Hemp (Cannabis sativa L.) Flour-Based Wheat Bread as Fortified Bakery Product
Abstract
:1. Introduction
2. Results and Discussion
2.1. Physico-Chemical Analyses
2.2. Porosity and Elasticity of Bread Samples
2.3. Content of Micro and Macro Elements
2.4. Fatty Acids Content
2.5. Amino Acids Content
2.6. Carbohydrate Content
2.7. Microbiological Analyses
2.8. Texture Analysis of Bread Samples
3. Materials and Methods
3.1. Materials
3.2. Proximate Composition
3.3. Determination of Micro and Macroelements
3.4. Determination of Fatty Acid Composition
3.5. Determination of Amino Acids
3.6. Determination of Individual Carbohydrate
3.7. Determination of the Total Number of Yeasts and Molds
3.8. Texture Analysis
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- De Boni, A.; Pasqualone, A.; Roma, R.; Acciani, C. Traditions, health and environment as bread purchase drivers: A choice experiment on high-quality artisanal Italian bread. J. Clean. Prod. 2019, 221, 249–260. [Google Scholar] [CrossRef]
- Gębski, J.; Jezewska-Zychowicz, M.; Szlachciuk, J.; Kosicka-Gębska, M. Impact of nutritional claims on consumer preferences for bread with varied fiber and salt content. Food Qual. Prefer. 2019, 76, 91–99. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ciudad-Mulero, M.; Fernández-Ruiz, V.; Ferreira, E.; Heleno, S.; Rodrigues, P.; Barros, L.; Ferreira, I.C. Comparison of different bread types: Chemical and physical parameters. Food Chem. 2020, 310, 125954. [Google Scholar] [CrossRef] [PubMed]
- Pico, J.; Bernal, J.; Gomez, M. Wheat bread aroma compounds in crumb and crust: A review. Food Res. Int. 2015, 75, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Gawlik-Dziki, U.; Świeca, M.; Dziki, D.; Baraniak, B.; Tomiło, J.; Czyż, J. Quality and antioxidant properties of breads enriched with dry onion (Allium cepa L.) skin. Food Chem. 2013, 138, 1621–1628. [Google Scholar] [CrossRef]
- Prokopov, T.; Goranova, Z.; Baeva, M.; Slavov, A.; Galanakis, C.M. Effects of white cabbage outer leaves powder on sponge cake quality. Int. Agrophys. 2015, 29, 493–500. [Google Scholar] [CrossRef]
- Vlaic, R.A.M.; Mureșan, C.C.; Muste, S.; Mureșan, V.; Pop, A. Boletus Edulis Mushroom Flour-Based Wheat Bread as Innovative Fortified Bakery Product. Bull. Univ. Agric. Sci. Veter Med. Cluj-Napoca Food Sci. Technol. 2019, 76, 52–62. [Google Scholar] [CrossRef] [Green Version]
- Fagundes, G.; Rocha, M.; Salas-Mellado, M. Improvement of protein content and effect on technological properties of wheat bread with the addition by cobia (Rachycentron canadum). Food Res. 2018, 2, 221–227. [Google Scholar] [CrossRef]
- Ahmad, B.S.; Talou, T.; Straumite, E.; Sabovics, M.; Krūma, Z.; Saad, Z.; Hijazi, A.; Merah, O. Protein Bread Fortification with Cumin and Caraway Seeds and By-Product Flour. Foods 2018, 7, 28. [Google Scholar] [CrossRef] [Green Version]
- Serventi, L.; Vittadini, E.; Vodovotz, Y. Effect of chickpea protein concentrate on the loaf quality of composite soy-wheat bread. LWT 2018, 89, 400–402. [Google Scholar] [CrossRef]
- Villanueva, M.; Ronda, F.; Moschakis, T.; Lazaridou, A.; Biliaderis, C. Impact of acidification and protein fortification on thermal properties of rice, potato and tapioca starches and rheological behaviour of their gels. Food Hydrocoll. 2017, 79, 20–29. [Google Scholar] [CrossRef]
- General Principles for the Addition of Essential Nutrients to Foods CAC/GL 9-1987. Adopted in 1987. Amendment: 1989, 1991. Revision: 2015. Available online: http://www.fao.org/fao-who-codexalimentarius/sh-proxy/en/?lnk=1&url=https%253A%252F%252Fworkspace.fao.org%252Fsites%252Fcodex%252FStandards%252FCXG%2B9-1987%252FCXG_009e_2015.pdf (accessed on 2 May 2021).
- Allen, L.; de Benoist, B.; Dary, O.; Hurrell, R. Guidelines on Food Fortification with Micronutrients; WHO: Geneva, Switzerland, 2006. [Google Scholar]
- Mozaffarian, D.; Rosenberg, I.; Uauy, R. History of modern nutrition science—implications for current research, dietary guidelines, and food policy. BMJ 2018, 361, k2392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svetlana, P.; Elena, D.; Lidia, P.; Alexandra, C.; Elena, P.; Janna, C. Fortifierea Făinii de Grâu cu Suplimente de Vitamine şi Minerale; Instrument Bibliometric National: Chișinău, Moldova, 2011. [Google Scholar]
- Liu, O.R.; Molina, R.; Wilson, M.; Halpern, B.S. Global opportunities for mariculture development to promote human nutrition. PeerJ 2018, 6, e4733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pǎucean, A. Tendinţe Modern Privind Creşterea Valorii Nutritive a Fǎinii de Grâu şi a Produselor de Panificaţie; Editura Mega: Cluj Napoca, Romania, 2017. [Google Scholar]
- Mukherjee, A.; Roy, S.C.; De Bera, S.; Jiang, H.-E.; Li, X.; Li, C.-S.; Bera, S. Results of molecular analysis of an archaeological hemp (Cannabis sativa L.) DNA sample from North West China. Genet. Resour. Crop. Evol. 2008, 55, 481–485. [Google Scholar] [CrossRef]
- McPartland, J.M.; Guy, G.W.; Hegman, W. Cannabis is indigenous to Europe and cultivation began during the Copper or Bronze age: A probabilistic synthesis of fossil pollen studies. Veg. Hist. Archaeobot. 2018, 27, 635–648. [Google Scholar] [CrossRef]
- Mihoc, M.; Pop, G.; Alexa, E.; Radulov, I. Nutritive quality of romanian hemp varieties (Cannabis sativa L.) with special focus on oil and metal contents of seeds. Chem. Central J. 2012, 6, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Farinon, B.; Molinari, R.; Costantini, L.; Merendino, N. The seed of industrial hemp (Cannabis sativa L.): Nutritional Quality and Potential Functionality for Human Health and Nutrition. Nutrients 2020, 12, 1935. [Google Scholar] [CrossRef]
- Marks, M.D.; Tian, L.; Wenger, J.P.; Omburo, S.N.; Soto-Fuentes, W.; He, J.; Gang, D.R.; Weiblen, G.D.; Dixon, R.A. Identification of candidate genes affecting Delta9-tetrahydrocannabinol biosynthesis in Cannabis sativa. J. Exp. Bot. 2009, 60, 3715–3726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EMCDDA. Cannabis Legislation in Europe: An Overview; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar]
- Onofri, C.; de Meijer, E.P.; Mandolino, G. Sequence heterogeneity of cannabidiolic- and tetrahydrocannabinolic acid-synthase in Cannabis sativa L. and its relationship with chemical phenotype. Phytochemistry 2015, 116, 57–68. [Google Scholar] [CrossRef]
- Staginnus, C.; Zörntlein, S.; De Meijer, E. A PCR marker Linked to a THCA synthase Polymorphism is a Reliable Tool to Discriminate Potentially THC-Rich Plants of Cannabis sativa L. J. Forensic Sci. 2014, 59, 919–926. [Google Scholar] [CrossRef]
- Lattimer, J.; Haub, M.D. Effects of Dietary Fiber and Its Components on Metabolic Health. Nutrients 2010, 2, 1266–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Köksal, A.I.; Artik, N.; Simsek, A.; Gunes, N.T. Nutrient composition of hazelnut (Corylus avellana L.) varieties cultivated in Turkey. Food Chem. 2006, 99, 509–515. [Google Scholar] [CrossRef]
- Korkmaz, K.; Kara, S.M.; Ozkutlu, F.; Gul, V. Monitoring of heavy metals and selected micronutrients in hempseeds from North-western Turkey. Afr. J. Agric. Res. 2010, 5, 463–467. [Google Scholar]
- Rusu, I.-E.; (Vlaic), R.M.; Mureşan, C.; Mureşan, A.; Filip, M.; Onica, B.-M.; Csaba, K.; Alexa, E.; Szanto, L.; Muste, S. Advanced Characterization of Hemp Flour (Cannabis sativa L.) from Dacia Secuieni and Zenit Varieties, Compared to Wheat Flour. Plants 2021, 10, 1237. [Google Scholar] [CrossRef]
- Mureşan, C.; Marc, R.; Semeniuc, C.A.; Socaci, S.A.; Fărcaş, A.; Fracisc, D.; Pop, C.R.; Rotar, A.; Dodan, A.; Mureşan, V.; et al. Changes in Physicochemical and Microbiological Properties, Fatty Acid and Volatile Compound Profiles of Apuseni Cheese during Ripening. Foods 2021, 10, 258. [Google Scholar] [CrossRef] [PubMed]
- Simopoulos, A.P. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef] [PubMed]
- Vonapartis, E.; Aubin, M.-P.; Seguin, P.; Mustafa, A.F.; Charron, J.-B. Seed composition of ten industrial hemp cultivars approved for production in Canada. J. Food Compos. Anal. 2015, 39, 8–12. [Google Scholar] [CrossRef]
- Lan, Y.; Zha, F.; Peckrul, A.; Hanson, B.; Johnson, B.; Rao, J.; Chen, B. Genotype x Environmental Effects on Yielding Ability and Seed Chemical Composition of Industrial Hemp (Cannabis sativa L.) Varieties Grown inNorth Dakota, USA. J. Am. Oil Chem. Soc. 2019, 96, 1417–1425. [Google Scholar] [CrossRef]
- Mattila, P.; Mäkinen, S.; Eurola, M.; Jalava, T.; Pihlava, J.-M.; Hellström, J.; Pihlanto, A. Nutritional Value of Commercial Protein-Rich Plant Products. Plant Foods Hum. Nutr. 2018, 73, 108–115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- House, J.D.; Neufeld, J.; Leson, G. Evaluating the Quality of Protein from Hemp Seed (Cannabis sativa L.) Products Through the use of the Protein Digestibility-Corrected Amino Acid Score Method. J. Agric. Food Chem. 2010, 58, 11801–11807. [Google Scholar] [CrossRef] [PubMed]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Oseyko, M.; Sova, N.; Lutsenko, M.; Kalyna, V. Chemical aspects of the composition of industrial hemp seed products. Ukr. Food J. 2019, 8, 544–559. [Google Scholar] [CrossRef]
- Siano, F.; Moccia, S.; Picariello, G.; Russo, G.; Sorrentino, G.; Di Stasio, M.; La Cara, F.; Volpe, M. Comparative Study of Chemical, Biochemical Characteristic and ATR-FTIR Analysis of Seeds, Oil and Flour of the Edible Fedora Cultivar Hemp (Cannabis sativa L.). Molecules 2018, 24, 83. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, Y.; Pangloli, P.; Meng, X.; Dia, V.P. Effect of heating on the digestibility of isolated hempseed (Cannabis sativa L.) protein and bioactivity of its pepsin-pancreatin digests. Food Chem. 2020, 314, 126198. [Google Scholar] [CrossRef]
- Bernstein, N.; Gorelick, J.; Koch, S. Interplay between chemistry and morphology in medical cannabis (Cannabis sativa L.). Ind. Crop. Prod. 2019, 129, 185–194. [Google Scholar] [CrossRef]
- Coffman, C.B.; Gentner, W.A. Responses of Greenhouse-grown Cannabis sativa L. to Nitrogen, Phosphorus, and Potassium 1. Agron. J. 1977, 69, 832–836. [Google Scholar] [CrossRef]
- Saloner, A.; Bernstein, N. Response of Medical Cannabis (Cannabis sativa L.) to Nitrogen Supply Under Long Photoperiod. Front. Plant Sci. 2020, 11. [Google Scholar] [CrossRef] [PubMed]
- Wogiatzi, E.; Gougoulias, N.; Giannoulis, K.D.; Kamvoukou, C.-A. Effect of Irrigation and Fertilization Levels on Mineral Composition of Cannabis sativa L. Leaves. Not. Bot. Horti Agrobot. Cluj-Napoca 2019, 47, 1073–1080. [Google Scholar] [CrossRef] [Green Version]
- Aubin, M.; Seguin, P.; Vanasse, A.; Tremblay, G.F.; Mustafa, A.F.; Charron, J. Industrial Hemp Response to Nitrogen, Phosphorus, and Potassium Fertilization. Crop For. Turfgrass Manag. 2015, 1, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Saloner, A.; Sacks, M.M.; Bernstein, N. Response of Medical Cannabis (Cannabis sativa L.) Genotypes to K Supply Under Long Photoperiod. Front. Plant Sci. 2019, 10, 1369. [Google Scholar] [CrossRef]
- Korus, J.; Witczak, M.; Ziobro, R.; Juszczak, L. Hemp (Cannabis sativa subsp. sativa) flour and protein preparation as natural nutrients and structure forming agents in starch based gluten-free bread. LWT 2017, 84, 143–150. [Google Scholar] [CrossRef]
- Korus, A.; Gumul, D.; Krystyjan, M.; Juszczak, L.; Korus, J. Evaluation of the quality, nutritional value and antioxidant activity of gluten-free biscuits made from corn-acorn flour or corn-hemp flour composites. Eur. Food Res. Technol. 2017, 243, 1429–1438. [Google Scholar] [CrossRef]
- Radočaj, O.; Dimić, E.; Tsao, R. Effects of hemp (Cannabis sativa L.) seed oil press-cake and decaffeinated green tea leaves (Camellia sinensis) on functional characteristics of gluten-free crackers. J. Food Sci. 2014, 79, C318–C325. [Google Scholar] [CrossRef] [PubMed]
- Norajit, K.; Gu, B.-J.; Ryu, G.-H. Effects of the addition of hemp powder on the physicochemical properties and energy bar qualities of extruded rice. Food Chem. 2011, 129, 1919–1925. [Google Scholar] [CrossRef]
- Zając, M.; Guzik, P.; Kulawik, P.; Tkaczewska, J.; Florkiewicz, A.; Migdał, W. The quality of pork loaves with the addition of hemp seeds, de-hulled hemp seeds, hemp protein and hemp flour. LWT 2019, 105, 190–199. [Google Scholar] [CrossRef]
- Dabija, A.; Codină, G.G.; Gâtlan, A.M.; Sănduleac, E.T.; Rusu, L. Effects of some vegetable proteins addition on yogurt quality. Sci. Study Res. Chem. Chem. Eng. Biotechnol. Food Ind. 2018, 19, 181–192. [Google Scholar]
- Mikulec, A.; Kowalski, S.; Sabat, R.; Skoczylas, Ł.; Tabaszewska, M.; Wywrocka-Gurgul, A. Hemp flour as a valuable component for enriching physicochemical and antioxidant properties of wheat bread. LWT 2019, 102, 164–172. [Google Scholar] [CrossRef]
- Liliana, B.C.; Livia, A.; Laura, M. Effects of Hemp Flour, Seeds and Oil Additions on Bread Quality. J. Eng. Res. Appl. 2018, 8, 73–78. [Google Scholar]
- Previtali, M.A.; Mastromatteo, M.; De Vita, P.; Ficco, D.B.M.; Conte, A.; Del Nobile, M.A. Effect of the lentil flour and hydrocolloids on baking characteristics of wholemeal durum wheat bread. Int. J. Food Sci. Technol. 2014, 49, 2382–2390. [Google Scholar] [CrossRef]
- Mureșan, C.C.; Fărcaș, A.; Man, S.; Suharoschi, R.; Vlaic, R.A. Obtaining a Functional Product through the Exploitation of Mushroom Flour in Pasta. Bull. UASVM Food Sci. Technol. 2017, 74, 17. [Google Scholar] [CrossRef] [Green Version]
- Apostol, L.; Popa, M.; Mustatea, G. Cannabis sativa L partially skimmed flour as source of bio-compounds in the bakery industry. Roman. Biotechnol. Lett. 2015, 20, 10835–10844. [Google Scholar]
- Lukin, A.; Bitiutskikh, K. On potential use of hemp flour in bread production. Bul. Transilv. Univ. Brasov Ser. II For. Wood Ind. Agric. Food Eng. 2017, 10, 113–118. [Google Scholar]
- Pojić, M.; Hadnađev, T.D.; Hadnađev, M.; Rakita, S.; Brlek, T. Bread Supplementation with Hemp Seed Cake: A By-Product of Hemp Oil Processing. J. Food Qual. 2015, 38, 431–440. [Google Scholar] [CrossRef] [Green Version]
- Man, S. Physicochemical and sensory evaluations of wheat bread with pumpkin (Cucurbita maxima) pulp incorporated. J. Agroaliment Proc. Technol. 2014, 20, 26–32. [Google Scholar]
- Siddiq, M.; Nasir, M.; Ravi, R.; Butt, M.; Dolan, K.; Harte, J. Effect of defatted maize germ flour addition on the physical and sensory quality of wheat bread. LWT 2009, 42, 464–470. [Google Scholar] [CrossRef]
- da Silva, B.P.; Anunciação, P.C.; da Silva Matyelka, J.C.; Della Lucia, C.M.; Martino, H.S.D.; Pinheiro-Sant’Ana, H.M. Chemical composition of Brazilian chia seeds grown in different places. Food Chem. 2017, 221, 1709–1716. [Google Scholar] [CrossRef]
- Julibert, A.; Bibiloni, M.D.M.; Tur, J.A. Dietary fat intake and metabolic syndrome in adults: A systematic review. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 887–905. [Google Scholar] [CrossRef]
- Li, Y.; Hruby, A.; Bernstein, A.M.; Ley, S.H.; Wang, D.D.; Chiuve, S.E.; Sampson, L.; Rexrode, K.M.; Rimm, E.B.; Willett, W.C.; et al. Saturated Fats Compared with Unsaturated Fats and Sources of Carbohydrates in Relation to Risk of Coronary Heart Disease: A Prospective Cohort Study. J. Am. Coll. Cardiol. 2015, 66, 1538–1548. [Google Scholar] [CrossRef] [Green Version]
- Wolters, M.; Ahrens, J.; Pérez, M.R.; Watkins, C.; Sanz, Y.; Benítez-Páez, A.; Stanton, C.; Günther, K. Dietary fat, the gut microbiota, and metabolic health—A systematic review conducted within the MyNewGut project. Clin. Nutr. 2019, 38, 2504–2520. [Google Scholar] [CrossRef] [Green Version]
- Codină, G.G.; Mironeasa, S.; Voica, D.V.; Mironeasa, C. Multivariate Analysis of Wheat Flour Dough Sugars, Gas Production, and Dough Development at Different Fermentation Times. Czech J. Food Sci. 2013, 31, 222–229. [Google Scholar] [CrossRef] [Green Version]
- Žilić, S.; Dodig, D.; Basić, Z.; Vančetović, J.; Titan, P.; Đurić, N.; Tolimir, N. Free asparagine and sugars profile of cereal species: The potential of cereals for acrylamide formation in foods. Food Addit. Contam. Part A 2017, 34, 705–713. [Google Scholar] [CrossRef]
- Ross, R.P.; Morgan, S.; Hill, C. Preservation and fermentation: Past, present and future. Int. J. Food Microbiol. 2002, 79, 3–16. [Google Scholar] [CrossRef] [Green Version]
- Axel, C.; Röcker, B.; Brosnan, B.; Zannini, E.; Furey, A.; Coffey, A.; Arendt, E.K. Application of Lactobacillus amylovorus DSM19280 in gluten-free sourdough bread to improve the microbial shelf life. Food Microbiol. 2015, 47, 36–44. [Google Scholar] [CrossRef]
- Day, L.; Golding, M. Food Structure, Rheology, and Texture; Elsevier: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Švec, I.; Hrušková, M. Crumb evaluation of bread with hemp products addition by means of image analysis. Acta Univ. Agric. Silvic. Mendel. Brun. 2013, 61, 1867–1872. [Google Scholar] [CrossRef] [Green Version]
- Bourne, M.C. Food Texture and Viscosity; Food Texture and Viscosity ISBN Food Texture and Viscosity; Elsevier: Amsterdam, The Netherlands, 2002. [Google Scholar]
- Man, S.M.; Păucean, A.; Călian, I.D.; Mureșan, V.; Chiș, M.S.; Pop, A.; Mureșan, A.E.; Bota, M.; Muste, S. Influence of Fenugreek Flour (Trigonella foenum-graecum L.) Addition on the Technofunctional Properties of Dark Wheat Flour. J. Food Qual. 2019, 2019, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Paucean, A.; Moldovan, O.P.; Mureșan, V.; Socaci, S.A.; Dulf, F.V.; Alexa, E.; Man, S.M.; Mureșan, A.E.; Muste, S. Folic acid, minerals, amino-acids, fatty acids and volatile compounds of green and red lentils. Folic acid content optimization in wheat-lentils composite flours. Chem. Cent. J. 2018, 12, 88. [Google Scholar] [CrossRef] [Green Version]
- SR 91:2007 Paine şi Produse Proaspete de Patiserie. Metode de Analiză. (Bread and Fresh Pastries. Methods of Analysis.). Available online: https://www.asro.ro/?s=sr+91%3A2007 (accessed on 2 May 2021).
- ISO 1871:1975. Agricultural Food Products—General Directions for the Determination of Nitrogen by the Kjeldahl Method. Available online: https://www.iso.org/standard/6542.html (accessed on 2 May 2021).
- ISO 6492:1999. Animal Feeding Stuffs—Determination of Fat Content. Available online: https://www.iso.org/standard/12865.html (accessed on 2 May 2021).
- STAS 90–77 Faina de Grâu. Metode de Analiza (Wheat Flour. Methods of Analysis). Available online: https://magazin.asro.ro/ro/standard/67408 (accessed on 2 May 2021).
- ISO 5498:1981. Agricultural Food Products—Determination of Crude Fibre Content—General Method. Available online: https://www.iso.org/standard/11544.html (accessed on 2 May 2021).
- SR EN 14082:2003. Produse Alimentare. Determinarea Microelementelor. Determinare Plumb, Cadmiu, Zinc, Cupru, Fier si Crom prin Spectrometrie de Absorbtie Atomica (saa) Dupa Calcinare (Food. Determination of Microelements. Determination of Lead, Cadmium, Zinc, Copper, Iron and Chromium by Atomic Absorption Spectrometry (SAA) after Calcination). Available online: https://magazin.asro.ro/ro/standard/77299 (accessed on 2 May 2021).
- Malik, J.; Száková, J.; Drabek, O.; Balik, J.; Kokoska, L. Determination of certain micro and macroelements in plant stimulants and their infusions. Food Chem. 2008, 111, 520–525. [Google Scholar] [CrossRef] [PubMed]
- Poiana, M.-A.; Alda, L.-M.; Gogoasa, I. Quantitative identification of fatty acids from walnut and coconut oils using GC-MS method. J. Agroaliment. Process. Technol. 2013, 19, 459–463. [Google Scholar]
- Filip, M.; Vlassa, M.; Coman, V.; Halmagyi, A. Simultaneous determination of glucose, fructose, sucrose and sorbitol in the leaf and fruit peel of different apple cultivars by the HPLC–RI optimized method. Food Chem. 2016, 199, 653–659. [Google Scholar] [CrossRef]
- ISO 21527-2:2008. Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Yeasts and Moulds—Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0.95. Available online: https://www.iso.org/standard/38276.html (accessed on 2 May 2021).
- R Core Team. A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2016; Available online: https://www.R-project.org/ (accessed on 2 May 2020).
- de Mendiburu, F. Agricolae: Statistical Procedures for Agricultural Research; R Package Version; Felipe de Mendiburu: Lima, Peru, 2010; Volume 1, pp. 1–8. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef]
Samples | Moisture (%) | Crude Protein (%) | Lipids (%) | Ash (%) | Crude Fiber (%) | Acidity (°acidity) | NaCl (%) | Total Carbohydrate [g/100 g] | Energy Value [kcal/ 100 g] |
---|---|---|---|---|---|---|---|---|---|
PM | 35.98 ± 0.19 a | 8.76 ± 0.07 d | 0.59 ± 0.03 c | 1.33 ± 0.07 c | 1.17 ± 0.06 e | 1.3 ± 0.20 d | 1.34 ± 0.01 abc | 53.34 ± 0.39 d | 253.71 ± 0.40 e |
PFCDS 5% | 30.72 ± 0.07 bc | 10.31 ± 0.06 abc | 0.95 ± 0.05 bc | 1.35 ± 0.04 c | 2.03 ± 0.08 de | 1.5 ± 0.10 bcd | 1.33 ± 0.04 bc | 56.67 ± 0.93 bc | 276.43 ± 0.22 d |
PFCDS 10% | 27.74 ± 0.08 c | 10.49 ± 0.08 abc | 1.66 ± 0.04 bc | 1.40 ± 0.08 c | 3.54 ± 0.09 bcd | 1.7 ± 0.20 abcd | 1.35 ± 0.04 abc | 58.69 ± 0.84 ab | 291.54 ± 0.30 cd |
PFCDS 15% | 27.43 ± 0.10 c | 10.70 ± 0.12 ab | 2.12 ± 0.05 bc | 1.55 ± 0.09 ab | 4.44 ± 0.08 abc | 1.9 ± 0.10 ab | 1.37 ± 0.05 ab | 58.19 ± 0.12 ab | 294.44 ± 0.26 bcd |
PFCDS 20% | 26.75 ± 0.09 d | 11.48 ± 0.10 a | 5.31 ± 0.06 a | 1.60 ± 0.05 a | 5.39 ± 0.08 ab | 2 ± 0.20 a | 1.39 ± 0.04 a | 54.86 ± 0.74 cd | 311.95 ± 0.27 ab |
PFCZ 5% | 28.52 ± 0.07 bc | 9.44 ± 0.12 cd | 0.53 ± 0.04 c | 1.37 ± 0.05 c | 2.43 ± 0.07 de | 1.4 ± 0.20 cd | 1.31 ± 0.05 c | 60.14 ± 0.22 a | 283.09 ± 0.15 d |
PFCZ 10% | 27.11 ± 0.04 c | 9.96 ± 0.04 bcd | 2.1 ± 0.18 bc | 1.43 ± 0.06 bc | 3.29 ± 0.07 cd | 1.6 ± 0.10 abcd | 1.33 ± 0.02 bc | 59.40 ± 0.24 ab | 296.14 ± 0.60 bcd |
PFCZ 15% | 26.15 ± 0.04 c | 10.45 ± 0.03 abc | 3.18 ± 0.05 ab | 1.58 ± 0.08 a | 4.57 ± 0.11 abc | 1.8 ± 0.10 abc | 1.35 ± 0.03 abc | 58.64 ± 0.44 ab | 304.58 ± 0.42 abc |
PFCZ 20% | 25.63 ± 0.09 d | 10.48 ± 0.04 abc | 5.41 ± 0.04 a | 1.62 ± 0.04 a | 5.84 ± 0.16 a | 1.9 ± 0.20 ab | 1.38 ± 0.04 ab | 56.86 ± 0.62 abc | 316.81 ± 0.37 a |
Samples | Moisture | Crude Protein | Lipids | Ash | Crude Fiber | Acidity | NaCl | Total Carbohydrate | Energy Value |
---|---|---|---|---|---|---|---|---|---|
PM | 0.769 | −0.710 | −0.370 | −0.451 | −0.589 | −0.503 | −0.120 | −0.675 | −0.737 |
PFCDS 5% | 0.150 | 0.039 | −0.298 | −0.387 | −0.383 | −0.237 | −0.240 | −0.124 | −0.296 |
PFCDS 10% | −0.198 | 0.126 | −0.155 | −0.226 | −0.022 | 0.030 | 0.000 | 0.210 | −0.003 |
PFCDS 15% | −0.236 | 0.227 | −0.062 | 0.258 | 0.193 | 0.296 | 0.240 | 0.127 | 0.053 |
PFCDS 20% | −0.120 | 0.604 | 0.581 | 0.419 | 0.420 | 0.429 | 0.480 | −0.424 | 0.393 |
PFCZ 5% | −0.109 | −0.381 | −0.382 | −0.322 | −0.288 | −0.370 | −0.480 | 0.450 | −0.167 |
PFCZ 10% | −0.275 | −0.130 | −0.066 | −0.129 | −0.082 | −0.103 | −0.240 | 0.328 | 0.021 |
PFCZ 15% | −0.387 | 0.106 | 0.152 | 0.354 | 0.224 | 0.163 | 0.000 | 0.202 | 0.250 |
PFCZ 20% | 0.406 | 0.121 | 0.601 | 0.483 | 0.527 | 0.296 | 0.360 | −0.093 | 0.487 |
Samples | Porosity (%) | Elasticity (%) |
---|---|---|
PM | 78.65 ± 0.05 a | 95.51 ± 0.02 a |
PFCDS 5% | 76.88 ± 0.04 abc | 95.58 ± 0.04 a |
PFCDS 10% | 74.78 ± 0.05 bcd | 93.54 ± 0.01 ab |
PFCDS 15% | 74.45 ± 0.07 cd | 86.44 ± 0.03 bcd |
PFCDS 20% | 72.24 ± 0.01 d | 80 ± 2.00 d |
PFCZ 5% | 78.60 ± 0.02 a | 93.54 ± 0.02 ab |
PFCZ 10% | 78.26 ± 0.03 ab | 91.37 ± 0.04 abc |
PFCZ 15% | 78.05 ± 0.03 abc | 89.09 ± 0.04 abc |
PFCZ 20% | 77.97 ± 0.06 abc | 85 ± 4.00 cd |
Samples | Porosity | Elasticity |
---|---|---|
PM | 0.327 | 0.376 |
PFCDS 5% | 0.036 | 0.381 |
PFCDS 10% | −0.307 | 0.242 |
PFCDS 15% | −0.361 | −0.244 |
PFCDS 20% | −0.723 | −0.685 |
PFCZ 5% | 0.319 | 0.242 |
PFCZ 10% | 0.263 | 0.093 |
PFCZ 15% | 0.229 | −0.063 |
PFCZ 20% | 0.216 | −0.343 |
Samples [mg/100 g] | Cu | Cd | Cr | Ni | Pb | Zn | Fe | Mn | Ca | Mg | K | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM | 0.33 ± 0.02 d | 0.01 ± 0 a | 0.02 ± 0.01 d | n.d. | 0.11 ± 0.04 b | 3.03 ± 0.02 b | 12.73 ± 0.02 b | 5.91 ± 0.03 d | 693 ± 2.00 c | 134.67 ± 0.02 c | 713.43 ± 3.00 a | 55.33 ± 0.06 d |
PFCDS 5% | 0.52 ± 0.02 bcd | n.d. | 0.13 ± 0.03 bcd | n.d. | 0.4 ± 0.04 a | 5.08 ± 0.04 a | 21.87 ± 0.03 a | 7.2 ± 0.02 bcd | 1085.67 ± 0.05 b | 236 ± 3.00 ab | 710.33 ± 0.02 a | 61.67 ± 0.05 cd |
PFCDS 10% | 0.61 ± 0.04 abc | n.d. | 0.23 ± 0.05 ab | n.d. | 0.44 ± 0.03 a | 5.39 ± 0.04 a | 22.64 ± 0.02 a | 8.79 ± 0.04 bcd | 1286 ± 3.00 ab | 265.67 ± 0.08 ab | 627.33 ± 4.00 ab | 119 ± 2.00 abcd |
PFCDS 15% | 0.73 ± 0.09 ab | n.d. | 0.27 ± 0.05 ab | n.d. | 0.49 ± 0.06 a | 5.42 ± 0.05 a | 23.11 ± 0.04 a | 11.62 ± 0.07 bcd | 1345.67 ± 0.03 ab | 281.2 ± 0.07 ab | 624.33 ± 0.04 ab | 124.67 ± 0.02 abc |
PFCDS 20% | 0.79 ± 0.08 a | n.d. | 0.3 ± 0.03 a | n.d. | 0.54 ± 0.05 a | 5.79 ± 0.03 a | 23.86 ± 0.01 a | 14.96 ± 0.05 a | 1394.67 ± 0.02 a | 298.33 ± 0.2 a | 593 ± 0.02 ab | 184.67 ± 0.04 a |
PFCZ 5% | 0.38 ± 0.06 cd | n.d. | 0.07 ± 0.02 cd | n.d. | 0.37 ± 0.02 a | 4.88 ± 0.04 a | 21.57 ± 0.02 a | 6.95 ± 0.03 cd | 1064.67 ± 0.06 b | 234 ± 2.00 b | 591.2 ± 0.01 ab | 54.33 ± 0.04 d |
PFCZ 10% | 0.55 ± 0.04 abcd | n.d. | 0.12 ± 0.04 bcd | 0.21 ± 0.05 a | 0.42 ± 0.05 a | 5.33 ± 0.21 a | 22.61 ± 0.03 a | 7.79 ± 0.06 bcd | 1278.33 ± 0.02 ab | 261.33 ± 0.04 ab | 443.33 ± 0.03 b | 115.67 ± 0.09 bcd |
PFCZ 15% | 0.67 ± 0.09 ab | n.d. | 0.19 ± 0.04 abc | 0.25 ± 0.08 a | 0.46 ± 0.05 a | 5.34 ± 0.02 a | 22.97 ± 0.03 a | 10.55 ± 0.03 abc | 1342.67 ± 0.03 ab | 278.33 ± 0.07 ab | 435.67 ± 0.06 b | 121.33 ± 0.02 abcd |
PFCZ 20% | 0.74 ± 0.05 ab | 0.01 ± 0.01 a | 0.24 ± 0.05 ab | 0.29 ± 0.05 a | 0.51 ± 0.09 a | 5.68 ± 0.03 a | 23.53 ± 0.02 a | 13.71 ± 0.04 a | 1391.33 ± 0.05 a | 293 ± 5.00 ab | 180 ± 0.02 c | 182.34 ± 0.03 ab |
Samples | Cu | Cd | Cr | Ni | Pb | Zn | Fe | Mn | Ca | Mg | K | P |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM | −0.579 | 0.618 | −0.576 | - | −0.854 | −0.940 | −0.977 | −0.450 | −0.847 | −0.892 | −0.813 | −0.439 |
PFCDS 5% | −0.158 | - | −0.166 | - | −0.043 | −0.011 | 0.024 | −0.297 | −0.203 | −0.132 | −0.229 | −0.391 |
PFCDS 10% | 0.042 | - | 0.207 | - | 0.068 | 0.129 | 0.108 | −0.110 | 0.126 | 0.090 | 0.103 | 0.044 |
PFCDS 15% | 0.308 | - | 0.356 | - | 0.208 | 0.143 | 0.159 | 0.224 | 0.224 | 0.207 | 0.179 | 0.087 |
PFCDS 20% | 0.441 | - | 0.468 | - | 0.348 | 0.311 | 0.242 | 0.618 | 0.305 | 0.335 | 0.370 | 0.541 |
PFCZ 5% | −0.468 | - | −0.390 | - | −0.127 | −0.102 | −0.009 | −0.327 | −0.237 | −0.147 | −0.246 | −0.446 |
PFCZ 10% | −0.091 | - | −0.203 | 0.365 | 0.012 | 0.102 | 0.105 | −0.228 | 0.114 | 0.058 | 0.099 | 0.019 |
PFCZ 15% | 0.175 | - | 0.058 | 0.480 | 0.124 | 0.107 | 0.144 | 0.098 | 0.219 | 0.185 | 0.173 | 0.061 |
PFCZ 20% | 0.330 | 0.618 | 0.245 | 0.595 | 0.264 | 0.261 | 0.205 | 0.471 | 0.299 | 0.295 | 0.363 | 0.524 |
Samples [% of Total Fatty Acids] | Myristic Acid | Palmitic Acid | Stearic Acid | Oleic Acid | Linoleic Acid | Gamma-Linolenic Acid | Margaric Acid | Palmitoleic Acid | Arachidic Acid | ∑ SFA | ∑MUFA | ∑PUFA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM | 1.88 ± 0.04 a | 28.26 ± 0.10 a | 3.31 ± 0.03 d | 18.34 ± 0.06 ab | 42.68 ± 0.10 cde | 3.79 ± 0.04 e | n.d. | 1.01 ± 0.02 a | 0.48 ± 0.03 ab | 33.93 ± 0.39 a | 19.35 ± 0.07 a | 46.47 ± 0.05 b |
PFCDS 5% | 1.44 ± 0.03 c | 22.79 ± 0.13 b | 3.91 ± 0.06 cd | 17.83 ± 0.08 c | 45.73 ± 0.05 a | 5.61 ± 0.05 cde | 0.85 ± 0.04 a | 0.65 ± 0.07 b | 0.28 ± 0.03 c | 29.27 ± 0.12 b | 18.48 ± 0.07 bcd | 51.34 ± 0.03 a |
PFCDS 10% | 1.42 ± 0.04 c | 21.36 ± 0.05 bc | 4.11 ± 0.02 bc | 18.02 ± 0.13 bc | 44.47 ± 0.06 abc | 6.14 ± 0.03 bcd | 0.94 ± 0.03 a | 0.57 ± 0.04 bc | 0.39 ± 0.06 bc | 28.22 ± 0.09 b | 18.59 ± 0.07 bcd | 50.61 ± 0.06 a |
PFCDS 15% | 1.40 ± 0.03 c | 20.66 ± 0.04 bc | 4.45 ± 0.07 bc | 18.28 ± 0.10 ab | 43.12 ± 0.04 bcde | 7.66 ± 0.08 ab | 0.89 ± 0.05 a | 0.5 ± 0.04 bc | 0.4 ± 0.03 bc | 27.80 ± 0.15 b | 18.78 ± 0.10 bc | 50.78 ± 0.05 a |
PFCDS 20% | 1.34 ± 0.06 c | 19.98 ± 0.10 bc | 4.64 ± 0.03 ab | 18.51 ± 0.03 a | 42.53 ± 0.04 de | 8.18 ± 0.06 a | 0.76 ± 0.03 a | 0.41 ± 0.03 c | 0.51 ± 0.03 ab | 27.23 ± 0.15 b | 18.92 ± 0.07 ab | 50.71 ± 0.05 a |
PFCZ 5% | 1.78 ± 0.05 ab | 22.03 ± 0.09 bc | 3.97 ± 0.10 c | 17.71 ± 0.04 c | 44.63 ± 0.08 ab | 5.07 ± 0.03 de | 0.53 ± 0.04 a | 0.52 ± 0.04 bc | 0.29 ± 0.05 c | 28.60 ± 0.12 b | 18.23 ± 0.06 d | 49.70 ± 0.15 a |
PFCZ 10% | 1.63 ± 0.05 abc | 21.57 ± 0.09 bc | 4.06 ± 0.03 bc | 17.78 ± 0.04 c | 43.48 ± 0.07 bcd | 6.73 ± 0.06 abcd | 0.73 ± 0.03 a | 0.46 ± 0.05 bc | 0.39 ± 0.02 bc | 28.38 ± 0.23 b | 18.24 ± 0.03 d | 50.21 ± 0.07 a |
PFCZ 15% | 1.51 ± 0.03 bc | 22.79 ± 0.13 b | 4.3 ± 0.03 bc | 17.84 ± 0.03 c | 42.88 ± 0.05 bcde | 7.39 ± 0.06 abc | 0.79 ± 0.04 a | 0.44 ± 0.06 c | 0.46 ± 0.02 ab | 29.85 ± 0.11 b | 18.28 ± 0.04 d | 50.27 ± 0.05 a |
PFCZ 20% | 1.44 ± 0.05 c | 19.31 ± 0.04 c | 5.14 ± 0.03 a | 17.99 ± 0.03 bc | 41.55 ± 0.03 e | 8.49 ± 0.08 a | 0.86 ± 0.02 a | 0.39 ± 0.04 c | 0.62 ± 0.04 a | 27.37 ± 0.12 b | 18.38 ± 0.05 cd | 50.04 ± 0.09 a |
Samples | Myristic Acid | Palmitic Acid | Stearic Acid | Oleic Acid | Linoleic Acid | Gamma-Linolenic Acid | Margaric Acid | Palmitoleic Acid | Arachidic Acid | ∑ SFA | ∑MUFA | ∑PUFA |
---|---|---|---|---|---|---|---|---|---|---|---|---|
PM | 0.690 | 0.891 | −0.659 | 0.409 | −0.225 | −0.670 | - | 0.905 | 0.184 | 0.908 | 0.758 | −0.941 |
PFCDS 5% | −0.204 | 0.101 | −0.223 | −0.276 | 0.667 | −0.229 | 0.188 | 0.200 | −0.503 | 0.056 | −0.102 | 0.352 |
PFCDS 10% | −0.234 | −0.105 | −0.071 | −0.009 | 0.229 | −0.103 | 0.303 | 0.045 | −0.116 | −0.135 | 0.007 | 0.158 |
PFCDS 15% | −0.281 | −0.206 | 0.176 | 0.327 | −0.098 | 0.265 | 0.232 | −0.109 | −0.078 | −0.212 | 0.194 | 0.203 |
PFCDS 20% | −0.403 | −0.303 | 0.312 | 0.635 | −0.270 | 0.392 | 0.066 | −0.273 | 0.309 | −0.316 | 0.333 | 0.185 |
PFCZ 5% | 0.485 | −0.008 | −0.174 | −0.436 | 0.344 | −0.361 | −0.226 | −0.067 | −0.472 | −0.066 | −0.349 | −0.083 |
PFCZ 10% | 0.193 | −0.074 | −0.107 | −0.335 | 0.007 | 0.040 | 0.034 | −0.172 | −0.127 | −0.106 | −0.339 | 0.052 |
PFCZ 15% | −0.058 | 0.102 | 0.066 | −0.257 | −0.168 | 0.200 | 0.113 | −0.221 | 0.117 | 0.162 | −0.0300 | 0.068 |
PFCZ 20% | −0.188 | −0.399 | 0.680 | −0.057 | −0.557 | 0.466 | 0.203 | −0.308 | 0.686 | −0.291 | −0.201 | 0.007 |
Samples [g/100 g] | Arginine | Lysine | Histidine | Phenylalanine | Aspartic Acid | Glutamic Acid | Cysteine | Tyrosine |
---|---|---|---|---|---|---|---|---|
PM | 0.084 ± 0.005 b | 0.003 ± 0.002 b | n.d | 0.002 ± 0.001 b | n.d. | n.d. | n.d. | 0.004 ± 0.002 c |
PFCDS 5% | 0.102 ± 0.002 b | 0.011 ± 0.002 b | 0.005 ± 0.001 cd | 0.009 ± 0.002 b | 0.209 ± 0.002 ab | 0.408 ± 0.003 bc | 0.008 ± 0.003 cd | 0.011 ± 0.002 bc |
PFCDS 10% | 0.160 ± 0.005 b | 0.052 ± 0.003 b | 0.009 ± 0.003 bcd | 0.500 ± 0.030 ab | 0.223 ± 0.115 bc | 0.640 ± 0.001 abc | 0.013 ± 0.003 bcd | 0.027 ± 0.002 ab |
PFCDS 15% | 0.182 ± 0.005 b | 0.098 ± 0.002 b | 0.024 ± 0.005 ab | 0.970 ± 0.020 a | 0.240 ± 0.003 a | 0.728 ± 0.002 ab | 0.022 ± 0.007 abc | 0.035 ± 0.003 a |
PFCDS 20% | 0.193 ± 0.003 b | 0.105 ± 0.003 b | 0.034 ± 0.002 a | 0.104 ± 0.003 b | 0.254 ± 0.116 abc | 0.772 ± 0.001 a | 0.031 ± 0.006 a | 0.042 ± 0.001 a |
PFCZ 5% | 0.930 ± 0.050 a | 0.008 ± 0.001 b | 0.003 ± 0.001 cd | 0.006 ± 0.003 b | 0.207 ± 0.004 ab | 0.372 ± 0.004 c | 0.007 ± 0.002 cd | 0.009 ± 0.003 bc |
PFCZ 10% | 0.152 ± 0.003 b | 0.045 ± 0.004 b | 0.007 ± 0.002 bcd | 0.043 ± 0.001 b | 0.219 ± 0.003 a | 0.608 ± 0.003 abc | 0.011 ± 0.002 cd | 0.024 ± 0.002 ab |
PFCZ 15% | 0.175 ± 0.004 b | 0.093 ± 0.003 b | 0.021 ± 0.003 abc | 0.091 ± 0.003 b | 0.236 ± 0.003 a | 0.700 ± 0.004 ab | 0.019 ± 0.004 abc | 0.033 ± 0.004 a |
PFCZ 20% | 0.184 ± 0.002 b | 0.101 ± 0.005 a | 0.029 ± 0.002 a | 0.100 ± 0.005 ab | 0.248 ± 0.004 a | 0.736 ± 0.003 a | 0.028 ± 0.004 ab | 0.041 ± 0.002 a |
Samples | Arginine | Lysine | Histidine | Phenylalanine | Aspartic Acid | Glutamic Acid | Cysteine | Tyrosine |
---|---|---|---|---|---|---|---|---|
PM | −0.225 | −0.172 | −0.435 | −0.243 | −0.671 | −0.824 | −0.534 | −0.552 |
PFCDS 5% | −0.198 | −0.155 | −0.287 | −0.235 | 0.132 | −0.214 | −0.257 | −0.369 |
PFCDS 10% | −0.115 | −0.075 | −0.168 | 0.275 | −0.326 | 0.132 | −0.084 | 0.049 |
PFCDS 15% | −0.083 | 0.016 | 0.277 | 0.764 | 0.251 | 0.264 | 0.227 | 0.259 |
PFCDS 20% | −0.067 | 0.029 | 0.573 | −0.137 | −0.206 | 0.329 | 0.538 | 0.442 |
PFCZ 5% | 0.988 | −0.162 | −0.346 | −0.239 | 0.126 | −0.268 | −0.292 | −0.422 |
PFCZ 10% | −0.126 | −0.089 | −0.227 | −0.200 | 0.172 | 0.084 | −0.154 | −0.029 |
PFCZ 15% | −0.093 | 0.006 | 0.188 | −0.150 | 0.237 | 0.222 | 0.123 | 0.206 |
PFCZ 20% | −0.080 | 0.602 | 0.425 | 0.165 | 0.284 | 0.276 | 0.434 | 0.416 |
Samples [g/100 g] | Sucrose | Fructose | Glucose |
---|---|---|---|
PM | 9.84 ± 0.02 a | 0.44 ± 0.02 a | n.d. |
PFCDS 5% | 8.53 ± 0.01 ab | 0.42 ± 0.03 a | n.d. |
PFCDS 10% | 7.84 ± 0.02 b | 0.37 ± 0.01 abc | n.d. |
PFCDS 15% | 6.92 ± 0.04 bc | 0.32 ± 0.02 bcde | n.d. |
PFCDS 20% | 5.25 ± 0.02 c | 0.28 ± 0.03 de | n.d. |
PFCZ 5% | 8.47 ± 0.03 ab | 0.39 ± 0.05 ab | n.d. |
PFCZ 10% | 7.62 ± 0.01 b | 0.34 ± 0.03 bcd | n.d. |
PFCZ 15% | 6.78 ± 0.03 bc | 0.30 ± 0.03 cde | n.d. |
PFCZ 20% | 5.17 ± 0.02 c | 0.25 ± 0.02 e | n.d. |
Samples | Sucrose | Fructose |
---|---|---|
PM | 0.843 | 0.513 |
PFCDS 5% | 0.134 | 0.404 |
PFCDS 10% | 0.021 | 0.133 |
PFCDS 15% | −0.130 | −0.139 |
PFCDS 20% | −0.405 | −0.356 |
PFCZ 5% | 0.124 | 0.241 |
PFCZ 10% | −0.015 | −0.030 |
PFCZ 15% | −0.154 | −0.247 |
PFCZ 20% | −0.418 | −0.519 |
Samples | TYMC [ufc/g] in Day 1 | TYMC [ufc/g] in Day 2 | TYMC [ufc/g] in Day 3 |
---|---|---|---|
PM % | 47 ± 1.00 a | 45 ± 2.00 a | 42 ± 1.00 a |
PFCDS 5% | 34 ± 2.00 b | 32 ± 1.00 b | 30 ± 2.00 b |
PFCDS 10% | 28 ± 1.00 bc | 27 ± 2.00 bc | 24 ± 1.00 bc |
PFCDS 15% | 26 ± 3.00 cd | 25 ± 3.00 cd | 22 ± 1.00 c |
PFCDS 20% | 22 ± 2.00 cd | 20 ± 2.00 de | 20 ± 1.00 cd |
PFCZ 5% | 24 ± 1.00 cd | 22 ± 1.00 cde | 20 ± 3.00 cd |
PFCZ 10% | 21 ± 3.00 cde | 20 ± 2.00 de | 19 ± 2.00 cd |
PFCZ 15% | 19 ± 2.00 de | 17 ± 2.00 ef | 15 ± 3.00 de |
PFCZ 20% | 14 ± 1.00 e | 12 ± 1.00 f | 10 ± 1.00 e |
Days | Moisture + Microbiology |
---|---|
Day 1 | 0.953 |
Day 2 | 0.945 |
Day 3 | 0.944 |
Samples | Day 1 | Day 2 | Day 3 |
---|---|---|---|
PM | 0.799 | 0.789 | 0.786 |
PFCDS 5% | 0.302 | 0.290 | 0.304 |
PFCDS 10% | 0.072 | 0.098 | 0.063 |
PFCDS 15% | −0.004 | 0.021 | −0.018 |
PFCDS 20% | −0.157 | −0.171 | −0.098 |
PFCZ 5% | −0.081 | −0.094 | −0.098 |
PFCZ 10% | −0.195 | −0.171 | −0.138 |
PFCZ 15% | −0.272 | −0.286 | −0.299 |
PFCZ 20% | −0.463 | −0.478 | −0.500 |
Samples | Hardness Cycle 1 [g] | Total Work Cycle 1 [mj] | Hardness Cycle 2 [g] | Cohesiveness [n.a.] | Total Work Cycle 2 [mj] | Springiness Index [n.a.] | Viscosity [g] | Chewiness [mj] |
---|---|---|---|---|---|---|---|---|
PM | 759 ± 3.51 abc | 42.2 ± 0.11 b | 702.67 ± 0.22 ab | 0.69 ± 0.09 a | 30.87 ± 0.10 a | 0.93 ± 0.03 b | 520.33 ± 0.11 ab | 41.6 ± 0.08 ab |
PFCDS 5% | 910.33 ± 0.32 a | 46.13 ± 0.05 ab | 850 ± 7.51 a | 0.67 ± 0.15 a | 31.97 ± 0.06 a | 0.92 ± 0.03 b | 612.67 ± 0.08 a | 47.57 ± 0.09 a |
PFCDS 10% | 417.33 ± 0.07 d | 21.1 ± 0.04 b | 390.67 ± 0.16 d | 0.69 ± 0.03 a | 15.5 ± 0.11 b | 0.89 ± 0.03 b | 221.67 ± 0.08 d | 22.23 ± 0.09 c |
PFCDS 15% | 566 ± 3.00 bcd | 26.17 ± 0.04 b | 522 ± 4.51 bcd | 0.64 ± 0.05 a | 17.7 ± 0.10 b | 0.89 ± 0.03 b | 358 ± 3.51 bcd | 25.23 ± 0.09 c |
PFCDS 20% | 503.67 ± 0.15 cd | 30.03 ± 0.03 b | 456.33 ± 0.14 cd | 0.62 ± 0.03 a | 20 ± 2.52 b | 0.90 ± 0.04 b | 313 ± 3.51 cd | 25.67 ± 0.07 c |
PFCZ 5% | 639.67 ± 0.08 bcd | 29.07 ± 0.03 b | 589.67 ± 0.16 bc | 0.68 ± 0.08 a | 21.07 ± 0.03 b | 0.92 ± 0.03 b | 433.33 ± 0.10 bc | 32.3 ± 0.08 bc |
PFCZ 10% | 796.33 ± 0.09 ab | 70.77 ± 0.07 a | 504.67 ± 0.13 cd | 0.43 ± 0.02 a | 20 ± 2.00 b | 1.11 ± 0.04 a | 326.33 ± 0.09 cd | 25.7 ± 0.06 c |
PFCZ 15% | 514 ± 3.51 cd | 26 ± 3.51 b | 469 ± 4.51 cd | 0.67 ± 0.05 b | 18.37 ± 0.08 b | 0.91 ± 0.03 b | 343.67 ± 0.08 cd | 25.97 ± 0.08 c |
PFCZ 20% | 387 ± 2.52 d | 20 ± 2.52 b | 443.67 ± 0.16 cd | 0.64 ± 0.03 a | 13.93 ± 0.06 b | 0.89 ± 0.04 b | 310.33 ± 0.10 cd | 21.27 ± 0.11 c |
Samples | Hardness Cycle 1 [g] | Total Work Cycle 1 [mj] | Hardness Cycle 2 [g] | Cohesiveness [n.a.] | Total Work Cycle 2 [mj] | Springiness Index [n.a.] | Viscosity [g] | Chewiness [mj] |
---|---|---|---|---|---|---|---|---|
PM | 0.311 | 0.176 | 0.399 | 0.246 | 0.585 | 0.006 | 0.431 | 0.490 |
PFCDS 5% | 0.627 | 0.267 | 0.779 | 0.154 | 0.650 | −0.048 | 0.719 | 0.736 |
PFCDS 10% | −0.404 | −0.313 | −0.404 | 0.246 | −0.330 | −0.210 | −0.500 | −0.309 |
PFCDS 15% | −0.093 | −0.196 | −0.066 | 0.015 | −0.199 | −0.210 | −0.075 | −0.186 |
PFCDS 20% | −0.223 | −0.106 | −0.235 | −0.077 | −0.062 | −0.156 | −0.216 | −0.167 |
PFCZ 5% | 0.061 | −0.128 | 0.108 | 0.200 | 0.001 | −0.048 | 0.160 | 0.106 |
PFCZ 10% | 0.389 | 0.839 | −0.111 | −0.954 | −0.062 | 0.977 | −0.174 | −0.166 |
PFCZ 15% | −0.202 | −0.200 | −0.202 | 0.154 | −0.159 | −0.102 | −0.120 | −0.155 |
PFCZ 20% | −0.467 | −0.339 | −0.268 | 0.015 | −0.423 | −0.210 | −0.224 | −0.349 |
Raw and Auxiliary Materials | Bread with Hemp Flour Variety Dacia Secuieni and Zenit with Wheat Flour | |||||
---|---|---|---|---|---|---|
Wheat Flour Type 550 (kg) | Hemp Flour (kg) | Yeast (kg) | Salt (kg) | Water (l) | ||
PM | 0.8 | - | 0.02 | 0.0145 | 0.416 | |
PFCDS 5% | 0.76 | 0.04 | 0.02 | 0.0145 | 0.416 | |
PFCDS 10% | 0.72 | 0.08 | 0.02 | 0.0145 | 0.416 | |
PFCDS 15% | 0.68 | 0.12 | 0.02 | 0.0145 | 0.416 | |
PFCDS 20% | 0.64 | 0.16 | 0.02 | 0.0145 | 0.416 | |
PFCZ 5% | 0.76 | 0.04 | 0.02 | 0.0145 | 0.416 | |
PFCZ 10% | 0.72 | 0.08 | 0.02 | 0.0145 | 0.416 | |
PFCZ 15% | 0.68 | 0.12 | 0.02 | 0.0145 | 0.416 | |
PFCZ 20% | 0.64 | 0.16 | 0.02 | 0.0145 | 0.416 | |
Technological parameters | ||||||
Parameter name | Minute | |||||
Fermentation | 60 | |||||
Rising | 60 | |||||
Final Rising | 30 | |||||
Baking time | 45 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusu, I.E.; Marc, R.A.; Mureşan, C.C.; Mureşan, A.E.; Mureşan, V.; Pop, C.R.; Chiş, M.S.; Man, S.M.; Filip, M.R.; Onica, B.-M.; et al. Hemp (Cannabis sativa L.) Flour-Based Wheat Bread as Fortified Bakery Product. Plants 2021, 10, 1558. https://doi.org/10.3390/plants10081558
Rusu IE, Marc RA, Mureşan CC, Mureşan AE, Mureşan V, Pop CR, Chiş MS, Man SM, Filip MR, Onica B-M, et al. Hemp (Cannabis sativa L.) Flour-Based Wheat Bread as Fortified Bakery Product. Plants. 2021; 10(8):1558. https://doi.org/10.3390/plants10081558
Chicago/Turabian StyleRusu, Iulian Eugen, Romina Alina Marc (Vlaic), Crina Carmen Mureşan, Andruţa Elena Mureşan, Vlad Mureşan, Carmen Rodica Pop, Maria Simona Chiş, Simona Maria Man, Miuţa Rafila Filip, Bogdan-Mihai Onica, and et al. 2021. "Hemp (Cannabis sativa L.) Flour-Based Wheat Bread as Fortified Bakery Product" Plants 10, no. 8: 1558. https://doi.org/10.3390/plants10081558
APA StyleRusu, I. E., Marc, R. A., Mureşan, C. C., Mureşan, A. E., Mureşan, V., Pop, C. R., Chiş, M. S., Man, S. M., Filip, M. R., Onica, B.-M., Alexa, E., Vişan, V.-G., & Muste, S. (2021). Hemp (Cannabis sativa L.) Flour-Based Wheat Bread as Fortified Bakery Product. Plants, 10(8), 1558. https://doi.org/10.3390/plants10081558