Plant Disease Control Efficacy of Platycladus orientalis and Its Antifungal Compounds
Abstract
:1. Introduction
2. Results and Discussion
2.1. Discovery of the Platycladus orientalis Showing Plant Disease Control Efficacy
2.2. Structural Determination of the Isolated Compounds
2.3. In Vitro Antifungal Activity of the Identified Compounds
2.4. Effects of Compounds 1, 2, 9, and 11 on Fungal Development of Magnaporthe oryzae
2.5. Disease Control Efficacy of the Active Compounds
2.6. Constituent Analysis of the Platycladus orientalis EtOAc Fraction
3. Materials and Methods
3.1. Plant Material and Fungal Strains
3.2. Isolation of Antifungal Compounds from Platycladus orientalis
3.3. General Experimental Procedures for Chemical Analysis
3.4. Determination of the Minimum Inhibitory Concentration
3.5. Inhibition Assay for Mycelial Growth, Conidiation, and Germination
3.6. Disease Control Efficacy Assay
3.7. Relative Quantification of the Isolated Compounds from Platycladus orientalis EtOAc Fraction
3.8. Statistical Analysis
4. Conclusions
5. Patents
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lucas, J.A. Fungi, Food Crops, and Biosecurity: Advances and Challenges. In Advances in Food Security and Sustainability; Barling, D., Ed.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 2, pp. 1–40. [Google Scholar]
- Bandara, A.Y.; Weerasooriya, D.K.; Conley, S.P.; Bradley, C.A.; Allen, T.W.; Esker, P.D. Modeling the relationship between estimated fungicide use and disease-associated yield losses of soybean in the United States I: Foliar fungicides vs foliar diseases. PLoS ONE 2020, 15, e0234390. [Google Scholar] [CrossRef]
- Mikaberidze, A.; Paveley, N.; Bonhoeffer, S.; van den Bosch, F. Emergence of resistance to fungicides: The role of fungicide dose. Phytopathology 2017, 107, 545–560. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.S.; Hwang, B.K. Microbial fungicides in the control of plant diseases. J. Phytopathol. 2007, 155, 641–653. [Google Scholar] [CrossRef]
- Molyneux, R.J.; Lee, S.T.; Gardner, D.R.; Panter, K.E.; James, L.F. Phytochemicals: The good, the bad and the ugly? Phytochemistry 2007, 68, 2973–2985. [Google Scholar] [CrossRef]
- Cheng, S.S.; Chung, M.J.; Lin, C.Y.; Wang, Y.N.; Chang, S.T. Phytochemicals from Cunninghamia konishii Hayata act as antifungal agents. J. Agric. Food Chem. 2012, 60, 124–128. [Google Scholar] [CrossRef] [PubMed]
- Han, J.W.; Shim, S.H.; Jang, K.S.; Choi, Y.H.; Kim, H.; Choi, G.J. In vivo disease control efficacy of isoquinoline alkaloids isolated from Corydalis ternata against wheat leaf rust and pepper anthracnose. J. Microbiol. Biotechnol. 2018, 28, 262–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, B.; Han, J.W.; Ngo, M.T.; Dnag, Q.L.; Kim, J.-C.; Kim, H.; Choi, G.J. Identification of novel compounds, oleanane- and ursane-type triterpene glycosides, from Trevesia palmata: Their biocontrol activity against phytopathogenic fungi. Sci. Rep. 2018, 8, 14522. [Google Scholar] [CrossRef] [PubMed]
- Ngo, M.T.; Han, J.W.; Yoon, S.; Bae, S.; Kim, S.-Y.; Kim, H.; Choi, G.J. Discovery of new triterpenoid saponins isolated from Maesa japonica with antifungal activity against rice blast fungus Magnaporthe oryzae. J. Agric. Food Chem. 2019, 67, 7706–7715. [Google Scholar] [CrossRef]
- Ngo, M.T.; Han, J.W.; Nguyen, M.V.; Dang, Q.L.; Kim, H.; Choi, G.J. Antifungal properties of natural products from Pterocarya tonkinensis against phytopathogenic fungi. Pest Manag. Sci. 2021, 77, 1864–1872. [Google Scholar] [CrossRef]
- Kimberly, D.G. Bioactive natural products in plant disease control. In Studies in Natural Products Chemistry; Rahman, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 56, pp. 229–246. [Google Scholar]
- Koo, K.A.; Sung, S.H.; Kim, Y.C. A new neuroprotective pinusolide derivative from the leaves of Biota orientalis. Chem. Pharm. Bull. 2002, 50, 834–836. [Google Scholar] [CrossRef] [Green Version]
- Kim, C.S.; Choi, S.U.; Lee, K.R. Three new diterpenoids from the leaves of Thuja orientalis. Planta Med. 2012, 78, 485–487. [Google Scholar] [CrossRef] [Green Version]
- Shan, M.-Q.; Shang, J.; Ding, A.-W. Platycladus orientalis leaves: A systemic review on botany, phytochemistry and pharmacology. Am. J. Chin. Med. 2014, 42, 523–542. [Google Scholar] [CrossRef]
- Emami, S.A.; Sadeghi-aliabadi, H.; Saeidi, M.; Jafarian, A. Cytotoxic evaluations of Iranian conifers on cancer cells. Pharm. Biol. 2005, 43, 299–304. [Google Scholar] [CrossRef] [Green Version]
- Loizzo, M.R.; Saab, A.M.; Tundis, R.; Statti, G.A.; Menichini, F.; Lampronti, I.; Gambari, R.; Cinatl, J.; Doerr, H.W. Phytochemical analysis and in vitro antiviral activities of the essential oils of seven Lebanon species. Chem. Biodivers. 2008, 5, 461–470. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, P.; Kumar, P.; Singh, D.; Singh, V. Biological properties of Thuja orientalis Linn. Adv. Life Sci. 2012, 2, 17–20. [Google Scholar] [CrossRef]
- Koo, K.A.; Kim, S.H.; Lee, M.K.; Kim, Y.C. 15-Methoxypinusolidic acid from Biota orientalis attenuates glutamate-induced neurotoxicity in primary cultured rat cortical cells. Toxicol. In Vitro 2006, 20, 936–941. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.S.; Suh, W.S.; Choi, S.U.; Kim, K.H.; Lee, K.R. Two new diterpenoids from Thuja orientalis and their cytotoxicity. Bull. Korean Chem. Soc. 2014, 35, 2855–2858. [Google Scholar] [CrossRef] [Green Version]
- Koo, K.A.; Lee, M.K.; Kim, S.H.; Jeong, E.J.; Kim, S.Y.; Oh, T.H.; Kim, Y.C. Pinusolide and 15-methoxypinusolidic acid attenuate the neurotoxic effect of staurosporine in primary cultures of rat cortical cells. Br. J. Pharmacol. 2007, 150, 65–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, H.O.; Suh, D.Y.; Han, B.H. Isolation and characterization of platelet-activating factor receptor binding antagonists from Biota orientalis. Planta Med. 1995, 61, 37–40. [Google Scholar] [CrossRef] [PubMed]
- Kofujita, H.; Fujino, Y.; Ota, M.; Takahashi, K. Antifungal diterpenes from the bark of Cryptomeria japonica D. Don. Holzforschung 2006, 60, 20–23. [Google Scholar] [CrossRef]
- Cheng, S.S.; Lin, C.Y.; Gu, H.J.; Chang, S.T. Antifungal activities and chemical composition of wood and leaf essential oils from Cunninghamia konishii. J. Wood Chem. Technol. 2011, 31, 204–217. [Google Scholar] [CrossRef]
- Su, Y.C.; Hsu, K.P.; Wang, E.I.C.; Ho, C.L. Composition, anticancer, and antimicrobial activities in vitro of the heartwood essential oil of Cunninghamia lanceolata var. konishii from Taiwan. Nat. Prod. Commun. 2012, 7, 1245–1247. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.; Williamson, E.; Zloh, M.; Gibbons, S. Isopimaric acid from Pinus nigra shows activity against multidrug-resistant and EMRSA strains of Staphylococcus aureus. Phytother. Res. 2005, 19, 538–542. [Google Scholar] [CrossRef] [PubMed]
- Mun, S.P.; Prewitt, L. Antifungal activity of organic extracts from Juniperus virginiana Heartwood against wood decay fungi. For. Prod. J. 2011, 61, 443–449. [Google Scholar] [CrossRef]
- Ortiz, S.C.; Huang, M.; Hull, C.M. Spore germination as a target for antifungal therapeutics. Antimicrob. Agents Chemother. 2019, 63, e00994-19. [Google Scholar] [CrossRef]
- Asibi, A.E.; Chai, Q.; Coulter, J.A. Rice blast: A disease with implications for global food security. Agronomy 2019, 9, 451. [Google Scholar] [CrossRef] [Green Version]
- Otomo, K.; Kanno, Y.; Motegi, A.; Kenmoku, H.; Yamane, H.; Mitsuhashi, W.; Oikawa, H.; Toshima, H.; Itoh, H.; Matsuoka, M.; et al. Diterpene cyclases responsible for the biosynthesis of phytoalexins, momilactones A, B, and oryzalexins A–F in rice. Biosci. Biotechnol. Biochem. 2004, 68, 2001–2006. [Google Scholar] [CrossRef]
- Peters, R.J. Uncovering the complex metabolic network underlying diterpenoid phytoalexin biosynthesis in rice and other cereal crop plants. Phytochemistry 2006, 67, 2307–2317. [Google Scholar] [CrossRef]
- Toyomasu, T.; Kagahara, T.; Okada, K.; Koga, J.; Hasegawa, M.; Mitsuhashi, W.; Sassa, T.; Yamane, H. Diterpene phytoalexins are biosynthesized in and exuded from the roots of rice seedlings. Biosci. Biotechnol. Biochem. 2008, 72, 562–567. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, J.; Guo, B.; Duan, J.; Che, C.T. Momilactone and related diterpenoids as potential agricultural chemicals. J. Agric. Food Chem. 2018, 66, 7859–7872. [Google Scholar] [CrossRef] [PubMed]
- Akatsuka, T.; Kodama, O.; Sekido, H.; Kono, Y.; Takeuchi, S. Novel phytoalexins (oryzalexins A, B and C) isolated from rice blast leaves infected with Pyricularia oryzae. Part I: Isolation, characterization and biological activities of oryzalexins. Agric. Biol. Chem. 1985, 49, 1689–1694. [Google Scholar] [CrossRef] [Green Version]
- Cartwright, D.; Langcake, P.; Pryce, R.J.; Leworthy, D.P.; Ride, J.P. Chemical activation of host defence mechanisms as a basis for crop protection. Nature 1977, 267, 511–513. [Google Scholar] [CrossRef]
- Koga, J.; Shimura, M.; Oshima, K.; Ogawa, N.; Yamauchi, T.; Ogasawara, N. Phytocassanes A, B, C and D, novel diterpene phytoalexins from rice, Oryza sativa L. Tetrahedron 1995, 51, 7907–7918. [Google Scholar] [CrossRef]
- Sekido, H.; Akatsuka, T. Mode of action of oryzalexin D against Pyricularia oryzae. Agric. Biol. Chem. 1987, 51, 1967–1971. [Google Scholar] [CrossRef]
- Wang, H.; Wang, J.; Peng, X.; Zhou, P.; Bai, N.; Meng, J.; Deng, X. Control efficacy against rice sheath blight of Platycladus orientalis extract and its antifungal active compounds. Eur. J. Plant Pathol. 2014, 140, 515–525. [Google Scholar] [CrossRef]
- Choi, G.J.; Jang, K.-S.; Kim, J.-S.; Lee, S.-W.; Cho, J.-Y.; Cho, K.-Y.; Kim, J.-C. In vivo antifungal activities of 57 plant extracts against six plant pathogenic fungi. Plant Pathol. J. 2004, 20, 184–191. [Google Scholar] [CrossRef]
- Choi, N.H.; Jang, J.Y.; Choi, G.J.; Choi, Y.H.; Jang, K.S.; Min, B.S.; Dang, Q.L.; Kim, J.-C. Antifungal activity of sterols and dipsacus saponins isolated from Dipsacus asper roots against phytopathogenic fungi. Pestic. Biochem. Physiol. 2017, 141, 103–108. [Google Scholar] [CrossRef]
- Asili, J.; Lambert, M.; Ziegler, H.L.; Staerk, D.; Sairafianpour, M.; Witt, M.; Asghari, G.; Ibrahimi, I.S.; Jaroszewski, J.W. Labdanes and isopimaranes from Platycladus orientalis and their effects on erythrocyte membrane and on Plasmodium falciparum growth in the erythrocyte host cells. J. Nat. Prod. 2004, 67, 631–637. [Google Scholar] [CrossRef] [PubMed]
- Block, S.; Baccelli, C.; Tinant, B.; Van Meervelt, L.; Rozenberg, R.; Habib Jiwan, J.L.; Llabrès, G.; De Pauw-Gillet, M.C.; Quetin-Leclercq, J. Diterpenes from the leaves of Croton zambesicus. Phytochemistry 2004, 65, 1165–1171. [Google Scholar] [CrossRef]
- Chien, S.C.; Liu, H.K.; Kuo, Y.H. Two new compounds from the leaves of Calocedrus microlepic var. formosana. Chem. Pharm. Bull. 2004, 52, 762–763. [Google Scholar] [CrossRef] [Green Version]
- Joseph-Nathan, P.; Santillan, R.L.; Gutierrez, A. 13C-NMR study of cedrol, 6-isocedrol, and α-cedrene. J. Nat. Prod. 1984, 47, 924–933. [Google Scholar] [CrossRef]
- Muto, N.; Tomokuni, T.; Haramoto, M.; Tatemoto, H.; Nakanishi, T.; Inatomi, Y.; Murata, H.; Inada, A. Isolation of apoptosis-and differentiation-inducing substances toward human promyelocytic leukemia HL-60 cells from leaves of Juniperus taxifolia. Biosci. Biotechnol. Biochem. 2008, 72, 477–484. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.C.J.; Williamson, E.M.; Wareham, N.; Kaatz, G.W.; Gibbons, S. Antibacterials and modulators of bacterial resistance from the immature cones of Chamaecyparis lawsoniana. Phytochemistry 2007, 68, 210–217. [Google Scholar] [CrossRef]
- Wong, K.C.; Sivasothy, Y.; Boey, P.L.; Osman, H.; Sulaiman, B. Essential oils of Etlingera elatior (Jack) RM Smith and Elingera littoralis (Koenig) Giseke. J. Essent. Oil Res. 2010, 22, 461–466. [Google Scholar] [CrossRef]
- Espinel-Ingroff, A.; Fothergill, A.; Ghannoum, M.; Manavathu, E.; Ostrosky-Zeichner, L.; Pfaller, M.; Rinaldi, M.; Schell, W.; Walsh, T. Quality control and reference guidelines for CLSI broth microdilution susceptibility method (M 38-A document) for amphotericin B, itraconazole, posaconazole, and voriconazole. J. Clin. Microbiol. 2005, 43, 5243–5246. [Google Scholar] [CrossRef] [Green Version]
Treatment | Concentration (µg/mL) | Disease Control Efficacy (%) | |||||
---|---|---|---|---|---|---|---|
RCB | TGM | TLB | WLR | BPM | PAN | ||
MeOH extract | 3000 | 90 ± 2 ab | 21 ± 3 b | 0 b | 90 ± 5 a | 0 b | 40 ± 1 c |
EtOAc fraction | 2000 | 75 ± 5 b | 21 ± 3 b | 0 b | 67 ± 7 b | 0 b | 0 d |
BuOH fraction | 2000 | 0 c | 14 ± 5 bc | 0 b | 20 ± 3 c | 0 b | 0 d |
Water fraction | 2000 | 0 c | 0 c | 0 b | 0 d | 0 b | 0 d |
Blasticidin-S | 1 | 82 ± 2 b | − | − | − | − | − |
50 | 100 a | − | − | − | − | − | |
Fludioxonil | 5 | − | 85 ± 4 a | − | − | − | − |
50 | − | 100 a | − | − | − | − | |
Dimethomorph | 2 | − | − | 92 ± 3 a | − | − | − |
10 | − | − | 100 a | − | − | − | |
Flusilazole | 2 | − | − | − | 84 ± 2 ab | 92 ± 5 a | − |
10 | − | − | − | 100 a | 100 a | − | |
Dithianon | 10 | − | − | − | − | − | 75 ± 5 b |
50 | − | − | − | − | − | 96 ± 2 a |
Phytopathogenic Fungus | MIC (μg/mL) of Compound | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 & 6 | 7 | 8 | 9 | 10 | 11 | |
Alternaria brassicicola | − | − | − | − | − | − | − | − | − | − |
Botrytis cinerea | − | − | − | − | − | − | − | − | − | − |
Colletotrichum coccodes | − | − | − | − | − | − | − | − | − | − |
Magnaporthe oryzae | 100 | 200 | − | − | 100 | − | − | 100 | − | 200 |
Phytophthora infestans | − | 100 | − | − | − | − | − | 100 | − | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bae, S.; Han, J.W.; Dang, Q.L.; Kim, H.; Choi, G.J. Plant Disease Control Efficacy of Platycladus orientalis and Its Antifungal Compounds. Plants 2021, 10, 1496. https://doi.org/10.3390/plants10081496
Bae S, Han JW, Dang QL, Kim H, Choi GJ. Plant Disease Control Efficacy of Platycladus orientalis and Its Antifungal Compounds. Plants. 2021; 10(8):1496. https://doi.org/10.3390/plants10081496
Chicago/Turabian StyleBae, Sohyun, Jae Woo Han, Quang Le Dang, Hun Kim, and Gyung Ja Choi. 2021. "Plant Disease Control Efficacy of Platycladus orientalis and Its Antifungal Compounds" Plants 10, no. 8: 1496. https://doi.org/10.3390/plants10081496
APA StyleBae, S., Han, J. W., Dang, Q. L., Kim, H., & Choi, G. J. (2021). Plant Disease Control Efficacy of Platycladus orientalis and Its Antifungal Compounds. Plants, 10(8), 1496. https://doi.org/10.3390/plants10081496