An Overview of Abiotic Stress in Cereal Crops: Negative Impacts, Regulation, Biotechnology and Integrated Omics
Abstract
:1. Introduction
2. Cereal Crops
2.1. Comparative Nutritive Values of Cereal Crops
2.2. Rice (Oryza sativa L.)
2.3. Maize (Zea mays L.)
2.4. Wheat (Triticum aestivum L.)
2.5. Sorghum (Sorghum bicolor L.)
3. Abiotic Stress (AbS) Dynamism on Cereal Crops
3.1. Atmospheric Factors
3.1.1. Rainfall
3.1.2. Temperature
3.1.3. Gases
3.1.4. Radiation
3.1.5. Wind
3.2. Soil Factors
3.2.1. Soil Properties
3.2.2. Pollution
3.2.3. Degradation
3.3. Water Factor
3.3.1. Suboptimal
3.3.2. Supraoptimal Salinity
3.3.3. Waterlogging
4. Bioinformatics and Functional Omics Approach to Explore the AbS Tolerance Mechanism
5. Gene Mining
6. Transcript Signature Usage in Stress Responsive Gene Mining
7. Identification of Genes and Their Agronomic Traits
8. Genome-Wide Association Studies (GWAS)
9. Conclusions and Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giordano, M.; Petropoulos, S.; Rouphael, Y. Response and Defence Mechanisms of Vegetable Crops against Drought, Heat and Salinity Stress. Agriculture 2021, 11, 463. [Google Scholar] [CrossRef]
- Kumari, V.V.; Roy, A.; Vijayan, R.; Banerjee, P.; Verma, V.C.; Nalia, A.; Pramanik, M.; Mukherjee, B.; Ghosh, A.; Reja, H.; et al. Drought and Heat Stress in Cool-Season Food Legumes in Sub-Tropical Regions: Consequences, Adaptation, and Mitigation Strategies. Plants 2021, 10, 1038. [Google Scholar] [CrossRef]
- O’Neil, C.E.; Nicklas, T.A.; Zanovec, M.; Cho, S. Whole-Grain Consumption Is Associated with Diet Quality and Nutrient Intake in Adults: The National Health and Nutrition Examination Survey, 1999–2004. J. Am. Diet. Assoc. 2010, 110, 1461–1468. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, Y.; Fulgoni, V.L. Certain grain foods can be meaningful contributors to nutrient density in the diets of US chil-dren and adolescents: Data from the National Health and Nutrition Examination Survey, 2009–2012. Nutrients 2017, 9, 160. [Google Scholar] [CrossRef]
- Olugbire, O.O.; Olorunfemi, S.; Oke, D.O. Global utilisation of cereals: Sustainability and environmental issues. Agro-Science 2021, 20, 9–14. [Google Scholar] [CrossRef]
- Atkinson, N.J.; Urwin, P.E. The interaction of plant biotic and abiotic stresses: From genes to the field. J. Exp. Bot. 2012, 63, 3523–3543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maiti, R.; Satya, P. Research advances in major cereal crops for adaptation to abiotic stresses. GM Crop. Food 2014, 5, 259–279. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halford, N.G.; Curtis, T.Y.; Chen, Z.; Huang, J. Effects of abiotic stress and crop management on cereal grain composition: Implications for food quality and safety. J. Exp. Bot. 2014, 66, 1145–1156. [Google Scholar] [CrossRef] [Green Version]
- Takeda, S.; Matsuoka, M. Genetic approaches to crop improvement: Responding to environmental and population changes. Nat. Rev. Genet. 2008, 9, 444–457. [Google Scholar] [CrossRef]
- Newton, A.C.; Johnson, S.N.; Gregory, P.J. Implications of climate change for diseases, crop yields and food security. Euphytica 2011, 179, 3–18. [Google Scholar] [CrossRef]
- Mohan, V.; Tresina, P.; Daffodil, E. Antinutritional Factors in Legume Seeds: Characteristics and Determination. Encycl. Food Health 2016, 211–220. [Google Scholar] [CrossRef]
- Piltz, J.W.; Rodham, C.A.; Wilkins, J.F.; Hackney, B.F. A Comparison of Cereal and Cereal/Vetch Crops for Fodder Conser-vation. Agriculture 2021, 11, 459. [Google Scholar] [CrossRef]
- Chaudhari, P.R.; Tamrakar, N.; Singh, L.; Tandon, A.; Sharma, D. Rice nutritional and medicinal properties. J. Pharmacogn. Phytochem. 2018, 7, 150–156. [Google Scholar]
- Muraki, I.; Wu, H.; Imamura, F.; Laden, F.; Rimm, E.B.; Hu, F.B.; Willett, W.C.; Sun, Q. Rice consumption and risk of cardio-vascular disease: Results from a pooled analysis of 3 US cohorts. Am. J. Clin. Nutr. 2015, 101, 164–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, B.L.; Norhaizan, M.E. Scientific evidence of rice by-products for cancer prevention: Chemopreventive properties of waste products from rice milling on carcinogenesis in vitro and in vivo. Biomed. Res. Int. 2017, 2017, 9017902. [Google Scholar] [CrossRef] [Green Version]
- Okuda, M.; Fujita, Y.; Katsube, T.; Tabata, H.; Yoshino, K.; Hashimoto, M.; Sugimoto, H. Highly water pressurized brown rice improves cognitive dysfunction in senescence-accelerated mouse prone 8 and reduces amyloid beta in the brain. BMC Complement. Altern. Med. 2018, 18, 110. [Google Scholar] [CrossRef] [PubMed]
- Almeida, D.M.; Almadanim, M.C.; Lourenço, T.; Abreu, I.A.; Saibo, N.J.M.; Oliveira, M.M. Screening for Abiotic Stress Tolerance in Rice: Salt, Cold, and Drought. In Environmental Responses in Plants; Humana Press: New York, NY, USA, 2016; pp. 155–182. [Google Scholar]
- Hasanuzzaman, M.; Nahar, K.; Fujita, M.; Ahmad, P.; Chandna, R.; Prasad, M.N.V.; Ozturk, M. Enhancing plant productivity under salt stress: Relevance of poly-omics. In Salt Stress in Plants; Springer: New York, NY, USA, 2013; pp. 113–156. [Google Scholar]
- Lee, K.S.; Choi, W.Y.; Ko, J.C.; Kim, T.S.; Gregoria, G.B. Salinity tolerance of japonica and indica rice (Oryza sativa L.) at the seedling stage. Planta 2003, 216, 1043–1046. [Google Scholar] [CrossRef]
- Todaka, D.; Nakashima, K.; Shinozaki, K.; Yamaguchi-Shinozaki, K. Towards understanding transcriptional regulatory net-works in abiotic stress responses and tolerance in rice. Rice 2012, 5, 1–9. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Das, P.; Nutan, K.K.; Singla-Pareek, S.N.; Pareek, A. Understanding salinity responses and adopting ‘omics-based’ approaches to generate salinity tolerant cultivars of rice. Front. Plant Sci. 2015, 6, 712. [Google Scholar] [CrossRef] [Green Version]
- Alam, M.; Bell, R.W.; Hasanuzzaman, M.; Salahin, N.; Rashid, M.H.; Akter, N.; Akhter, S.; Islam, M.S.; Islam, S.; Naznin, S.; et al. Rice (Oryza sativa L.) establishment techniques and their implications for soil properties, global warming potential mitigation and crop yields. Agronomy 2020, 10, 888. [Google Scholar] [CrossRef]
- Macauley, H.; Ramadjita, T. Cereal crops: Rice, maize, millet, sorghum, wheat. Feed. Afr. 2015, 36. [Google Scholar]
- Sandhu, K.S.; Singh, N.; Malhi, N.S. Some properties of corn grains and their flours I: Physicochemical, functional and chapati-making properties of flours. Food Chem. 2007, 101, 938–946. [Google Scholar] [CrossRef]
- Shah, T.R.; Prasad, K.; Kumar, P. Maize—A potential source of human nutrition and health: A review. Cogent Food Agric. 2016, 2, 1166995. [Google Scholar]
- Liu, R.H. Potential synergy of phytochemicals in cancer prevention: Mechanism of action. J. Nutr. 2004, 134, 3479–3485. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Gómez, J.L.; Castorena-Torres, F.; Preciado-Ortiz, R.E.; García-Lara, S. Anti-cancer activity of maize bioactive peptides. Front. Chem. 2017, 5, 44. [Google Scholar] [CrossRef]
- Iqbal, S.; Hussain, S.; Qayyaum, M.A.; Ashraf, M. The Response of Maize Physiology under Salinity Stress and Its Coping Strategies. In Plant Stress Physiology; IntechOpen: London, UK, 2020. [Google Scholar]
- Sade, N.; del Mar Rubio-Wilhelmi, M.; Umnajkitikorn, K.; Blumwald, E. Stress-induced senescence and plant tolerance to abiotic stress. J. Exp. Bot. 2018, 69, 845–853. [Google Scholar] [CrossRef] [PubMed]
- Shewry, P.R.; Hey, S.J. The contribution of wheat to human diet and health. Food Energy Secur. 2015, 4, 178–202. [Google Scholar] [CrossRef]
- Hura, T. Wheat and Barley: Acclimatization to Abiotic and Biotic Stress. Int. J. Mol. Sci. 2020, 21, 7423. [Google Scholar] [CrossRef]
- Luthria, D.L.; Lu, Y.; John, K.M. Bioactive phytochemicals in wheat: Extraction, analysis, processing, and functional properties. J. Funct. Foods 2015, 18, 910–925. [Google Scholar] [CrossRef]
- Barros, L.; Fernandes, Â.; C.F.R. Ferreira, I.; Callejo, M.; Matallana-González, M.; Fernández-Ruiz, V.; Morales, P.; Carrillo, J.M. Potential health claims of durum and bread wheat flours as functional ingredients. Nutrients 2020, 12, 504. [Google Scholar]
- Aune, D.; Keum, N.; Giovannucci, E.; Fadnes, L.T.; Boffetta, P.; Greenwood, D.C.; Tonstad, S.; Vatten, L.J.; Riboli, E.; Norat, T. Whole grain consumption and risk of cardiovascular disease, cancer, and all cause and cause specific mortality: Systematic review and dose-response meta-analysis of prospective studies. BMJ 2016, 353, i2716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Della Pepa, G.; Vetrani, C.; Vitale, M.; Riccardi, G. Wholegrain intake and risk of type 2 diabetes: Evidence from epidemiological and intervention studies. Nutrients 2018, 10, 1288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bedő, Z.; Láng, L.; Rakszegi, M. Breeding for grain-quality traits. In Cereal Grains; Woodhead Publishing: Cambridge, UK, 2017; pp. 425–452. [Google Scholar]
- Loskutov, I.G.; Khlestkina, E.K. Wheat, Barley, and Oat Breeding for Health Benefit Components in Grain. Plants 2021, 10, 86. [Google Scholar] [CrossRef] [PubMed]
- Schapendonk, A.H.C.M.; Xu, H.Y.; Van Der Putten, P.E.L.; Spiertz, J.H.J. Heat-shock effects on photosynthesis and sink-source dynamics in wheat (Triticum aestivum L.). NJAS-Wagening. J. Life Sci. 2007, 55, 37–54. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, N. Biochemical and molecular responses in higher plants under salt stress. In Plant Adaptation Strategies in Changing Environment; Springer: Singapore, 2017; pp. 117–151. [Google Scholar]
- Shah, T.; Xu, J.; Zou, X.; Cheng, Y.; Nasir, M.; Zhang, X. Omics approaches for engineering wheat production under abiotic stresses. Int. J. Mol. Sci. 2018, 19, 2390. [Google Scholar] [CrossRef] [Green Version]
- Calone, R.; Sanoubar, R.; Lambertini, C.; Speranza, M.; Antisari, L.V.; Vianello, G.; Barbanti, L. Salt tolerance and Na allocation in Sorghum bicolor under variable soil and water salinity. Plants 2020, 9, 561. [Google Scholar] [CrossRef] [PubMed]
- Ramatoulaye, F.; Mady, C.; Fallou, S. Production and use sorghum: A literature review. J. Nutr. Health Food Sci. 2016, 4, 1–4. [Google Scholar]
- Rao, S.; Santhakumar, A.B.; Chinkwo, K.A.; Wu, G.; Johnson, S.K.; Blanchard, C.L. Characterization of phenolic compounds and antioxidant activity in sorghum grains. J. Cereal Sci. 2008, 84, 103–111. [Google Scholar] [CrossRef]
- Xiong, Y.; Zhang, P.; Warner, R.D.; Fang, Z. Sorghum grain: From genotype, nutrition, and phenolic profile to its health benefits and food applications. Compr. Rev. Food Sci. Food Saf. 2019, 18, 2025–2046. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ba, K.; Tine, E.; Destain, J.; Cisse, N.; Thonart, P. Comparative study of phenolic compounds, the antioxidant power of various Senegalese sorghum varieties anda amylolytic enzymes of their malt. Biotechnol. Agron. Société Environ. 2010, 14, 131–139. [Google Scholar]
- Djanaguiraman, M.; Prasad, P.V.; Ciampitti, I.A.; Talwar, H.S. Impacts of Abiotic Stresses on Sorghum Physiology. In Sorghum in the 21st Century: Food–Fodder–Feed–Fuel for a Rapidly Changing World; Springer: Singapore, 2020; pp. 157–188. [Google Scholar]
- Abdel-Ghany, S.E.; Ullah, F.; Ben-Hur, A.; Reddy, A.S. Transcriptome analysis of drought-resistant and drought-sensitive sorghum (Sorghum bicolor) genotypes in response to peg-induced drought stress. Int. J. Mol. Sci. 2020, 21, 772. [Google Scholar] [CrossRef] [Green Version]
- Muthuramalingam, P.; Jeyasri, R.; Kalaiyarasi, D.; Pandian, S.; Krishnan, S.R.; Satish, L.; Pandian, S.K.; Ramesh, M. Emerging advances in computational omics tools for systems analysis of gramineae family grass species and their abiotic stress responsive functions. OMICS-Based Approach Plant Biotechnol. 2019, 185, 185. [Google Scholar]
- Sahu, M.; Dehury, B.; Modi, M.K.; Barooah, M. Functional Genomics and Bioinformatics Approach to Understand Regulation of Abiotic Stress in Cereal Crops. In Crop Improvement in the Era of Climate Change; I.K. International Publishing House Pvt. Ltd.: Delhi, India, 2014; p. 205. [Google Scholar]
- Gong, Y.; Hao, Y.; Li, J.; Li, H.; Shen, Z.; Wang, W.; Wang, S. The effects of rainfall runoff pollutants on plant physiology in a bioretention system based on pilot experiments. Sustainability 2019, 11, 6402. [Google Scholar] [CrossRef] [Green Version]
- Tomás, D.; Rodrigues, J.C.; Viegas, W.; Silva, M. Assessment of high temperature effects on grain yield and composition in bread wheat commercial varieties. Agronomy 2020, 10, 499. [Google Scholar] [CrossRef] [Green Version]
- Kai, H.; Iba, K. Temperature stress in plants. In eLS; John Wiley & Sons, Ltd: Chichester, UK, 2014. [Google Scholar]
- Beck, E.H.; Heim, R.; Hansen, J. Plant resistance to cold stress: Mechanisms and environmental signals triggering frost hardening and dehardening. J. Biosci. 2004, 29, 449–459. [Google Scholar] [CrossRef]
- Baek, K.H.; Skinner, D.Z. Production of reactive oxygen species by freezing stress and the protective roles of antioxidant enzymes in plants. J. Agric. Chem. Environ. 2012, 1, 34–40. [Google Scholar] [CrossRef]
- Cassia, R.; Nocioni, M.; Correa-Aragunde, N.; Lamattina, L. Climate change and the impact of greenhouse gasses: CO2 and NO, friends and foes of plant oxidative stress. Front. Plant Sci. 2018, 9, 273. [Google Scholar] [CrossRef] [PubMed]
- Foroughbakhch Pournavab, R.; Bacópulos Mejía, E.; Benavides Mendoza, A.; Salas Cruz, L.R.; Ngangyo Heya, M. Ultraviolet radiation effect on seed germination and seedling growth of common species from Northeastern Mexico. Agronomy 2019, 9, 269. [Google Scholar] [CrossRef] [Green Version]
- Metwally, S.A.; Shoaib, R.M.; Hashish, K.I.; El-Tayeb, T.A. In vitro ultraviolet radiation effects on growth, chemical constituents and molecular aspects of Spathiphyllum plant. Bull. Natl. Res. Cent. 2019, 43, 94. [Google Scholar] [CrossRef]
- Rao, M.P.N.; Dong, Z.Y.; Xiao, M.; Li, W.J. Effect of salt stress on plants and role of microbes in promoting plant growth under salt stress. In Microorganisms in Saline Environments: Strategies and Functions; Springer: Cham, Switzerland, 2019; pp. 423–435. [Google Scholar]
- Borsani, O.; Dıaz, P.; Agius, M.F.; Valpuesta, V.; Monza, J. Water stress generates an oxidative stress through the induction of a specific Cu/Zn superoxide dismutase in Lotus corniculatus leaves. Plant Sci. 2001, 161, 757–763. [Google Scholar] [CrossRef]
- Tarakcioglu, C.; Inal, A. Changes induced by salinity, demarcating specific ion ratio (Na/Cl) and osmolality in ion and proline accumulation, nitrate reductase activity, and growth performance of lettuce. J. Plant Nutr. 2002, 25, 27–41. [Google Scholar] [CrossRef]
- Eraslan, F.; Inal, A.; Gunes, A.; Alpaslan, M. Impact of exogenous salicylic acid on the growth, antioxidant activity and physiology of carrot plants subjected to combined salinity and boron toxicity. Sci. Hortic. 2007, 113, 120–128. [Google Scholar] [CrossRef]
- Ahmad, P.; Prasad, M.N.V. Abiotic Stress Responses in Plants: Metabolism, Productivity and Sustainability; Springer Science & Business Media: New York, USA, 2011. [Google Scholar]
- Yildiz, M.; Poyraz, İ.; Çavdar, A.; Özgen, Y.; Beyaz, R. Plant Responses to Salt Stress. In Plant Breeding-Current and Future Views; IntechOpen: London, UK, 2020. [Google Scholar]
- Shelden, M.C.; Roessner, U. Advances in functional genomics for investigating salinity stress tolerance mechanisms in cereals. Front. Plant Sci. 2013, 4, 123. [Google Scholar] [CrossRef] [Green Version]
- Rajendran, K.; Tester, M.; Roy, S.J. Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ. 2009, 32, 237–249. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.J.; Negrão, S.; Tester, M. Salt resistant crop plants. Curr. Opin. Biotechnol. 2014, 26, 115–124. [Google Scholar] [CrossRef]
- Reddy, I.N.B.L.; Kim, B.K.; Yoon, I.S.; Kim, K.H.; Kwon, T.R. Salt tolerance in rice: Focus on mechanisms and approaches. Rice Sci. 2017, 24, 123–144. [Google Scholar] [CrossRef]
- Emamverdian, A.; Ding, Y.; Mokhberdoran, F.; Xie, Y. Heavy metal stress and some mechanisms of plant defense response. Sci. World J. 2015, 2015, 75612. [Google Scholar] [CrossRef] [PubMed]
- Shah, F.; Wu, W. Soil and crop management strategies to ensure higher crop productivity within sustainable environments. Sustainability 2019, 11, 1485. [Google Scholar] [CrossRef] [Green Version]
- Oladosu, Y.; Rafii, M.Y.; Samuel, C.; Fatai, A.; Magaji, U.; Kareem, I.; Kamarudin, Z.S.; Muhammad, I.I.; Kolapo, K. Drought resistance in rice from conventional to molecular breeding: A review. Int. J. Mol. Sci. 2019, 20, 3519. [Google Scholar] [CrossRef] [Green Version]
- Rosero, A.; Berdugo-Cely, J.A.; Šamajová, O.; Šamaj, J.; Cerkal, R. A Dual Strategy of Breeding for Drought Tolerance and Introducing Drought-Tolerant, Underutilized Crops into Production Systems to Enhance Their Resilience to Water Deficiency. Plants 2020, 9, 1263. [Google Scholar] [CrossRef]
- Liliane, T.N.; Charles, M.S. Factors Affecting Yield of Crops. In Agronomy-Climate Change & Food Security; IntechOpen: London, UK, 2020; p. 9. [Google Scholar]
- Chaudhary, J.; Khatri, P.; Singla, P.; Kumawat, S.; Kumari, A.; Vikram, A.; Jindal, S.K.; Kardile, H.; Kumar, R.; Sonah, H.; et al. Advances in omics approaches for abiotic stress tolerance in tomato. Biology 2019, 8, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Razzaq, M.K.; Aleem, M.; Mansoor, S.; Khan, M.A.; Rauf, S.; Iqbal, S.; Siddique, K.H. Omics and CRISPR-Cas9 Approaches for Molecular Insight, Functional Gene Analysis, and Stress Tolerance Development in Crops. Int. J. Mol. Sci. 2021, 22, 1292. [Google Scholar] [CrossRef] [PubMed]
- Ismail, A.M.; Horie, T. Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Annu. Rev. Plant Biol. 2017, 68, 405–434. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tiwari, J.K.; Plett, D.; Garnett, T.; Chakrabarti, S.K.; Singh, R.K. Integrated genomics, physiology and breeding approaches for improving nitrogen use efficiency in potato: Translating knowledge from other crops. Funct. Plant Biol. 2018, 45, 587–605. [Google Scholar] [CrossRef] [Green Version]
- Chantre Nongpiur, R.; Lata Singla-Pareek, S.; Pareek, A. Genomics approaches for improving salinity stress tolerance in crop plants. Curr. Genom. 2016, 17, 343–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muthuramalingam, P.; Krishnan, S.R.; Saravanan, K.; Mareeswaran, N.; Kumar, R.; Ramesh, M. Genome-wide identification of major transcription factor superfamilies in rice identifies key candidates involved in abiotic stress dynamism. J. Plant Biochem. Biotechnol. 2018, 27, 300–317. [Google Scholar] [CrossRef]
- Muthuramalingam, P.; Jeyasri, R.; Bharathi, R.K.A.S.; Suba, V.; Pandian, S.T.K.; Ramesh, M. Global integrated omics expression analyses of abiotic stress signaling HSF transcription factor genes in Oryza sativa L.: An in silico approach. Genomics 2020, 112, 908–918. [Google Scholar] [CrossRef]
- Le, T.D.; Gathignol, F.; Vu, H.T.; Nguyen, K.L.; Tran, L.H.; Vu, H.T.T.; Dinh, T.X.; Lazennec, F.; Pham, X.H.; Véry, A.-A.; et al. Genome-Wide Association Mapping of Salinity Tolerance at the Seedling Stage in a Panel of Vietnamese Landraces Reveals New Valuable QTLs for Salinity Stress Tolerance Breeding in Rice. Plants 2021, 10, 1088. [Google Scholar] [CrossRef]
- Chan, A.P.; Pertea, G.; Cheung, F.; Lee, D.; Zheng, L.; Whitelaw, C.; Pontaroli, A.C.; San Miguel, P.; Yuan, Y.; Bennetzen, J.; et al. The TIGR maize database. Nucleic Acids Res. 2006, 34, D771–D776. [Google Scholar] [CrossRef] [Green Version]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Bairoch, A.; Apweiler, R. The SWISS-PROT protein sequence database and its supplement TrEMBL in 2000. Nucleic Acids Res. 2000, 28, 45–48. [Google Scholar] [CrossRef]
- Jeyasri, R.; Muthuramalingam, P.; Satish, L.; Adarshan, S.; Aishwarya Lakshmi, M.; Pandian, S.K.; Chen, J.T.; Ahmar, S.; Wang, X.; Freddy, M.P.; et al. The role of OsWRKY genes in rice when faced single and multiple abiotic stresses. Agronomy 2021, 11, 1301. [Google Scholar] [CrossRef]
- Wang, Z.L.; Li, P.H.; Fredricksen, M.; Gong, Z.Z.; Kim, C.S.; Zhang, C.; Bohnert, H.J.; Zhu, J.K.; Bressan, R.A.; Hasegawa, P.M.; et al. Expressed sequence tags from Thellungiella halophila, a new model to study plant salt-tolerance. Plant Sci. 2004, 166, 609–616. [Google Scholar] [CrossRef]
- Kawasaki, S.; Borchert, C.; Deyholos, M.; Wang, H.; Brazille, S.; Kawai, K.; Galbraith, D.; Bohnert, H.J. Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 2001, 13, 889–905. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sreenivasulu, N.; Altschmied, L.; Radchuk, V.; Gubatz, S.; Wobus, U.; Weschke, W. Transcript profiles and deduced changes of metabolic pathways in maternal and filial tissues of developing barley grains. Plant Jour 2004, 37, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Williams, M.E.; Tingey, S.V.; Rafalski, J.A. DNA array profiling of gene expression changes during maize embryo development. Funct. Integr. Genom. 2002, 2, 13–27. [Google Scholar] [CrossRef] [PubMed]
- Buitink, J.; Leger, J.J.; Guisle, I.; Vu, B.L.; Wuilleme, S.; Lamirault, G.; Le Bars, A.; Le Meur, N.; Becker, A.; Küster, H.; et al. Transcriptome profiling uncovers metabolic and regulatory processes occurring during the transition from desiccation sensitive to desiccation-tolerant stages in Medicago truncatula seeds. Plant J. 2006, 47, 735–750. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ji, X.; Zheng, L.; Nie, X.; Wang, Y. Microarray analysis of transcriptional responses to abscisic acid and salt stress in Arabidopsis thaliana. Int. J. Mol. Sci. 2013, 14, 9979–9998. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rensink, W.A.; Buell, C.R. Microarray expression profiling resources for plant genomics. Trends Plant Sci. 2005, 10, 603–609. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Deng, X.W. Microarray-based Approaches to Rice Transcriptome Analysis. In Rice Biology in the Genomics Era; Springer: Berlin/Heidelberg, Germany, 2008; pp. 37–51. [Google Scholar]
- Kumar, R.; Sharma, V.; Suresh, S.; Ramrao, D.P.; Veershetty, A.; Kumar, S.; Priscilla, K.; Hangargi, B.; Narasanna, R.; Pandey, M.K.; et al. Understanding Omics Driven Plant Improvement and de novo Crop Domestication: Some Examples. Front. Genet. 2021, 12, 415. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, A.; Nishiyama, M.Y., Jr.; Fuentes, B.G.; Souza, G.M.; Janies, D.; Gray, J.; Grotewold, E. GRASSIUS: A platform for comparative regulatory genomics across the grasses. Plant Physiol. 2009, 149, 171–180. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, J.; Tian, F.; Yang, D.C.; Meng, Y.Q.; Kong, L.; Luo, J.; Gao, G. PlantTFDB 4.0: Toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res. 2016, 45, gkw982. [Google Scholar] [CrossRef] [Green Version]
- Roychoudhury, A.; Paul, S.; Basu, S. Cross-talk between abscisic acid-dependent and abscisic acid-independent pathways during abiotic stress. Plant Cell Rep. 2013, 32, 985–1006. [Google Scholar] [CrossRef] [PubMed]
- Czolpinska, M.; Rurek, M. Plant glycine-rich proteins in stress response: An emerging, still prospective story. Front. Plant Sci. 2018, 9, 302. [Google Scholar] [CrossRef]
- Zenda, T.; Liu, S.; Dong, A.; Duan, H. Advances in Cereal Crop Genomics for Resilience under Climate Change. Life 2021, 11, 502. [Google Scholar] [CrossRef]
- Koyro, H.W.; Ahmad, P.; Geissler, N. Abiotic stress responses in plants: An overview. In Environmental Adaptations and Stress Tolerance of Plants in the Era of Climate Change; Springer Science & Business Media: New York, NY, USA, 2012; pp. 1–28. [Google Scholar]
- Seki, M.; Narusaka, M.; Abe, H.; Kasuga, M.; Yamaguchi-Shinozaki, K.; Carninci, P.; Hayashizaki, Y.; Shinozaki, K. Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray. Plant Cell 2001, 13, 61–72. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seki, M.; Narusaka, M.; Ishida, J.; Nanjo, T.; Fujita, M.; Oono, Y.; Kamiya, A.; Nakajima, M.; Enju, A.; Sakurai, T. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant Jour 2002, 31, 279–292. [Google Scholar] [CrossRef]
- Fowler, S.; Thomashow, M.F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 2002, 14, 1675–1690. [Google Scholar] [CrossRef] [Green Version]
- Lenka, S.K.; Katiyar, A.; Chinnusamy, V.; Bansal, K.C. Comparative analysis of drought-responsive transcriptome in Indica rice genotypes with contrasting drought tolerance. Plant Biotechnol. J. 2011, 9, 315–327. [Google Scholar] [CrossRef]
- Dubouzet, J.G.; Sakuma, Y.; Ito, Y.; Kasuga, M.; Dubouzet, E.G.; Miura, S.; Seki, M.; Shinozaki, K.; Yamaguchi- Shinozaki, K. OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold responsive gene expression. Plant. J. 2003, 33, 751–763. [Google Scholar] [CrossRef]
- Paul, S.; Roychoudhury, A. Transcriptome profiling of abiotic stress-responsive genes during cadmium chloride-mediated stress in two indica rice varieties. J. Plant Growth Regul. 2018, 37, 657–667. [Google Scholar] [CrossRef]
- Kathuria, H.; Giri, J.; Nataraja, K.N.; Murata, N.; Udayakumar, M.; Tyagi, A.K. Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with up-regulation of several stress responsive genes. Plant Biotechnol. J. 2009, 7, 512–526. [Google Scholar] [CrossRef]
- Quan, R.; Shang, M.; Zhang, H.; Zhao, Y.; Zhang, J. Engineering of enhanced glycine betaine synthesis improves drought tolerance in maize. Plant Biotechnol. J. 2004, 2, 477–486. [Google Scholar] [CrossRef] [PubMed]
- Maghsoudi, K.; Emam, Y.; Niazi, A.; Pessarakli, M.; Arvin, M.J. P5CS expression level and proline accumulation in the sensitive and tolerant wheat cultivars under control and drought stress conditions in the presence/absence of silicon and salicylic acid. J. Plant Interact. 2018, 13, 461–471. [Google Scholar] [CrossRef]
- Ma, H.; Liu, C.; Li, Z.; Ran, Q.; Xie, G.; Wang, B.; Fang, S.; Chu, J.; Zhang, J. ZmbZIP4 contributes to stress resistance in maize by regulating ABA synthesis and root development. Plant Physiol. 2018, 178, 753–770. [Google Scholar] [CrossRef] [Green Version]
- Das, P.; Lakra, N.; Nutan, K.K.; Singla-Pareek, S.L.; Pareek, A. A unique bZIP transcription factor imparting multiple stress tolerance in Rice. Rice 2019, 12, 58. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.S.; Sharma, E.; Jain, N.; Singh, B.; Burman, N.; Khurana, J.P. A rice bZIP transcription factor, OsbZIP16, regulates abiotic stress tolerance when over-expressed in Arabidopsis. J. Plant Biochem. Biotechnol. 2018, 27, 393–400. [Google Scholar] [CrossRef]
- Jiang, Z.; Song, G.; Shan, X.; Wei, Z.; Liu, Y.; Jiang, C.; Jiang, Y.; Jin, F.; Li, Y. Association analysis and identification of ZmHKT1; 5 variation with salt-stress tolerance. Front. Plant Sci. 2018, 9, 1485. [Google Scholar] [CrossRef] [PubMed]
- Xu, B.; Hrmova, M.; Gilliham, M. High affinity Na + transport by wheat HKT1;5 is blocked by K +. Plant Direct 2020, 4, e00275. [Google Scholar] [CrossRef]
- Basu, S.; Roychoudhury, A. Expression profiling of abiotic stress-inducible genes in response to multiple stresses in rice (Oryza sativa L.) varieties with contrasting level of stress tolerance. Biomed. Res. Int. 2014, 2014, 706890. [Google Scholar] [CrossRef] [Green Version]
- Muthuramalingam, P.; Jeyasri, R.; Selvaraj, A.; Kalaiyarasi, D.; Aruni, W.; Pandian, S.T.K.; Ramesh, M. Global transcriptome analysis of novel stress associated protein (SAP) genes expression dynamism of combined abiotic stresses in Oryza sativa (L.). J. Biomol. Struct. Dyn. 2020, 39, 2106–2117. [Google Scholar] [CrossRef]
- Li, S.; Zhao, Q.; Zhu, D.; Yu, J. A DREB-like transcription factor from maize (Zea mays), ZmDREB4. 1, plays a negative role in plant growth and development. Front. Plant Sci. 2018, 9, 395. [Google Scholar] [CrossRef]
- Tang, Y.; Bao, X.; Zhi, Y.; Wu, Q.; Guo, Y.; Yin, X.; Zeng, L.; Li, J.; Zhang, J.; He, W.; et al. Overexpression of a MYB family gene, OsMYB6, increases drought and salinity stress tolerance in transgenic rice. Front. Plant Sci. 2019, 10, 168. [Google Scholar] [CrossRef] [Green Version]
- Tchagang, A.B.; Fauteux, F.; Tulpan, D.; Pan, Y. Bioinformatics identification of new targets for improving low temperature stress tolerance in spring and winter wheat. BMC Bioinform. 2017, 18, 1746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, I.; Tripathi, R.K.; Wilkins, O.; Singh, J. Thaumatin-like Protein (TLP) gene family in barley: Genome-wide exploration and expression analysis during germination. Genes 2020, 11, 1080. [Google Scholar] [CrossRef]
- Liu, A.L.; Zou, J.; Liu, C.F.; Zhou, X.Y.; Zhang, X.W.; Luo, G.Y.; Chen, X.B. Over-expression of OsHsfA7 enhanced salt and drought tolerance in transgenic rice. BMB Rep. 2013, 46, 31. [Google Scholar] [CrossRef] [Green Version]
- Muthusamy, S.K.; Dalal, M.; Chinnusamy, V.; Bansal, K.C. Genome-wide identification and analysis of biotic and abiotic stress regulation of small heat shock protein (HSP20) family genes in bread wheat. J. Plant Physiol. 2017, 211, 100–113. [Google Scholar] [CrossRef] [PubMed]
- El-Esawi, M.A.; Alayafi, A.A. Overexpression of rice Rab7 gene improves drought and heat tolerance and increases grain yield in rice (Oryza sativa L.). Genes 2019, 10, 56. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, C.; Heo, J.B. Overexpression of constitutively active OsRab11 in plants enhances tolerance to high salinity levels. J. Plant. Biol. 2018, 61, 169–176. [Google Scholar] [CrossRef]
- Yao, X.; Wu, K.; Yao, Y.; Li, J.; Ren, Y.; Chi, D. The response mechanism of the HVA1 gene in hulless barley under drought stress. Ital. J. Agron. 2017, 12, 804. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.S.; Lo, S.F.; Sun, P.K.; Lu, C.A.; Ho, T.H.D.; Yu, S.M. A late embryogenesis abundant protein HVA 1 regulated by an inducible promoter enhances root growth and abiotic stress tolerance in rice without yield penalty. Plant Biotechnol. J. 2015, 13, 105–116. [Google Scholar] [CrossRef]
- Gürel, F.; Öztürk, Z.N.; Uçarlı, C.; Rosellini, D. Barley genes as tools to confer abiotic stress tolerance in crops. Front. Plant Sci. 2016, 7, 1137. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Zhang, Q.; Wu, J.; Zheng, X.; Zheng, S.; Sun, X.; Qiu, Q.; Lu, T. Gene knockout study reveals that cytosolic ascorbate peroxidase 2 (OsAPX2) plays a critical role in growth and reproduction in rice under drought, salt and cold stresses. PLoS ONE 2013, 8, e57472. [Google Scholar] [CrossRef]
- Luna, C.M.; Pastori, G.M.; Driscoll, S.; Groten, K.; Bernard, S.; Foyer, C.H. Drought controls on H2O2 accumulation, catalase (CAT) activity and CAT gene expression in wheat. J. Exp. Bot. 2005, 56, 417–423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shiraya, T.; Mori, T.; Maruyama, T.; Sasaki, M.; Takamatsu, T.; Oikawa, K.; Itoh, K.; Kaneko, K.; Ichikawa, H.; Mitsui, T. Golgi/plastid-type manganese superoxide dismutase involved in heat-stress tolerance during grain filling of rice. Plant Biotechnol. J. 2015, 13, 1251–1263. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, Q.; Liao, X.; He, M.; Li, X.; Wang, Z.; Ma, H.; Yu, S.; Liu, S. Tolerance analysis of chloroplast OsCu/Zn-SOD overexpressing rice under NaCl and NaHCO3 stress. PLoS ONE 2017, 12, e0186052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Deus, K.E.; Lanna, A.C.; Abreu, F.R.M.; Silveira, R.D.D.; Pereira, W.J.; Brondani, C.; Vianello, R.P. Molecular and biochemical characterization of superoxide dismutase (SOD) in upland rice under drought. Embrapa Arroz Feijão-Artigo Periódico Indexado (ALICE) 2015, 9, 744–753. [Google Scholar]
- Xiao, B.Z.; Chen, X.; Xiang, C.B.; Tang, N.; Zhang, Q.F.; Xiong, L.Z. Evaluation of seven function-known candidate genes for their effects on improving drought resistance of transgenic rice under field conditions. Mol. Plant 2009, 2, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Xie, G.; Kato, H.; Sasaki, K.; Imai, R. A cold-induced thioredoxinh of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Lett. 2009, 583, 2734–2738. [Google Scholar] [CrossRef] [Green Version]
- Menguer, P.K.; Sperotto, R.A.; Ricachenevsky, F.K. A walk on the wild side: Oryza species as source for rice abiotic stress tolerance. Genet. Mol. Biol. 2017, 40, 238–252. [Google Scholar] [CrossRef] [Green Version]
- Mohanty, A.; Kathuria, H.; Ferjani, A.; Sakamoto, A.; Mohanty, P.; Murata, N.; Tyagi, A. Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor. Appl. Genet. 2002, 106, 51–57. [Google Scholar] [CrossRef]
- Thomas, S.; Krishna, G.K.; Yadav, P.; Pal, M. Cloning and abiotic stress responsive expression analysis of Arginine decarboxylase genes in contrasting rice genotypes. Indian J. Genet. 2019, 79, 411–419. [Google Scholar] [CrossRef]
- Lee, H.J.; Abdula, S.E.; Jang, D.W.; Park, S.H.; Yoon, U.H.; Jung, Y.J.; Kang, K.K.; Nou, I.S.; Cho, Y.G. Overexpression of the glutamine synthetase gene modulates oxidative stress response in rice after exposure to cadmium stress. Plant Cell Rep. 2013, 32, 1521–1529. [Google Scholar] [CrossRef]
- Garg, A.K.; Kim, J.K.; Owens, T.G.; Ranwala, A.P.; Do Choi, Y.; Kochian, L.V.; Wu, R.J. Trehalose Accumulation in Rice Plants Confers High Tolerance Levels to Different Abiotic Stresses. Proc. Natl. Acad. Sci. USA 2002, 99, 15898–15903. [Google Scholar] [CrossRef] [Green Version]
- Abebe, T.; Guenzi, A.C.; Martin, B.; Cushman, J.C. Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol. 2003, 131, 1748–1755. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, S.; Hu, W.; Deng, X.; Zhang, Y.; Liu, X.; Zhao, X.; Luo, Q.; Jin, Z.; Li, Y.; Zhou, S.; et al. A rice calcium-dependent protein kinase OsCPK9 positively regulates drought stress tolerance and spikelet fertility. BMC Plant Biol. 2014, 14, 133. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geda, C.K.; Repalli, S.K.; Dash, G.K.; Swain, P.; Rao, G.J.N. Enhancement of Drought Tolerance in Rice through Introgression of Arabidopsis DREB1A through Transgenic Approach. J. Rice Res. 2019, 7, 2. [Google Scholar]
- Amin, U.S.M.; Biswas, S.; Elias, S.M.; Razzaque, S.; Haque, T.; Malo, R.; Seraj, Z.I. Enhanced salt tolerance conferred by the complete 2.3 kb cDNA of the rice vacuolar Na+/H+ antiporter gene compared to 1.9 kb coding region with 5′ UTR in transgenic lines of rice. Front. Plant Sci. 2016, 7, 14. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, I.; Mohamed, S.; Regnault, T.; Mieulet, D.; Guiderdoni, E.; Sentenac, H.; Véry, A.A. Constitutive contribution by the rice OsHKT1; 4 Na+ transporter to xylem sap desalinization and low Na+ accumulation in young leaves under low as high external Na+ conditions. Front. Plant Sci. 2020, 11, 1130. [Google Scholar] [CrossRef] [PubMed]
- Mohanty, B.; Takahashi, H.; Benildo, G.; Wijaya, E.; Nakazono, M.; Lee, D.Y. Transcriptional regulatory mechanism of alcohol dehydrogenase 1-deficient mutant of rice for cell survival under complete submergence. Rice 2016, 9, 51. [Google Scholar] [CrossRef] [Green Version]
- Zang, X.; Geng, X.; Wang, F.; Liu, Z.; Zhang, L.; Zhao, Y.; Tian, X.; Ni, Z.; Yao, Y.; Xin, M.; et al. Overexpression of wheat ferritin gene TaFER-5B enhances tolerance to heat stress and other abiotic stresses associated with the ROS scavenging. BMC Plant Biol. 2017, 17, 14. [Google Scholar] [CrossRef] [Green Version]
- Quimio, C.A.; Torrizo, L.B.; Setter, T.L.; Ellis, M.; Grover, A.; Abrigo, E.M.; Oliva, N.P.; Ella, E.S.; Carpena, A.L.; Ito, O.; et al. Enhancement of submergence tolerance in transgenic rice overproducing pyruvate decarboxylase. J. Plant Physiol. 2000, 156, 516–521. [Google Scholar] [CrossRef]
- Wang, Y.; Deng, C.; Ai, P.; Zhang, Z. ALM1, encoding a Fe-superoxide dismutase, is critical for rice chloroplast biogenesis and drought stress response. Crop J. 2020. [Google Scholar] [CrossRef]
- Saibi, W.; Brini, F. Superoxide dismutase (SOD) and abiotic stress tolerance in plants: An overview. In Superoxide Dismutase: Structure, Synthesis and Applications; Magliozzi, S., Ed.; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2018; pp. 101–142. [Google Scholar]
- Alqudah, A.M.; Sallam, A.; Baenziger, P.S.; Börner, A. GWAS: Fast-forwarding gene identification and characterization in temperate Cereals: Lessons from Barley–A review. J. Adv. Res. 2020, 22, 119–135. [Google Scholar] [CrossRef] [PubMed]
- Muthuramalingam, P.; Krishnan, S.R.; Pandian, S.; Mareeswaran, N.; Aruni, W.; Pandian, S.K.; Ramesh, M. Global analysis of threonine metabolism genes unravel key players in rice to improve the abiotic stress tolerance. Sci. Rep. 2018, 8, 9270. [Google Scholar] [CrossRef] [PubMed]
- Mitchell-Olds, T. Complex-trait analysis in plants. Genome Biol. 2010, 11, 113. [Google Scholar] [CrossRef]
- Atwell, S.; Huang, Y.S.; Vilhjálmsson, B.J.; Willems, G.; Horton, M.; Li, Y.; Meng, D.; Platt, A.; Tarone, A.M.; Hu, T.T.; et al. Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 2010, 465, 627–631. [Google Scholar] [CrossRef]
Factor | Wheat | Maize | Rice | Barley | Sorghum | Oat | Millet | Rye |
---|---|---|---|---|---|---|---|---|
Available CHO (%) | 69.7 | 63.6 | 64.3 | 55.8 | 62.9 | 62.9 | 63.4 | 71.8 |
Energy (kJ/100 g) | 1570 | 1660 | 1610 | 1630 | 1610 | 1640 | 1650 | 1570 |
Digestible energy (%) | 86.4 | 87.2 | 96.3 | 81.0 | 79.9 | 70.6 | 87.2 | 85.0 |
Vitamins (mg/100 g) | ||||||||
Thiamin | 0.45 | 0.32 | 0.29 | 0.10 | 0.33 | 0.60 | 0.63 | 0.66 |
Riboflavin | 0.10 | 0.10 | 0.04 | 0.04 | 0.13 | 0.14 | 0.33 | 0.25 |
Niacin | 3.7 | 1.9 | 4.0 | 2.7 | 3.4 | 1.3 | 2.0 | 1.3 |
Amino acids (g/16 g N) | ||||||||
Lysine | 2.3 | 2.5 | 3.8 | 3.2 | 2.7 | 4.0 | 2.7 | 3.7 |
Threonine | 2.8 | 3.2 | 3.6 | 2.9 | 3.3 | 3.6 | 3.2 | 3.3 |
Met. & Cys. | 3.6 | 3.9 | 3.9 | 3.9 | 2.8 | 4.8 | 3.6 | 3.7 |
Tryptophan | 1.0 | 0.6 | 1.1 | 1.7 | 1.0 | 0.9 | 1.3 | 1.0 |
Protein quality (%) | ||||||||
True digestibility | 96.0 | 95.0 | 99.7 | 88.0 | 84.8 | 84.1 | 93.0 | 77.0 |
Biological value | 55.0 | 61.0 | 74.0 | 70.0 | 59.2 | 70.4 | 60.0 | 77.7 |
Net protein utilization | 53.0 | 58.0 | 73.8 | 62.0 | 50.0 | 59.1 | 56.0 | 59.0 |
Utilization protein | 5.6 | 5.7 | 5.4 | 6.8 | 4.2 | 5.5 | 6.4 | 5.1 |
S. No | Transcription Factors (TFs) | Rice | Sorghum | Maize | Wheat |
---|---|---|---|---|---|
1 | ABI3-VP1 | 55 | 60 | 51 | - |
2 | BBR/BPC | 04 | 05 | 04 | 05 |
3 | C2C2-GATA | 23 | 27 | 36 | - |
4 | CCAAT-HAP2 | 11 | 09 | 16 | - |
5 | G2-like | 44 | 41 | 59 | 100 |
6 | HSF | 25 | 24 | 29 | 53 |
7 | Orphans | 185 | 177 | 339 | - |
8 | WHIRLY | 02 | 03 | 02 | 07 |
9 | Alfin-like | 09 | 13 | 19 | - |
10 | bHLH | 135 | 143 | 175 | - |
11 | C2C2-YABBY | 08 | 08 | 13 | - |
12 | CCAAT-HAP3 | 12 | - | 04 | - |
13 | GeBP | 13 | 15 | 21 | 12 |
14 | MADS | 70 | 76 | 77 | - |
15 | SBP | 19 | 18 | 32 | 37 |
16 | WRKY | 103 | 94 | 125 | 171 |
17 | AP2-EREBP | 164 | 156 | 212 | - |
18 | bZIP | 92 | 91 | 128 | 186 |
19 | C2H2 | 09 | 07 | 10 | 224 |
20 | CCAAT-HAP5 | 22 | - | 18 | - |
21 | GRAS | 60 | 76 | 86 | 121 |
22 | MYB | 114 | 113 | 167 | 263 |
23 | TCP | 22 | 28 | 44 | 28 |
24 | ZF-HD | 15 | 15 | 21 | 20 |
25 | ARF | 27 | 27 | 38 | 45 |
26 | BZR | 06 | 08 | 10 | - |
27 | C3H | 46 | 44 | 54 | 100 |
28 | CPP | 11 | 08 | 13 | 24 |
29 | GRF | 12 | 10 | 15 | 16 |
30 | MYB-related | 71 | 80 | 116 | 227 |
31 | Trihelix | 17 | 19 | 43 | 46 |
32 | ZIM | 21 | 19 | 36 | - |
33 | ARID | 06 | 07 | 10 | - |
34 | C2C2-CO-like | 08 | 09 | 14 | - |
35 | CAMTA | 06 | 06 | 05 | 20 |
36 | E2F-DP | 09 | 10 | 19 | 24 |
37 | Homeobox | 95 | 83 | 133 | - |
38 | NAC | 144 | 123 | 134 | 263 |
39 | TUB | 15 | 13 | 15 | - |
40 | ARR-B | 06 | 10 | 08 | 22 |
41 | C2C2-Dof | 30 | 29 | 46 | - |
42 | CCAAT-DR1 | 01 | - | 17 | - |
43 | EIL | 09 | 07 | 09 | 16 |
44 | HRT | 01 | 01 | - | - |
45 | NLP | 13 | 13 | 17 | - |
46 | VOZ | 02 | 02 | 05 | 06 |
47 | CCAAT | - | 32 | - | - |
48 | mTERF | - | - | 30 | - |
49 | OVATE | - | - | 43 | - |
50 | Sigma70-like | - | - | 09 | - |
51 | PLATZ | - | - | 15 | - |
52 | FAR1-like | - | - | 15 | - |
53 | Rcd1-like | - | - | 10 | - |
54 | FLO/ LFY | - | - | 02 | - |
55 | S1Fa-like | - | - | 02 | 03 |
56 | CSD | - | - | 04 | - |
57 | LBD | - | - | 44 | 61 |
58 | DBP | - | - | 04 | - |
59 | SHI/STY (SRS) | - | - | 09 | - |
60 | AP2 | - | - | - | 43 |
61 | BES1 | - | - | - | 10 |
62 | ERF | - | - | - | 181 |
63 | HRT-like | - | - | - | 03 |
64 | M-type-MADS | - | - | - | 77 |
65 | NF-X1 | - | - | - | 02 |
66 | RAV | - | - | - | 08 |
67 | TALE | - | - | - | 52 |
68 | DBB | - | - | - | 17 |
69 | FAR1 | - | - | - | 201 |
70 | MIKC_MADS | - | - | - | 51 |
71 | NF-YA | - | - | - | 22 |
72 | Dof | - | - | - | 52 |
73 | HB-PHD | - | - | - | 06 |
74 | NF-YB | - | - | - | 34 |
75 | YABBY | - | - | - | 25 |
76 | B3 | - | - | - | 140 |
77 | GATA | - | - | - | 48 |
78 | HB-other | - | - | - | 44 |
79 | LFY | - | - | - | 02 |
80 | NF-YC | - | - | - | 20 |
81 | SRS | - | - | - | 05 |
82 | CO-like | - | - | - | 07 |
83 | HD-ZIP | - | - | - | 62 |
84 | LSD | - | - | - | 13 |
85 | Nin-like | - | - | - | 29 |
86 | STAT | - | - | - | 02 |
87 | WOX | - | - | - | 26 |
Gene Category | Gene | Cellular Response | Species | Reference |
---|---|---|---|---|
Osmolyte compounds | ||||
Glycine betaine | BADH | Heave metal stress | Rice | [105] |
CodA | Salt, Cold and drought stress | Rice | [106] | |
bet A | Cold, Drought stress | Maize | [107] | |
Proline | P5CS | Drought | Wheat | [108] |
Regulatory genes | ||||
bZIP | bZIP4 | Salinity stress | Maize | [109] |
HBP1b | Drought, Salt, cold | Rice | [110] | |
bZIP16 | Dehydration, salt and ABA | Rice | [111] | |
Transporters | ||||
Na+-H+-dependent K+ transporter | ZmHKT1 | Salt stress | Maize | [112] |
Na+-K+-symporter | HKT1 | Salt stress | Wheat | [113] |
HKT1 | Salt stress | Rice | [114] | |
Stress-responsive genes | ||||
Transcription factors | SAP7 | Abiotic stress | Rice | [115] |
DREB | Abiotic stress | Maize | [116] | |
MYB6 | Drought and Salt | Rice | [117] | |
WCS genes | WCS19 | Cold stress | Wheat | [118] |
WCS120 | Cold stress | Wheat | [118] | |
Thaumatin-like protein | TLP14 | Cold stress | Barley | [119] |
Heat shock protein | HSFA7 | Salt and Droght | Rice | [120] |
HSP20 | Heat stress | Wheat | [121] | |
RAB genes | RAB7 | Drought and Heat stress | Rice | [122] |
RAB11 | Salt stress | Rice | [123] | |
LEA proteins | HVA1 | Drought stress | Barley | [124] |
HVA1 | Salt, Cold and dehydration stress | Rice | [125] | |
HVA1 | Salt and Drought tolerance | Barley | [126] | |
Antioxidants | ||||
Ascorbate peroxidase | APX | Drought, Salt and Cold | Rice | [127] |
Catalase | CAT | Drought stress | Wheat | [128] |
Superoxide dismutase | MnSOD | Abiotic stress | Rice | [129] |
ZnSOD | Salt stress | Rice | [130] | |
FeSOD | Drought stress | Rice | [131] |
Gene | Cellular Response | Species | Reference |
---|---|---|---|
Osmolyte compounds | |||
Pyrroline carboxylate synthase (p5cs) | Drought tolerance | Wheat | [108] |
Choline dehydrogenase | Drought, Salt tolerance | Rice | [135] |
Arginine decarboxylase | Drought, Heat, Freezing, Salinity tolerance | Rice | [136] |
Glutamine synthetase | Oxidative stress tolerance | Rice | [137] |
Trehalose-6-P-synthase | Salt, Drought, Cold tolerance | Rice | [138] |
Mannitol dehydrogenase | Drought, Salt tolerance | Wheat | [139] |
Regulatory genes | |||
Calcium dependent protein kinase | Drought tolerance | Rice | [140] |
DREB1A | Drought tolerance | Rice | [141] |
Transporters/symporter | |||
Na+/H+ antiporter | Salt tolerance | Rice | [142] |
Potassium transporter (HKT1) | Salt tolerance | Rice | [143] |
Stress-responsive genes | |||
HVA1 | Drought, Salt tolerance | Rice | [125] |
Alcohol dehydrogenase | Submergence tolerance | Rice | [144] |
Ferritin | Heat tolerance | Wheat | [145] |
HVA1 | Salt and Drought tolerance | Barley | [126] |
Pyruvate decarboxylase1 | Submergence tolerance | Rice | [146] |
Antioxidants | |||
Fe-superoxide dismutase | Drought tolerance | Rice | [147] |
Mn-superoxide dismutase | Salt tolerance | Rice | [148] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeyasri, R.; Muthuramalingam, P.; Satish, L.; Pandian, S.K.; Chen, J.-T.; Ahmar, S.; Wang, X.; Mora-Poblete, F.; Ramesh, M. An Overview of Abiotic Stress in Cereal Crops: Negative Impacts, Regulation, Biotechnology and Integrated Omics. Plants 2021, 10, 1472. https://doi.org/10.3390/plants10071472
Jeyasri R, Muthuramalingam P, Satish L, Pandian SK, Chen J-T, Ahmar S, Wang X, Mora-Poblete F, Ramesh M. An Overview of Abiotic Stress in Cereal Crops: Negative Impacts, Regulation, Biotechnology and Integrated Omics. Plants. 2021; 10(7):1472. https://doi.org/10.3390/plants10071472
Chicago/Turabian StyleJeyasri, Rajendran, Pandiyan Muthuramalingam, Lakkakula Satish, Shunmugiah Karutha Pandian, Jen-Tsung Chen, Sunny Ahmar, Xiukang Wang, Freddy Mora-Poblete, and Manikandan Ramesh. 2021. "An Overview of Abiotic Stress in Cereal Crops: Negative Impacts, Regulation, Biotechnology and Integrated Omics" Plants 10, no. 7: 1472. https://doi.org/10.3390/plants10071472
APA StyleJeyasri, R., Muthuramalingam, P., Satish, L., Pandian, S. K., Chen, J.-T., Ahmar, S., Wang, X., Mora-Poblete, F., & Ramesh, M. (2021). An Overview of Abiotic Stress in Cereal Crops: Negative Impacts, Regulation, Biotechnology and Integrated Omics. Plants, 10(7), 1472. https://doi.org/10.3390/plants10071472