 |
C. krusei ATCC 6285 | 21.45 ± 0.50 | 21.38 ± 0.08 | 1.00 ± 0.29 |
A. flavus QC 6158 | 5.80 ± 1.00 | 10.75 ± 0.20 | 2.00 ± 0.60 |
C. albicans IBL-01 | 12.00 ± 0.25 | 24.25 ± 0.00 | 2.25 ± 0.25 |
Gemm Extract | |||
B. subtilis NCTC 10,400 | 20.86 ± 0.02 | 20.50 ± 0.88 | 1.01 ± 0.45 |
B. cereus NCTC 7464 | 26.40 ± 1.00 | 28.20 ± 0.80 | 1.04 ± 0.90 |
S. auresus NCTC 6571 | 12.30 ± 0.45 | 24.00 ± 1.88 | 1.95 ± 1.17 |
E. coli ATCC 8739 | 18.15 ± 0.50 | 18.50 ± 0.95 | 1.01 ± 0.72 |
P. aeruginosa ATCC 6285 | 13.85 ± 1.20 | 13.50 ± 0.50 | 1.00 ± 0.85 |
C. krusei ATCC 6285 | 8.0 ± 1.00 | 8.25 ± 0.02 | 1.03 ± 0.51 |
A. flavus QC 6158 | 5.80 ± 1.00 | 10.98 ± 0.00 | 1.89 ± 0.50 |
C. albicans IBL-01 | 6.75 ± 0.25 | 8.75 ± 0.00 | 1.30 ± 0.12 |
Tested Microbial Species | Log10 Kill ½ × (MIC) | Log10 Kill 1 × (MIC) | Log10 Kill 2 × (MIC) | ||||||
---|---|---|---|---|---|---|---|---|---|
0 h | 4 h | 8 h | 0 h | 4 h | 8 h | 0 h | 4 h | 8 h | |
B. subtilis | 3.187 ± 0.00 | 3.480 ± 0.90 | 4.233 ± 1.00 | 3.207 ± 0.15 | 2.135 ± 0.10 | 1.183 ± 0.90 | 3.240 ± 0.80 | −1.264 ± 0.50 | −3.324 ± 0.20 |
B. cereus | 3.229 ± 0.02 | 4.122 ± 0.45 | 4.899 ± 0.40 | 3.248 ± 0.20 | 2.410 ± 1.55 | 1.830 ± 0.25 | 2.125 ± 0.50 | 1.298 ± 0.75 | −2.517 ± 0.35 |
S. auresus | 3.285 ± 1.00 | 4.242 ± 0.50 | 5.442 ± 0.25 | 3.316 ± 1.20 | 2.158 ± 0.25 | 1.254 ± 1.25 | 3.401 ± 1.50 | 1.264 ± 0.50 | −2.412 ± 0.50 |
E. coli | 3.270 ± 0.25 | 3.820 ± 0.70 | 5.416 ± 0.0 | 3.410 ± 1.25 | 2.258 ± 0.24 | 1.266 ± 0.45 | 3.164 ± 0.30 | 1.559 ± 0.08 | −4.062 ± 1.008 |
P. aeruginosa | 4.150 ± 0.25 | 5.283 ± 0.25 | 4.262 ± 0.05 | 3.442 ± 0.80 | 2.146 ± 0.50 | 1.045 ± 0.20 | 2.297 ± 0.45 | −0.162 ± 0.20 | −0.150 ± 0.60 |
C. krusei | 2.953 ± 0.65 | 3.054 ± 0.85 | 6.210 ± 0.80 | 3.668 ± 0.25 | 1.826 ± 0.80 | 1.283 ± 0.05 | 4.346 ± 0.50 | 1.980 ± 0.00 | −1.819 ± 0.09 |
A. flavus | 1.690 ± 0.95 | 2.755 ± 1.15 | 5.896 ± 0.00 | 2.688 ± 0.55 | 1.929 ± 0.75 | 1.231 ± 0.15 | 4.349 ± 0.25 | −0.475 ± 0.00 | −2.464 ± 0.50 |
C. albicans | 1.285 ± 0.45 | 3.272 ± 0.85 | 4.168 ± 0.50 | 3.435 ± 0.60 | 2.122 ± 0.75 | 0.788 ± 0.28 | −1.216 ± 0.20 | −0.425 ± 0.00 | −0.121 ± 0.80 |
Tested Microbial Species | Log10 Kill ½ × (MIC) | Log10 Kill 1 × (MIC) | Log10 Kill 2 × (MIC) | ||||||
---|---|---|---|---|---|---|---|---|---|
0 h | 4 h | 8 h | 0 h | 4 h | 8 h | 0 h | 4 h | 8 h | |
B. subtilis | 1.187 ± 0.089 | 1.895 ± 1.25 | 2.102 ± 0.92 | 1.208 ± 1.50 | 0.122 ± 0.008 | −0.817 ± 1.20 | 1.222 ± 0.008 | −0.736 ± 0.15 | −1.213 ± 0.25 |
B. cereus | 1.20 ± 0.035 | 2.123 ± 1.09 | 2.854 ± 0.02 | 1.164 ± 0.03 | 0.399 ± 0.75 | −0.812 ± 0.00 | 1.310 ± 0.78 | −0.702 ± 0.20 | −0.526 ± 1.25 |
S. auresus | 1.288 ± 0.010 | 2.343 ± 0.25 | 3.316 ± 1.05 | 1.211 ± 0.45 | 0.142 ± 1.25 | −0.128 ± 0.00 | 1.210 ± 1.00 | −0.541 ± 0.45 | −0.502 ± 0.75 |
E. coli | 1.191 ± 0.950 | 1.510 ± 0.08 | 3.314 ± 1.50 | 1.218 ± 0.50 | 0.143 ± 1.00 | −0.735 ± 0.05 | 1.241 ± 0.25 | −0.839 ± 0.50 | −2.875 ± 0.50 |
P. aeruginosa | 2.129 ± 0.250 | 3.384 ± 0.98 | 1.198 ± 1.008 | 1.212 ± 0.75 | 0.026 ± 0.008 | −0.922 ± 0.06 | 0.246 ± 0.035 | 0.120 ± 0.020 | −1.543 ± 1.45 |
C. krusei | 3.450 ± 0.008 | 3.743 ± 1.25 | 4.480 ± 0.75 | 1.427 ± 1.00 | −0.82 ± 0.085 | −0.620 ± 0.25 | 0.411 ± 0.02 | −0.390 ± 0.00 | −0.891 ± 0.80 |
A. flavus | 3.442 ± 0.093 | 4.322 ± 1.00 | 4.659 ± 0.25 | 1.642 ± 0.09 | −0.84 ± 1.45 | −0.619 ± 0.05 | 0.124 ± 0.008 | −0.525 ± 0.45 | −0.1343 ± 0.20 |
C. albicans | 2.399 ± 0.76 | 3.512 ± 0.02 | 4.736 ± 1.00 | 1.422 ± 0.90 | 0.735 ± 0.035 | −0.122 ± 0.08 | −0.220 ± 0.75 | −0.575 ± 0.08 | −0.879 ± 1.00 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kamal, S.; Bibi, I.; Rehman, K.; Zahoor, A.F.; Kamal, A.; Aslam, F.; Alasmary, F.A.; Almutairi, T.M.; Alhajri, H.M.; Alissa, S.A.; et al. Biological Activities of In-House Developed Haloxylon griffithii Plant Extract Formulations. Plants 2021, 10, 1427. https://doi.org/10.3390/plants10071427
Kamal S, Bibi I, Rehman K, Zahoor AF, Kamal A, Aslam F, Alasmary FA, Almutairi TM, Alhajri HM, Alissa SA, et al. Biological Activities of In-House Developed Haloxylon griffithii Plant Extract Formulations. Plants. 2021; 10(7):1427. https://doi.org/10.3390/plants10071427
Chicago/Turabian StyleKamal, Shagufta, Ismat Bibi, Kanwal Rehman, Ameer Fawad Zahoor, Amna Kamal, Fatima Aslam, Fatmah Ali Alasmary, Tahani Mazyad Almutairi, Hassna Mohammed Alhajri, Siham A. Alissa, and et al. 2021. "Biological Activities of In-House Developed Haloxylon griffithii Plant Extract Formulations" Plants 10, no. 7: 1427. https://doi.org/10.3390/plants10071427
APA StyleKamal, S., Bibi, I., Rehman, K., Zahoor, A. F., Kamal, A., Aslam, F., Alasmary, F. A., Almutairi, T. M., Alhajri, H. M., Alissa, S. A., & Iqbal, H. M. N. (2021). Biological Activities of In-House Developed Haloxylon griffithii Plant Extract Formulations. Plants, 10(7), 1427. https://doi.org/10.3390/plants10071427