Volatiles and Antioxidant Activity of Citrus Fiber/Blackberry Gels: Influence of Sucrose and Trehalose
Abstract
:1. Introduction
2. Results and Discussion
2.1. Volatiles of Citrus Fiber/Blackberry Gels
2.2. Phenolics, Antioxidant Activity and Color of Citrus Fiber/Blackberry Gels
3. Materials and Methods
3.1. Chemicals
3.2. Preparation of Citrus Fiber/Blackberry Gels
3.3. Analyses of Volatile Compounds
3.4. Extraction of Phenols
3.5. Determination of Total Phenolics
3.6. Determination of Total Proanthocyanidins
3.7. Determination of Antioxidant Activity
3.8. Color Measurement and Color Change
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montero-Calderon, A.; Cortes, C.; Zulueta, A.; Frigola, A.; Esteve, M.J. Green solvents and ultrasound-assisted extraction of bioactive orange (Citrus sinensis) peel compounds. Sci. Rep. 2019, 9, 16120. [Google Scholar] [CrossRef]
- Su, D.; Zhu, X.; Wang, Y.; Li, D.; Wang, L. Effect of high-pressure homogenization on rheological properties of citrus fiber. LWT 2020, 127, 109366. [Google Scholar] [CrossRef]
- Grigelmo-Miguel, N.; Martin-Belloso, O. Characterization of dietary fiber from orange juice extraction. Food Res. Int. 1988, 31, 355–361. [Google Scholar] [CrossRef]
- Dervisoglu, M.; Yazici, F. The effect of citrus fibre on the physical, chemical and sensory properties of ice cream. Food Sci. Technol. Int. 2006, 12, 159–164. [Google Scholar] [CrossRef]
- Sendra, E.; Kuri, V.; Fernández-López, J.; Sayas-Barberá, E.; Navarro, C.; Pérez-Alvarez, J.A. Viscoelastic properties of orange fiber enriched yogurt as a function of fiber dose, size and thermal treatment. LWT 2010, 43, 708–714. [Google Scholar] [CrossRef]
- Bonarius, G.A.; Vieira, J.B.; Van Der Goot, A.J.; Bodnár, I. Rheological behaviour of fibre-rich plant materials in fat-based food systems. Food Hydrocoll. 2014, 40, 254–261. [Google Scholar] [CrossRef]
- Fu, J.-T.; Chang, Y.-H.; Shiau, S.-Y. Rheological, antioxidative and sensory properties of dough and Mantou (steamed bread) enriched with lemon fiber. LWT 2015, 61, 56–62. [Google Scholar] [CrossRef]
- Lundberg, B. Using highly expanded citrus fiber to improve the quality and nutritional properties of foods. Cereal Foods World 2015, 50, 248–252. [Google Scholar]
- Lundberg, B.; Pan, X.; White, A.; Chau, H.; Hotchkiss, A. Rheology and composition of citrus fiber. J. Food Eng. 2014, 125, 97–104. [Google Scholar] [CrossRef]
- Anderson, J.W.; Baird, P.; Davis, R.H., Jr.; Ferreri, S.; Knudtson, M.; Koraym, A.; Waters, V.; Williams, C.L. Health benefits of dietary fiber. Nutr. Rev. 2009, 67, 188–205. [Google Scholar] [CrossRef]
- Georgilopoulos, D.N.; Gallois, A.N. Flavour compounds of a commercial concentrated blackberry juice. Food Chem. 1988, 28, 141–148. [Google Scholar] [CrossRef]
- Turemis, N.; Kafkas, E.; Kafkas, S.; Kurkcuoglu, M.; Baser, K.H.C. Determination of aroma compounds in blackberry by GC/MS analysis. Chem. Nat. Compd. 2003, 39, 174–176. [Google Scholar] [CrossRef]
- Kaume, L.; Howard, L.R.; Devareddy, L. The blackberry fruit: A review on its composition and chemistry, metabolism and bioavailability, and health benefits. J. Agric. Food Chem. 2012, 60, 5716–5727. [Google Scholar] [CrossRef]
- Kopjar, M.; Piližota, V. Blackberry juice. In Handbook of Functional Beverages and Human Health; Shahidi, F., Alasalvar, C., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2016; pp. 135–145. [Google Scholar]
- Komes, D.; Lovrić, T.; Kovačević Ganić, K.; Gracin, L. Study of trehalose addition on aroma retention in dehydrated strawberry puree. Food Technol. Biotechnol. 2003, 41, 111–119. [Google Scholar]
- Komes, D.; Lovrić, T.; Kovačević Ganić, K.; Gajdoš Kljusurić, J.; Banović, M. Trehalose improves flavour retention in dehydrated apricot puree. Int. J. Food Sci. Technol. 2005, 40, 425–435. [Google Scholar] [CrossRef]
- Komes, D.; Lovrić, T.; Kovačević Ganić, K. Aroma of dehydrated pear products. LWT 2007, 40, 1578–1586. [Google Scholar] [CrossRef]
- Kopjar, M.; Piližota, V.; Hribar, J.; Simčić, M.; Zlatič, E.; Tiban, N.N. Influence of trehalose addition and storage conditions on the quality of strawberry cream filling. J. Food Eng. 2008, 87, 341–350. [Google Scholar] [CrossRef]
- Galmarini, M.V.; Van Baren, C.; Zamora, M.C.; Chirife, J.; Di Leo Lira, P.; Bandoni, A. Impact of trehalose, sucrose and/or maltodextrin addition on aroma retention in freeze dried strawberry puree. Int. J. Food Sci. Technol. 2011, 46, 1337–1345. [Google Scholar] [CrossRef]
- Kopjar, M.; Jakšić, K.; Piližota, V. Influence of sugars and chlorogenic acid addition on anthocyanin content, antioxidant activity and color of blackberry juice during storage. J. Food Process. Preserv. 2012, 36, 545–552. [Google Scholar] [CrossRef]
- Kopjar, M.; Hribar, J.; Simcic, M.; Zlatić, E.; Pozrl, T.; Pilizota, V. Effect of trehalose addition on volatiles responsible for strawberry aroma. Nat. Prod. Commun. 2013, 8, 1767–1770. [Google Scholar] [CrossRef] [Green Version]
- Loncaric, A.; Dugalic, K.; Mihaljevic, I.; Jakobek, L.; Pilizota, V. Effects of sugar addition on total polyphenol content and antioxidant activity of frozen and freeze-dried apple purée. J. Agric. Food Chem. 2014, 62, 1674–1682. [Google Scholar] [CrossRef]
- Lončarić, A.; Pichler, A.; Trtinjak, I.; Piližota, V.; Kopjar, M. Phenolics and antioxidant activity of freeze-dried sour cherry puree with addition of disaccharides. LWT 2016, 73, 391–396. [Google Scholar] [CrossRef]
- Kopjar, M.; Pichler, A.; Turi, J.; Piližota, V. Influence of trehalose addition on antioxidant activity, colour and texture of orange jelly during storage. Int. J. Food Sci. Technol. 2016, 51, 2640–2646. [Google Scholar] [CrossRef]
- Betoret, E.; Calabuig-Jimenez, L.; Patrignani, F.; Lanciotti, R.; Dalla Rosa, M. Effect of high pressure processing and trehalose addition on functional properties of mandarin juice enriched with probiotic microorganisms. LWT 2016, 85, 418–422. [Google Scholar] [CrossRef]
- Betoret, E.; Mannozzi, C.; Dellarosa, N.; Laghi, L.; Rocculi, P.; Dalla Rosa, M. Metabolomic studies after high pressure homogenization processed low pulp mandarin juice with trehalose addition. Functional and technological properties. J. Food Eng. 2017, 200, 22–28. [Google Scholar] [CrossRef]
- Pichler, A.; Pozderović, A.; Moslavac, T.; Popović, K. Influence of sugars, modified starches and hydrocolloids addition on colour and thermal properties of raspberry cream fillings. Pol. J. Food Nutr. Sci. 2017, 67, 49–58. [Google Scholar] [CrossRef] [Green Version]
- Zlatić, E.; Pichler, A.; Lončarić, A.; Vidrih, R.; Požrl, T.; Hribar, J.; Piližota, V.; Kopjar, M. Volatile compounds of freeze-dried sour cherry puree affected by the addition of sugars. Int. J. Food Prop. 2017, 20, 449–456. [Google Scholar] [CrossRef] [Green Version]
- Zlatić, E.; Pichler, A.; Vidrih, R.; Hribar, J.; Piližota, V.; Kopjar, M. Volatile profile of sour cherry puree as affected by sucrose and trehalose. Int. J. Food Prop. 2017, 20, 3237–3245. [Google Scholar] [CrossRef]
- Zlatić, E.; Pichler, A.; Kopjar, M. Disaccharides: Influence on volatiles and phenolics of sour cherry juice. Molecules 2017, 22, 1939. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vukoja, J.; Buljeta, I.; Ivić, I.; Šimunović, J.; Pichler, A.; Kopjar, M. Disaccharide type affected phenolic and volatile compounds of citrus fiber-blackberry cream fillings. Foods 2021, 10, 243. [Google Scholar] [CrossRef]
- Escher, F.E.; Nuessli, J.; Conde-Petit, B. Interactions of flavour compounds with starch in food processing. In Flavor Release; Roberts, D.D., Taylor, A.J., Eds.; ASC Symposium Series; American Chemical Society Louisiana: Washington, DC, USA, 2000; pp. 230–245. [Google Scholar]
- Van Ruth, S.M.; King, C. Effect of starch and amylopectin concentrations on volatile flavour release from aqueous model food systems. Flavour Fragr. J. 2003, 18, 407–416. [Google Scholar] [CrossRef]
- Qian, M.C.; Wang, Y. Seasonal Variation of Volatile Composition and Odor Activity Value of ‘Marion’ (Rubus spp. hyb) and ‘Thornless Evergreen’ (R. laciniatus L.) Blackberries. J. Food Sci. 2006, 70, C13–C20. [Google Scholar] [CrossRef]
- Yokozawa, T.; Chen, C.P.; Dong, E.; Tanaka, T.; Nonaka, G.I.; Nishioka, I. Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochem. Pharmacol. 1998, 56, 213–222. [Google Scholar] [CrossRef]
- Roginsky, V.; Lissi, E. Review of methods to determine chain-breaking antioxidant activity in food. Food Chem. 2005, 92, 235–254. [Google Scholar] [CrossRef]
- Spanos, G.A.; Wrolstad, R.E. Phenolics of apple, pear, and white grape juices and their changes with processing and storage. A review. J. Agric. Food Chem. 1992, 40, 1478–1487. [Google Scholar] [CrossRef]
- Manzocco, L.; Mastrocola, D.; Nicoli, M.C. Chain breaking and oxygen scavenging properties of wine as affected by some technological procedures. Food Res. Int. 1998, 31, 673–678. [Google Scholar] [CrossRef]
- Nicoli, M.C.; Calligaris, S.; Manzocco, L. Effect of enzymatic and chemical oxidation on the antioxidant capacity of catechin model systems and apple derivatives. J. Agric. Food Chem. 2000, 48, 4576–4580. [Google Scholar] [CrossRef]
- Da Porto, C.; Calligaris, S.; Celotti, E.; Nicoli, M.C. Antiradical properties of commercial cognacs assessed by the DPPH•Test. J. Agric. Food Chem. 2000, 48, 4241–4245. [Google Scholar] [CrossRef] [PubMed]
- Manzocco, L.; Calligaris, S.; Mastrocola, D.; Nicoli, M.C.; Lerici, C.R. Review of nonenzymatic browning and antioxidant capacity in processed foods. Trends Food Sci. Technol. 2011, 11, 340–346. [Google Scholar] [CrossRef]
- Syamaladevi, R.M.; Sablani, S.S.; Tang, J.; Powers, J.; Swanson, B.G. Stability of anthocyanins in frozen and freeze-dried raspberries during long-term storage: In relation to glass transition. J. Food Sci. 2011, 76, 414–421. [Google Scholar] [CrossRef] [PubMed]
- Lerbret, A.; Bordat, P.; Affouard, F.; Descamps, M.; Migliardo, F. How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations. J. Phys. Chem. B 2005, 109, 11046–11057. [Google Scholar] [CrossRef] [Green Version]
- Heid, E.; Honegger, P.; Braun, D.; Szabadi, A.; Stankovic, T.; Steinhauser, O.; Schröder, C. Computational spectroscopy of trehalose, sucrose, maltose, and glucose: A comprehensive study of TDSS, NQR, NOE, and DRS. J. Chem. Phys. 2019, 150, 175102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olsson, C.; Swenson, J. Structural comparison between sucrose and trehalose in aqueous solution. J. Phys. Chem. B 2020, 124, 3074–3082. [Google Scholar] [CrossRef]
- Bordat, P.; Lerbret, A.; Demaret, J.-P.; Affouard, F.; Descamps, M. Comparative study of trehalose, sucrose and maltose in water solutions by molecular modelling. EPL Europhys. Lett. 2004, 65, 41–47. [Google Scholar] [CrossRef]
- Oku, K.; Watanabe, H.; Kubota, M.; Fukuda, S.; Kurimoto, M.; Tsujisaka, Y.; Komori, M.; Inoue, Y.; Sakurai, M. NMR and quantum chemical study on the OH⊙⊙⊙ π and CH⊙⊙⊙ O interactions between trehalose and unsaturated fatty acids: Implication for the mechanism of antioxidant function of trehalose. J. Am. Chem. Soc. 2003, 125, 12739–12748. [Google Scholar] [CrossRef] [PubMed]
- Oku, K.; Kurose, M.; Kubota, M.; Fukuda, S.; Kurimoto, M.; Tujisaka, Y.; Okabe, A.; Sakurai, M. Combined NMR and quantum chemical studies on the interaction between trehalose and dienes relevant to the antioxidant function of trehalose. J. Phys. Chem. B 2005, 109, 3032–3040. [Google Scholar] [CrossRef]
- Sakakura, K.; Okabe, A.; Oku, K.; Sakurai, M. Experimental and theoretical study on the intermolecular complex formation between trehalose and benzene compounds in aqueous solution. J. Phys. Chem. B 2011, 115, 9823–9830. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Rossi, J.A. Colorimetry of total phenolics with phosphomolybdic-phosphotonutric acid reagents. Am. J. Enol. Vitic. 1965, 16, 144–158. [Google Scholar]
- Prior, R.L.; Fan, E.; Ji, H.; Howell, A.; Nio, C.; Payne, M.J.; Reed, J. Multi-laboratory validation of a standard method for quantifying proanthocyanidins in cranberry powders. J. Sci. Food Agric. 2010, 90, 1473–1478. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Acosta, M. The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chem. 2001, 73, 239–244. [Google Scholar] [CrossRef]
- Brand-Williams, W.; Cuvelier, M.E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT 1995, 28, 25–30. [Google Scholar] [CrossRef]
- Apak, R.; Güçlü, K.; Ozyürek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef] [PubMed]
- Benzie, I.F.; Strain, J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996, 239, 70–79. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Volatiles | BJ | F | CBg | RT | RI | CAS No. | MW | LogP (o/w) | VP (mm/Hg) | Odor |
---|---|---|---|---|---|---|---|---|---|---|
hexanal | − | + | + | 5.13 | 800 | 66-25-1 | 100.2 | 1.80 | 10.888 | green |
furaldehyde | − | + | − | 6.40 | 827 | 98-01-1 | 96.09 | 0.410 | 2.234 | bready |
heptanal | + | + | + | 10.76 | 897 | 111-71-7 | 114.2 | 2.30 | 3.854 | green |
benzaldehyde | − | + | − | 14.65 | 956 | 100-52-7 | 106.1 | 1.48 | 1.270 | fruity |
2-heptenal | − | − | + | 14.95 | 956 | 2463-63-0 | 112.17 | 2.30 | 1.823 | green |
1-octen-3-one | − | − | + | 16.46 | 982 | 4312-99-6 | 126.2 | 2.40 | 1.063 | fruity |
1-octen-3-ol | − | + | − | 16.50 | 980 | 3391-86-4 | 128.2 | 2.52 | 0.531 | earthy |
methyl heptenone | − | + | − | 16.95 | 985 | 110-93-0 | 126.2 | 1.95 | 1.277 | citrus |
6-methyl-5-hepten-2-one | − | − | + | 17.11 | 987 | 110-93-0 | 126.2 | 1.90 | 1.277 | citrus |
octanal | − | + | + | 18.08 | 998 | 124-13-0 | 128.2 | 2.70 | 2.068 | green |
hexanoic acid | − | + | + | 18.54 | 1005 | 142-62-1 | 116.1 | 1.90 | 0.158 | fatty |
m-cymene | − | + | − | 19.02 | 1014 | 535-77-3 | 134.2 | 4.5 | 1.720 | - |
D-limonene | + | + | + | 19.41 | 1018 | 138-86-3 | 136.2 | 4.57 | 0.198 | citrus |
2-ethylhexanol | + | + | + | 19.96 | 1030 | 104-76-7 | 139.0 | 3.10 | 0.207 | citrus |
benzyl alcohol | − | − | + | 20.11 | 1037 | 100-51-6 | 192.3 | 3.2 | 0.008 | fruity |
3-octen-2-one | − | + | − | 20.24 | 1036 | 1669-44-9 | 126.2 | 2.179 | 0.897 | earthy |
2-octenal | + | + | + | 21.49 | 1054 | 2548-87-0 | 126.2 | 2.60 | 0.552 | fatty |
3,5-octadiene-2-one | − | + | − | 22.12 | 1067 | 38284-27-4 | 124.2 | 1.640 | 0.437 | fatty |
1-octanol | + | + | + | 22.48 | 1071 | 111-87-5 | 130.2 | 3.00 | 0.079 | green |
guaiacol | + | − | + | 23.17 | 1080 | 90-05-1 | 124.1 | 1.32 | 0.179 | green |
linalool | + | + | + | 23.96 | 1096 | 78-70-6 | 154.3 | 2.970 | 0.016 | citrus |
phenethyl alcohol | + | − | + | 24.6 | 1103 | 60-12-8 | 122.2 | 1.40 | 0.087 | floral |
trans-verbenol | + | − | + | 25.72 | 1129 | 473-67-6 | 152.2 | 1.60 | 0.033 | herbal |
2-nonenal | − | + | + | 27.11 | 1155 | 2463-53-8 | 140.2 | 3.10 | 0.256 | green |
myrtenal | − | + | − | 28.64 | 1183 | 18486-69-6 | 150.2 | 2.98 | 0.145 | spicy |
decanal | − | + | + | 29.50 | 1200 | 112-31-2 | 156.3 | 3.80 | 0.207 | floral |
2,4-nonadienal | + | − | + | 29.86 | 1205 | 6750-03-4 | 138.2 | 2.70 | 0.102 | fatty |
trans-carveol | − | + | − | 29.92 | 1207 | 18383-51-2 | 152.2 | 2.819 | 0.012 | spicy |
nerol | + | − | + | 30.63 | 1222 | 106-25-2 | 154.3 | 3.47 | 0.013 | citrus |
carvone | − | + | − | 31.06 | 1232 | 99-49-0 | 150.2 | 3.07 | 0.160 | minty |
2-decenal | + | + | + | 32.23 | 1255 | 3913-71-1 | 154.3 | 3.70 | 0.067 | fatty |
phellandral | − | − | + | 32.61 | 1264 | 21391-98-0 | 152.2 | 2.70 | 0.098 | floral |
decanol | − | + | − | 32.66 | 1264 | 112-30-1 | 158.3 | 4.57 | 0.00851 | fatty |
perillyl alcohol | + | + | + | 33.93 | 1290 | 536-59-4 | 152.2 | 2.10 | 0.006 | woody |
nonanoic acid | + | − | + | 33.49 | 1281 | 112-05-0 | 158.2 | 3.50 | 0.009 | fatty |
2-butyl-2-octenal | − | + | − | 37.14 | 1368 | 13019-16-4 | 182.3 | 4.756 | 0.011 | - |
α-ionone | + | + | + | 38.95 | 1420 | 127-41-3 | 192.3 | 3.995 | 0.014 | berry |
geranyl acetone | + | + | + | 39.598 | 1448 | 3796-70-1 | 194.3 | 3.834 | 0.016 | floral |
γ-ionone | + | − | + | 40.18 | 1473 | 8013-90-9 | 192.3 | 3.2 | 0.008 | berry |
β-ionone | + | + | + | 40.34 | 1480 | 14901-07-6 | 192.3 | 3.995 | 0.017 | berry |
lily aldehyde | + | − | + | 41.15 | 1519 | 80-54-6 | 204.3 | 4.216 | 0.005 | floral |
Volatiles | BJ | F | 10%_T | 20%_T | 10%_S | 20%_S |
---|---|---|---|---|---|---|
Alcohols | ||||||
2-ethylhexanol | 20.74 ± 0.01 | 5.08 ± 0.59 | 12.39 ± 0.07 d | 13.54 ± 0.02 c | 14.33 ± 0.05 b | 22.93 ± 0.28 a |
benzyl alcohol | - | - | 21.42 ± 0.04 c | 23.03 ± 0.89 b | 17.86 ± 0.01 d | 25.71 ± 0.37 a |
1-octanol | 11.90 ± 0.11 | 23.84 ± 1.54 | 16.45 ± 0.08 c | 15.58 ± 0.28 d | 19.09 ± 0.05 b | 20.39 ± 0.09 a |
1-octen-3-ol | - | 50.28 ± 2.56 | - | - | - | - |
phenethyl alcohol | 47.39 ± 0.48 | - | 11.77 ± 0.05 b | 9.91 ± 0.04 c | 11.89 ± 0.11 b | 13.99 ± 0.10 a |
perillyl alcohol | 29.19 ± 1.98 | 3.44 ± 0.25 | 3.52 ± 0.08 b | 3.59 ± 0.23 b | 2.78 ± 0.01 c | 4.67 ± 0.10 a |
Acids | ||||||
hexanoic acid | - | 18.12 ± 0.05 | 36.63 ± 3.11 a,b | 31.57 ± 2.18 b | 38.08 ± 0.56 a | 35.51 ± 1.87 a,b |
nonanoic acid | 24.68 ± 0.18 | - | 2.31 ± 0.02 c | 2.89 ± 0.07 b | 4.73 ± 0.11 a | 4.66 ± 0.08 a |
Aldehydes and ketones | ||||||
hexanal | - | 183.33 ± 9.2 | 74.47 ± 0.70 a | 60.68 ± 0.14 c | 76.41 ± 2.07 a | 61.15 ± 0.00 b |
furaldehyde | - | 40.45 ± 1.71 | - | - | - | - |
heptanal | 0.72 ± 0.00 | 24.98 ± 0.06 | 1.20 ± 0.00c | 1.19 ± 0.00 c | 1.42 ± 0.00 b | 6.27 ± 0.20 a |
benzaldehyde | - | 87.76 ± 3.61 | - | - | - | - |
2-heptenal | - | - | 65.81 ± 0.40 d | 68.02 ± 0.34 c | 69.53 ± 0.03 b | 77.13 ± 0.12 a |
1-octen-3-one | - | - | 30.83 ± 2.37 c | 31.30 ± 1.19 c | 34.76 ± 0.50 b | 38.01 ± 1.91 a |
methyl heptenone | - | 49.18 ± 0.13 | - | - | - | - |
6-methyl-5-hepten-2-one | - | - | 16.84 ± 0.11 b | 18.64 ± 0.01 a | 16.95 ± 0.35 b | 18.41 ± 0.14 a |
octanal | - | 31.89 ± 0.41 | 15.57 ± 0.04 d | 21.47 ± 0.33 c | 37.89 ± 0.29 a | 24.85 ± 0.22 b |
3-octen-2-one | - | 51.51 ± 4.60 | - | - | - | - |
2-octenal | 10.35 ± 0.13 | 42.29 ± 3.24 | 31.98 ± 0.46 c | 30.27 ± 2.66 c | 39.55 ± 0.14 b | 41.07 ± 0.07 a |
3,5-octadiene-2-one | - | 50.27 ± 3.35 | - | - | - | - |
2-nonenal | - | 14.35 ± 0.03 | 6.99 ± 0.23 b | 6.85 ± 0.05 b | 8.17 ± 0.08 a | 8.05 ± 1.00 a |
myrtenal | - | 39.99 ± 0.52 | - | - | - | - |
decanal | - | 12.99 ± 0.71 | 10.22 ± 0.05 a | 10.52 ± 0.07 a | 6.23 ± 0.11 c | 9.09 ± 0.03 b |
2,4-nonadienal | 22.12 ± 0.41 | - | 3.83 ± 0.04 c | 3.58 ± 0.25 c | 5.28 ± 0.07 b | 7.21 ± 0.08 a |
2-decenal | 11.38 ± 0.25 | 7.47 ± 0.43 | 4.29 ± 0.02 d | 4.69 ± 0.09 c | 7.43 ± 0.22 b | 8.22 ± 0.00 a |
2-butyl-2-octenal | - | 4.39 ± 0.01 | - | - | - | - |
geranyl acetone | 18.68 ± 0.41 | 7.35 ± 0.10 | 4.70 ± 0.06 d | 5.48 ± 0.13 c | 6.16 ± 0.00 b | 6.99 ± 0.14 a |
lily aldehyde | 11.26 ± 0.04 | - | 2.66 ± 0.07 a | 2.90 ± 0.09 b | 3.82 ± 0.09 c | 5.39 ± 0.13 d |
Terpenes | ||||||
m-cymene | - | 6.99 ± 0.25 | - | - | - | - |
D-limonene | 7.37 ± 0.13 | 603.15 ± 3.3 | 368.44 ± 10.35 b | 362.97 ± 4.75 b | 496.20 ± 5.42 a | 505.88 ± 2.74 a |
guaiacol | 104.17 ± 1.8 | - | 14.29 ± 0.02 b | 12.82 ± 0.02 c | 11.35 ± 0.30 d | 15.75 ± 0.17 a |
linalool | 23.39 ± 0.42 | 11.83 ± 0.21 | 8.16 ± 0.09 a | 7.75 ± 0.14 b | 5.33 ± 0.02 c | 5.21 ± 0.05 c |
trans-verbenol | 43.40 ± 0.46 | - | 4.16 ± 0.07 c | 2.88 ± 0.14 d | 4.59 ± 0.11 b | 5.67 ± 0.03a |
trans-carveol | - | 20.03 ± 0.21 | - | - | - | - |
nerol | 20.25 ± 0.61 | - | 4.26 ± 0.02 b | 4.70 ± 0.21 a | 3.90 ± 0.10c | 4.50 ± 0.05a |
carvone | - | 17.84 ± 1.01 | - | - | - | - |
phellandral | - | - | 3.67 ± 0.02 c | 5.02 ± 0.29 a | 4.28 ± 0.00 b | 5.57 ± 0.00 a |
α-ionone | 13.10 ± 0.44 | 1.51 ± 0.02 | 1.15 ± 0.02 c | 1.40 ± 0.03 b | 2.99 ± 0.00 a | 1.56 ± 0.01 b |
γ-ionone | 4.18 ± 0.43 | - | 2.58 ± 0.07 b | 2.48 ± 0.05 b | 3.35 ± 0.00 a | 3.27 ± 0.10 a |
β-ionone | 2.58 ± 0.11 | 3.45 ± 0.32 | 2.52 ± 0.04 c | 2.62 ± 0.05 c | 3.36 ± 0.03 b | 3.59 ± 0.00 a |
Volatiles | 10%_T | 20%_T | 10%_S | 20%_S |
---|---|---|---|---|
Alcohols | ||||
2-ethylhexanol | 12.09 ± 0.07 b | 9.02 ± 0.09 d | 9.93 ± 0.11 c | 13.73 ± 0.16 a |
benzyl alcohol | 11.94 ± 0.06 c | 9.10 ± 0.10 d | 12.93 ± 0.11 b | 17.07 ± 0.08 a |
1-octanol | 14.65 ± 0.22 c | 13.89 ± 0.10 d | 20.48 ± 0.07 b | 25.15 ± 0.37 a |
phenethyl alcohol | 9.31 ± 0.08 b | 8.67 ± 0.12 c | 8.45 ± 0.06 c | 12.38 ± 0.01 a |
perillyl alcohol | 2.32 ± 0.06 c | 2.85 ± 0.06 b | 2.58 ± 0.15 b,c | 4.57 ± 0.02 a |
Acids | ||||
hexanoic acid | 28.46 ± 1.88 a,b | 26.40 ± 0.12 b,c | 29.81 ± 1.84 a | 24.79 ± 1.35 c |
nonanoic acid | 1.72 ± 0.01 c | 1.70 ± 0.01 c | 2.97 ± 0.01 b | 4.25 ± 0.24 a |
Aldehydes and ketones | ||||
hexanal | 66.23 ± 0.38 a | 53.73 ± 1.53 b | 49.77 ± 0.92 c | 47.92 ± 0.63 c |
heptanal | - | - | 2.67 ± 0.02 b | 2.86 ± 0.09 a |
2-heptenal | 56.08 ± 0.78 c | 52.81 ± 0.59 d | 78.63 ± 0.34 b | 99.35 ± 1.25 a |
1-octen-3-one | 40.52 ± 0.10 b | 37.29 ± 0.02 c | 29.12 ± 0.09 d | 61.88 ± 1.53 a |
6-methyl-5-hepten-2-one | 21.13 ± 0.07 c | 22.23 ± 0.58 b | 10.80 ± 0.01 d | 28.66 ± 1.83 a |
octanal | 16.01 ± 0.10 c | 21.25 ± 0.64 b | 28.19 ± 0.21 a | 29.06 ± 1.93 a |
2-octenal | 21.98 ± 0.34 c | 16.44 ± 0.12 d | 30.67 ± 0.45 b | 44.68 ± 1.76 a |
2-nonenal | 5.56 ± 0.02 b | 4.73 ± 0.00 c | 8.32 ± 0.23 a | 8.36 ± 0.03 a |
decanal | 5.33 ± 0.01 d | 6.18 ± 0.10 c | 7.49 ± 0.07 b | 9.56 ± 0.12 a |
2,4-nonadienal | 3.71 ± 0.10 c | 5.84 ± 0.22 b | 5.44 ± 0.04 b | 6.65 ± 0.03 a |
2-decenal | 3.47 ± 0.10 c | 3.39 ± 0.02 c | 5.98 ± 0.16 b | 7.86 ± 0.14 a |
geranyl acetone | 2.78 ± 0.04 c | 2.66 ± 0.03 c | 4.41 ± 0.18 b | 4.99 ± 0.08 a |
lily aldehyde | 2.63 ± 0.16 c | 2.53 ± 0.19 c | 3.57 ± 0.28 b | 4.89 ± 0.12 a |
Terpenes | ||||
D-limonene | 215.25 ± 4.71 c | 174.82 ± 0.34 d | 278.32 ± 12.99 b | 304.63 ± 5.42 a |
guaiacol | 9.66 ± 0.14 c | 9.00 ± 0.15 c | 10.19 ± 0.05 b | 12.46 ± 0.05 a |
linalool | 6.89 ± 0.17 a | 6.74 ± 0.10 a | 3.34 ± 0.03 c | 4.14 ± 0.08 b |
trans-verbenol | 2.88 ± 0.18 a,b | 2.71 ± 0.11 b | 3.09 ± 0.14 a | 2.76 ± 0.06 b |
nerol | 3.81 ± 0.07 b,c | 4.27 ± 0.06 a | 3.66 ± 0.07 c | 4.02 ± 0.07 b |
phellandral | 2.03 ± 0.00 d | 3.72 ± 0.06 b | 3.18 ± 0.09 c | 4.38 ± 0.02 a |
α-ionone | 1.10 ± 0.01 b | 1.74 ± 0.27 a | 1.03 ± 0.01 b | 0.98 ± 0.01 b |
γ-ionone | 2.02 ± 0.01 c | 2.34 ± 0.03 b | 2.40 ± 0.00 b | 2.82 ± 0.23 a |
β-ionone | 2.74 ± 0.18 a | 2.39 ± 0.02 b | 2.29 ± 0.02 b | 2.65 ± 0.06 a |
Volatiles | OT (µg/kg) | OAVs | |||||
---|---|---|---|---|---|---|---|
BJ | F | 10%_T | 20%_T | 10%_S | 20%_S | ||
Alcohols | |||||||
2-ethylhexanol | 138 | 0.15 | 0.04 | 0.09 | 0.10 | 0.10 | 0.17 |
1-octen-3-ol | 1 | 0.00 | 50.28 | 0.00 | 0.00 | 0.00 | 0.00 |
benzyl alcohol | 100 | 0.00 | 0.00 | 0.21 | 0.23 | 0.18 | 0.26 |
1-octanol | 130 | 0.09 | 0.18 | 0.13 | 0.12 | 0.15 | 0.16 |
phenethyl alcohol | 1000 | 0.05 | 0.00 | 0.01 | 0.01 | 0.01 | 0.01 |
perillyl alcohol | 1660 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Acids | |||||||
hexanoic acid | 1000 | 0.00 | 0.02 | 0.04 | 0.03 | 0.04 | 0.04 |
nonanoic acid | 9 | 2.74 | 0.00 | 0.26 | 0.32 | 0.53 | 0.52 |
Aldehydes and ketones | |||||||
hexanal | 20 | 0.00 | 9.17 | 3.72 | 3.03 | 3.82 | 3.06 |
furaldehyde | 3 | 0.00 | 13.48 | 0.00 | 0.00 | 0.00 | 0.00 |
heptanal | 3 | 0.24 | 8.33 | 0.40 | 0.40 | 0.47 | 2.09 |
benzaldehyde | 5000 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
2-heptenal | 13 | 0.00 | 0.00 | 5.06 | 5.23 | 5.35 | 5.93 |
1-octen-3-one | 0.005 | 0.00 | 0.00 | 6166 | 6260 | 6952 | 7602 |
methyl heptenone | 140 | 0.00 | 0.35 | 0.00 | 0.00 | 0.00 | 0.00 |
octanal | 0.7 | 0.00 | 45.56 | 22.24 | 30.67 | 54.13 | 35.50 |
2-octenal | 3 | 3.45 | 14.10 | 10.66 | 10.09 | 13.18 | 13.69 |
2-nonenal | 0.1 | 0 | 143.5 | 69.9 | 68.5 | 81.7 | 80.5 |
decanal | 2 | 0.00 | 6.50 | 5.11 | 5.26 | 3.12 | 4.55 |
2-decenal | 0.4 | 28.5 | 18.7 | 10.7 | 11.7 | 18.6 | 20.6 |
geranyl acetone | 60 | 0.31 | 0.12 | 0.08 | 0.09 | 0.10 | 0.12 |
Terpenes | |||||||
D-limonene | 10 | 0.74 | 60.32 | 36.84 | 36.30 | 49.62 | 50.59 |
guaiacol | 20 | 5.21 | 0.00 | 0.71 | 0.64 | 0.57 | 0.79 |
linalool | 6 | 3.90 | 1.97 | 1.36 | 1.29 | 0.89 | 0.87 |
nerol | 290 | 0.07 | 0.00 | 0.01 | 0.02 | 0.01 | 0.02 |
carvone | 6.7 | 0.00 | 2.66 | 0.00 | 0.00 | 0.00 | 0.00 |
α-ionone | 0.6 | 21.83 | 2.52 | 1.92 | 2.33 | 4.98 | 2.60 |
γ-ionone | 0.07 | 59.71 | 0.00 | 36.86 | 35.43 | 47.86 | 46.71 |
β-ionone | 0.1 | 25.80 | 34.50 | 25.20 | 26.20 | 33.60 | 35.90 |
Volatiles | OAVs | |||
---|---|---|---|---|
10%_T | 20%_T | 10%_S | 20%_S | |
Alcohols | ||||
2-ethylhexanol | 0.09 | 0.07 | 0.07 | 0.10 |
benzyl alcohol | 0.12 | 0.09 | 0.13 | 0.17 |
1-octanol | 0.11 | 0.11 | 0.16 | 0.19 |
phenethyl alcohol | 0.01 | 0.01 | 0.01 | 0.01 |
perillyl alcohol | 0.00 | 0.00 | 0.00 | 0.00 |
Acids | ||||
hexanoic acid | 0.03 | 0.03 | 0.03 | 0.02 |
nonanoic acid | 0.19 | 0.19 | 0.33 | 0.47 |
Aldehydes and ketones | ||||
hexanal | 3.31 | 2.69 | 2.49 | 2.40 |
heptanal | 0.00 | 0.00 | 0.87 | 0.95 |
2-heptenal | 4.31 | 4.06 | 6.05 | 7.64 |
1-octen-3-one | 8104 | 7458 | 5824 | 12376 |
octanal | 22.87 | 30.36 | 40.27 | 41.51 |
2-octenal | 7.33 | 5.48 | 10.22 | 14.89 |
2-nonenal | 55.60 | 47.30 | 83.20 | 83.60 |
decanal | 2.67 | 3.09 | 3.75 | 4.78 |
2-decenal | 8.68 | 8.48 | 14.95 | 19.65 |
geranyl acetone | 0.05 | 0.04 | 0.07 | 0.08 |
Terpenes | ||||
D-limonene | 21.53 | 17.48 | 27.83 | 30.46 |
guaiacol | 0.48 | 0.45 | 0.51 | 0.62 |
linalool | 1.15 | 1.12 | 0.56 | 0.69 |
nerol | 0.01 | 0.01 | 0.01 | 0.01 |
α-ionone | 1.83 | 2.90 | 1.72 | 1.63 |
γ-ionone | 28.86 | 33.43 | 34.29 | 40.29 |
β-ionone | 27.40 | 23.90 | 22.90 | 26.50 |
Samples | TPC | PAC | DPPH | ABTS | FRAP | CUPRAC |
---|---|---|---|---|---|---|
After preparation | ||||||
10%_S | 4.652 ± 0.005 c | 120.33 ± 0.98 d | 197.92 ± 1.23 d | 1.054 ± 0.038 d | 245.71 ± 2.94 c | 148.76 ± 0.98 d |
20%_S | 4.937 ± 0.056 b | 129.78 ± 0.45 c | 233.91 ± 1.47 a | 1.114 ± 0.067 d | 253.70 ± 0.41 b | 153.71 ± 1.21 a |
10%_T | 4.946 ± 0.045 b | 140.46 ± 1.11 b | 204.13 ± 1.21 c | 1.478 ± 0.044 b | 292.29 ± 1.10 a | 170.16 ± 1.05 b |
20%_T | 5.233 ± 0.044 a | 156.85 ± 1.34 a | 216.55 ± 1.57 b | 1.526 ± 0.099 b | 291.05 ± 0.96 a | 170.61 ± 1.11 b |
After storage | ||||||
10%_S | 4.133 ± 0.044 f | 88.45 ± 0.20 f | 160.03 ± 1.37 f | 1.248 ± 0.011 c | 206.69 ± 1.65 e | 134.24 ± 0.97 f |
20%_S | 4.504 ± 0.031 d | 105.56 ± 0.77 e | 164.98 ± 1.41 f | 1.214 ± 0.038 c | 226.42 ± 3.34 d | 142.40 ± 1.99 e |
10%_T | 4.354 ± 0.062 e | 120.26 ± 1.73 d | 181.45 ± 1.47 e | 1.502 ± 0.018 b | 254.42 ± 1.87 b | 166.80 ± 1.17 c |
20%_T | 4.558 ± 0.054 d | 121.72 ± 1.56 d | 184.19 ± 1.61 e | 1.654 ± 0.077 a | 256.49 ± 1.52 b | 167.42 ± 1.01 c |
Samples | L* | a* | b* | ΔE | °h | C* |
---|---|---|---|---|---|---|
After preparation | ||||||
10%_S | 35.79 ± 0.03 e | 12.90 ± 0.01 b | 4.31 ± 0.02 e | 18.46 ± 0.09 d | 13.60 ± 0.01 b | |
20%_S | 32.95 ± 0.03 g | 12.14 ± 0.03 c | 3.92 ± 0.01 g | 17.92 ± 0.06 e | 12.76 ± 0.02 c | |
10%_T | 34.91 ± 0.03 f | 13.50 ± 0.05 a | 4.33 ± 0.02 e | 17.75 ± 0.12 e | 14.18 ± 0.05 a | |
20%_T | 32.32 ± 0.01 h | 12.95 ± 0.03 b | 4.03 ± 0.02 f | 17.29 ± 0.07 f | 13.56 ± 0.03 b | |
After storage | ||||||
10%_S | 39.02 ± 0.03 a | 6.85 ± 0.03 e | 7.08 ± 0.03 a | 7.39 | 45.93 ± 0.21 a | 9.85 ± 0.04 d |
20%_S | 35.96 ± 0.03 d | 6.72 ± 0.03 f | 4.79 ± 0.03 d | 6.27 | 35.50 ± 0.14 c | 8.25 ± 0.03 f |
10%_T | 38.19 ± 0.03 b | 7.66 ± 0.03 d | 5.70 ± 0.03 b | 6.84 | 36.64 ± 0.12 b | 9.55 ± 0.04 e |
20%_T | 36.25 ± 0.03 c | 7.76 ± 0.03 d | 5.49 ± 0.03 c | 6.67 | 35.28 ± 0.15 c | 9.50 ± 0.03 e |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopjar, M.; Ivić, I.; Buljeta, I.; Ćorković, I.; Vukoja, J.; Šimunović, J.; Pichler, A. Volatiles and Antioxidant Activity of Citrus Fiber/Blackberry Gels: Influence of Sucrose and Trehalose. Plants 2021, 10, 1640. https://doi.org/10.3390/plants10081640
Kopjar M, Ivić I, Buljeta I, Ćorković I, Vukoja J, Šimunović J, Pichler A. Volatiles and Antioxidant Activity of Citrus Fiber/Blackberry Gels: Influence of Sucrose and Trehalose. Plants. 2021; 10(8):1640. https://doi.org/10.3390/plants10081640
Chicago/Turabian StyleKopjar, Mirela, Ivana Ivić, Ivana Buljeta, Ina Ćorković, Josipa Vukoja, Josip Šimunović, and Anita Pichler. 2021. "Volatiles and Antioxidant Activity of Citrus Fiber/Blackberry Gels: Influence of Sucrose and Trehalose" Plants 10, no. 8: 1640. https://doi.org/10.3390/plants10081640
APA StyleKopjar, M., Ivić, I., Buljeta, I., Ćorković, I., Vukoja, J., Šimunović, J., & Pichler, A. (2021). Volatiles and Antioxidant Activity of Citrus Fiber/Blackberry Gels: Influence of Sucrose and Trehalose. Plants, 10(8), 1640. https://doi.org/10.3390/plants10081640