Physicochemical Characterization and Antimicrobial Activity against Erwinia amylovora, Erwinia vitivora, and Diplodia seriata of a Light Purple Hibiscus syriacus L. Cultivar
Abstract
:1. Introduction
2. Results
2.1. Physico-Chemical Characterization
2.1.1. Elemental Analysis and Calorific Values Calculation
2.1.2. Thermal Characterization
2.1.3. Vibrational Characterization
2.1.4. Identification of Active Components in the Flower and Leaf Extracts by GC–MS
2.1.5. Total Polyphenol and Flavonoid Contents
2.2. Antimicrobial Activity of H. syriacus Extracts and their Phytochemicals
2.2.1. Antibacterial Activity
2.2.2. Antifungal Activity
3. Discussion
3.1. On the Elemental Analysis Results, Calorific Values, and Ash Contents
3.2. On the Total Phenol and Flavonoid Contents
3.3. On the Composition of H. syriacus Extracts
3.4. On the Antimicrobial Activity of H. syriacus Extracts
3.5. Limitations of the Study
4. Material and Methods
4.1. Reagents
4.2. Studied Species
4.3. Plant Material and Extraction Procedure
4.4. Bacterial and Fungal Isolates
4.5. Physicochemical Characterization
4.6. In Vitro Antibacterial Activity Assessment
4.7. In Vitro Antifungal Activity Assessment
4.8. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vasudeva, N.; Sharma, S. Biologically active compounds from the genus Hibiscus. Pharm. Biol. 2008, 46, 145–153. [Google Scholar] [CrossRef] [Green Version]
- Maganha, E.G.; Halmenschlager, R.D.C.; Rosa, R.M.; Henriques, J.A.P.; Ramos, A.L.L.D.P.; Saffi, J. Pharmacological evidences for the extracts and secondary metabolites from plants of the genus Hibiscus. Food Chem. 2010, 118, 1–10. [Google Scholar] [CrossRef]
- Inikpi, E.; Lawal, O.A.; Ogunmoye, A.; Ogunwande, I.A. Volatile composition of the floral essential oil of Hibiscus sabdariffa L. from Nigeria. Am. J. Essent. Oils Nat. Prod. 2014, 2, 4–7. [Google Scholar]
- Melecchi, M.I.S.; Martinez, M.M.; Abad, F.C.; Zini, P.P.; do Nascimento Filho, I.; Caramão, E.B. Chemical composition of Hibiscus tiliaceus L. flowers: A study of extraction methods. J. Sep. Sci. 2002, 25, 86–90. [Google Scholar] [CrossRef]
- Dingjian, C.; Dare, Y.; Qingxiu, J.; Hongming, Z.; Hui, L. GC/MS analysis on composition of the essential oil from Hibiscus syriacus L. Chin. Agric. Sci. Bull. 2009, 25, 93–96. [Google Scholar]
- Nandagopalan, V.; Gritto, M.J.; Doss, A. GC-MS analysis of bioactive components of the methanol extract of Hibiscus tiliaceus Linn. Asian J. Plant Sci. Res. 2015, 5, 6–10. [Google Scholar]
- Rassem, H.; Nour, A.H.; Yunus, R.M. GC-MS analysis of bioactive constituents of Hibiscus flower. Aust. J. Basic Appl. Sci. 2017, 11, 91–97. [Google Scholar]
- Jang, Y.-W.; Jung, J.-Y.; Lee, I.-K.; Kang, S.-Y.; Yun, B.-S. Nonanoic acid, an antifungal compound from Hibiscus syriacus Ggoma. Mycobiology 2012, 40, 145–146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rao, K.; Geetha, K.; Banji, D. Quality control study and standardization of Hibiscus rosa-sinensis L. flowers and leaves as per WHO guidelines. J. Pharmacogn. Phytochem. 2014, 3, 29–37. [Google Scholar]
- Subhaswaraj, P.; Sowmya, M.; Bhavana, V.; Dyavaiah, M.; Siddhardha, B. Determination of antioxidant activity of Hibiscus sabdariffa and Croton caudatus in Saccharomyces cerevisiae model system. J. Food Sci. Technol. 2017, 54, 2728–2736. [Google Scholar] [CrossRef]
- Kobaisy, M.; Tellez, M.R.; Webber, C.L.; Dayan, F.E.; Schrader, K.K.; Wedge, D.E. Phytotoxic and fungitoxic activities of the essential oil of kenaf (Hibiscus cannabinus L.) leaves and its composition. J. Agric. Food Chem. 2001, 49, 3768–3771. [Google Scholar] [CrossRef] [PubMed]
- Olivia, N.U.; Goodness, U.C.; Obinna, O.M. Phytochemical profiling and GC-MS analysis of aqueous methanol fraction of Hibiscus asper leaves. Future J. Pharm. Sci. 2021, 7, 59. [Google Scholar] [CrossRef]
- Mahadevan, N.; Kamboj, P. Hibiscus sabdariffa Linn.—An overview. Nat. Prod. Radiance 2009, 8, 77–83. [Google Scholar]
- Ishikura, N. Anthocyanins and flavonols in the flowers of Hibiscus mutabilis F. versicolor. Kumamoto J. Sci. Biol. 1973, 11, 51–59. [Google Scholar]
- Zhang, E.; Kang, Q.; Zhang, Z. Chemical constituents from the bark of Hibiscus syriacus L. China J. Chin. Mater. Med. 1993, 18, 37–38, 63. [Google Scholar]
- Kim, J.H.; Nonaka, G.-I.; Fujieda, K.; Uemoto, S. Anthocyanidin malonylglucosides in flowers of Hibiscus syriacus. Phytochemistry 1989, 28, 1503–1506. [Google Scholar] [CrossRef]
- Wei, Q.; Ji, X.; Xu, F.; Li, Q.; Yin, H. Chemical constituents from leaves of Hibiscus syriacus and their α-glucosidase inhibitory activities. J. Chin. Med. Mater. 2015, 38, 975–979. [Google Scholar]
- Zhang, R.-R.; Hu, R.-D.; Lu, X.-Y.; Ding, X.-Y.; Huang, G.-Y.; Duan, L.-X.; Zhang, S.-J. Polyphenols from the flower of Hibiscus syriacus Linn ameliorate neuroinflammation in LPS-treated SH-SY5Y cell. Biomed. Pharmacother. 2020, 130, 110517. [Google Scholar] [CrossRef] [PubMed]
- Yun, B.-S.; Ryoo, I.-J.; Lee, I.-K.; Yoo, I.-D. Hibispeptin B, a novel cyclic peptide from Hibiscus syriacus. Tetrahedron 1998, 54, 15155–15160. [Google Scholar] [CrossRef]
- Yun, B.-S.; Ryoo, I.-J.; Lee, I.-K.; Park, K.-H.; Choung, D.-H.; Han, K.-H.; Yoo, I.-D. Two bioactive pentacyclic triterpene esters from the root bark of Hibiscus syriacus. J. Nat. Prod. 1999, 62, 764–766. [Google Scholar] [CrossRef]
- Yoo, I.-D.; Yun, B.-S.; Lee, I.-K.; Ryoo, I.-J.; Choung, D.-H.; Han, K.-H. Three naphthalenes from root bark of Hibiscus syriacus. Phytochemistry 1998, 47, 799–802. [Google Scholar] [CrossRef]
- Shi, L.-S.; Wu, C.-H.; Yang, T.-C.; Yao, C.-W.; Lin, H.-C.; Chang, W.-L. Cytotoxic effect of triterpenoids from the root bark of Hibiscus syriacus. Fitoterapia 2014, 97, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Punasiya, R.; Joshi, A.; Sainkediya, K.; Tirole, S.; Joshi, P.; Das, A.; Yadav, R. Evaluation of antibacterial activity of various extracts of Hibiscus syriacus. Res. J. Pharm. Technol. 2011, 4, 819–822. [Google Scholar]
- Shah, M.; Bokadia, M.; Mehta, B.; Jain, S. Chemical composition and antimicrobial activity of some seed oils. Fitoterapia 1988, 59, 126–128. [Google Scholar]
- Yokota, M.; Zenda, H.; Kosuge, T.; Yamamoto, T. Studies on isolation of naturally occurring biologically active principles. IV. Antifungal constituents in the bark of Hibiscus syriacus L. J. Pharm. Soc. Jpn. 1978, 98, 1508–1511. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.-Q.; Tian, Y.-L.; Wang, L.-M.; Geng, G.-M.; Zhao, W.-J.; Hu, B.-S.; Zhao, Y.-F. Fire blight disease, a fast-approaching threat to apple and pear production in China. J. Integr. Agric. 2019, 18, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Szegedi, E.; Civerolo, E.L. Bacterial diseases of grapevine. Int. J. Hortic. Sci. 2011, 17, 45–49. [Google Scholar] [CrossRef] [Green Version]
- Larignon, P.; Fulchic, R.; Cere, L.; Dubos, B. Observation on black dead arm in French vineyards. Phytopathol. Mediterr. 2001, 40, 336–342. [Google Scholar]
- Mondello, V.; Songy, A.; Battiston, E.; Pinto, C.; Coppin, C.; Trotel-Aziz, P.; Clement, C.; Mugnai, L.; Fontaine, F. Grapevine trunk diseases: A review of fifteen years of trials for their control with chemicals and biocontrol agents. Plant Dis. 2018, 102, 1189–1217. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, N.E. Two apple black rot fungi in the United States. Mycologia 2018, 25, 536–548. [Google Scholar] [CrossRef]
- Brown-Rytlewski, D.E.; McManus, P.S. Virulence of Botryosphaeria dothidea and Botryosphaeria obtusa on apple and management of stem cankers with fungicides. Plant Dis. 2000, 84, 1031–1037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, E.A. Botryosphaeria diseases of apple and peach in the Southeastern Unites States. Plant Dis. 1986, 70, 480–484. [Google Scholar] [CrossRef]
- Venditti, A. What is and what should never be: Artifacts, improbable phytochemicals, contaminants and natural products. Nat. Prod. Res. 2018, 34, 1014–1031. [Google Scholar] [CrossRef]
- Subramanian, S.; Reddy Ragula, U.B. Pyrolysis kinetics of Hibiscus rosa sinensis and Nerium oleander. Biofuels 2018, 11, 903–917. [Google Scholar] [CrossRef]
- Ghetti, P.; Ricca, L.; Angelini, L. Thermal analysis of biomass and corresponding pyrolysis products. Fuel 1996, 75, 565–573. [Google Scholar] [CrossRef]
- Meryemoğlu, B.; Hasanoğlu, A.; Irmak, S.; Erbatur, O. Biofuel production by liquefaction of kenaf (Hibiscus cannabinus L.) biomass. Bioresour. Technol. 2014, 151, 278–283. [Google Scholar] [CrossRef] [PubMed]
- Saba, N.; Jawaid, M.; Hakeem, K.R.; Paridah, M.T.; Khalina, A.; Alothman, O.Y. Potential of bioenergy production from industrial kenaf (Hibiscus cannabinus L.) based on Malaysian perspective. Renew. Sustain. Energy Rev. 2015, 42, 446–459. [Google Scholar] [CrossRef]
- Wong, S.; Lim, Y.; Chan, E. Evaluation of antioxidant, anti-tyrosinase and antibacterial activities of selected Hibiscus species. Ethnobot. Leafl. 2010, 14, 781–796. [Google Scholar]
- Sim, Y.Y.; Jess Ong, W.T.; Nyam, K.L. Effect of various solvents on the pulsed ultrasonic assisted extraction of phenolic compounds from Hibiscus cannabinus L. leaves. Ind. Crop. Prod. 2019, 140, 111708. [Google Scholar] [CrossRef]
- Čechovská, L.; Cejpek, K.; Konečný, M.; Velíšek, J. On the role of 2,3-dihydro-3,5-dihydroxy-6-methyl-(4H)-pyran-4-one in antioxidant capacity of prunes. Eur. Food Res. Technol. 2011, 233, 367–376. [Google Scholar] [CrossRef]
- Mak, Y.W.; Chuah, L.O.; Ahmad, R.; Bhat, R. Antioxidant and antibacterial activities of hibiscus (Hibiscus rosa-sinensis L.) and Cassia (Senna bicapsularis L.) flower extracts. J. King Saud Univ. Sci. 2013, 25, 275–282. [Google Scholar] [CrossRef] [Green Version]
- Seyyednejad, S.M.; Koochak, H.; Darabpour, E.; Motamedi, H. A survey on Hibiscus rosa—Sinensis, Alcea rosea L. and Malva neglecta Wallr as antibacterial agents. Asian Pac. J. Trop. Med. 2010, 3, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Luyten, W.; Pellens, K.; Wang, Y.; Wang, W.; Thevissen, K.; Liang, Q.; Cammue, B.P.A.; Schoofs, L.; Luo, G. Antifungal activity in plants from Chinese traditional and folk medicine. J. Ethnopharmacol. 2012, 143, 772–778. [Google Scholar] [CrossRef] [PubMed]
- Imada, C. Enzyme inhibitors and other bioactive compounds from marine actinomycetes. Antonie Van Leeuwenhoek 2005, 87, 59–63. [Google Scholar] [CrossRef] [PubMed]
- Vambe, M.; Aremu, A.O.; Chukwujekwu, J.C.; Gruz, J.; Luterová, A.; Finnie, J.F.; Van Staden, J. Antibacterial, mutagenic properties and chemical characterisation of sugar Bush (Protea caffra Meisn.): A South African native shrub species. Plants 2020, 9, 1331. [Google Scholar] [CrossRef]
- Zarger, M.S.S.; Akhtar, N.; Shreaz, S.; Bhatia, R.; Khatoon, F. Phytochemical analysis and growth inhibiting effects of Salix viminalis L. Leaves against different Candida isolates. Adv. Sci. Lett. 2014, 20, 1463–1467. [Google Scholar] [CrossRef]
- Pinto, M.E.A.; Araújo, S.G.; Morais, M.I.; Sá, N.P.; Lima, C.M.; Rosa, C.A.; Siqueira, E.P.; Johann, S.; Lima, L.A.R.S. Antifungal and antioxidant activity of fatty acid methyl esters from vegetable oils. An. Acad. Bras. Ciências 2017, 89, 1671–1681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhat, M.Y.; Talie, M.D.; Wani, A.H.; Lone, B.A. Chemical composition and antifungal activity of essential oil of Rhizopogon species against fungal rot of apple. J. Appl. Biol. Sci. 2020, 14, 296–308. [Google Scholar]
- Vambe, M.; Naidoo, D.; Aremu, A.O.; Finnie, J.F.; Van Staden, J. Bioassay-guided purification, GC-MS characterization and quantification of phyto-components in an antibacterial extract of Searsia lancea leaves. Nat. Prod. Res. 2019, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Zheng, C.J.; Yoo, J.-S.; Lee, T.-G.; Cho, H.-Y.; Kim, Y.-H.; Kim, W.-G. Fatty acid synthesis is a target for antibacterial activity of unsaturated fatty acids. FEBS Lett. 2005, 579, 5157–5162. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.; Ruan, W.; Li, J.; Xu, H.; Wang, J.; Gao, Y.; Wang, J. Biological Control of Phytopathogenic Fungi by Fatty Acids. Mycopathologia 2008, 166, 93–102. [Google Scholar] [CrossRef]
- Mutlu-Ingok, A.; Devecioglu, D.; Dikmetas, D.N.; Karbancioglu-Guler, F.; Capanoglu, E. Antibacterial, antifungal, antimycotoxigenic, and antioxidant activities of essential oils: An updated review. Molecules 2020, 25, 4711. [Google Scholar] [CrossRef] [PubMed]
- De Souza, S.M.; Monache, F.D.; Smânia, A. Antibacterial activity of coumarins. Z. Nat. C 2005, 60, 693–700. [Google Scholar] [CrossRef]
- Montagner, C.; de Souza, S.M.; Groposo, C.; Delle Monache, F.; Smânia, E.F.A.; Smânia, A., Jr. Antifungal activity of coumarins. Z. Nat. C 2008, 63, 21–28. [Google Scholar] [CrossRef]
- Halbwirth, H.; Fischer, T.C.; Roemmelt, S.; Spinelli, F.; Schlangen, K.; Peterek, S.; Sabatini, E.; Messina, C.; Speakman, J.-B.; Andreotti, C. Induction of antimicrobial 3-deoxyflavonoids in pome fruit trees controls fire blight. Z. Nat. C 2003, 58, 765–770. [Google Scholar] [CrossRef] [PubMed]
- Flachowsky, H.; Halbwirth, H.; Treutter, D.; Richter, K.; Hanke, M.-V.; Szankowski, I.; Gosch, C.; Stich, K.; Fischer, T.C. Silencing of flavanone-3-hydroxylase in apple (Malus× domestica Borkh.) leads to accumulation of flavanones, but not to reduced fire blight susceptibility. Plant Physiol. Biochem. 2012, 51, 18–25. [Google Scholar] [CrossRef]
- Vrancken, K.; Holtappels, M.; Schoofs, H.; Deckers, T.; Valcke, R. Pathogenicity and infection strategies of the fire blight pathogen Erwinia amylovora in Rosaceae: State of the art. Microbiology 2013, 159, 823–832. [Google Scholar] [CrossRef] [PubMed]
- Du, D.; Wang, Z.; James, N.R.; Voss, J.E.; Klimont, E.; Ohene-Agyei, T.; Venter, H.; Chiu, W.; Luisi, B.F. Structure of the AcrAB–TolC multidrug efflux pump. Nature 2014, 509, 512–515. [Google Scholar] [CrossRef] [Green Version]
- Al-Salih, D.A.A.K.; Aziz, F.M.; Mshimesh, B.A.R.; Jehad, M.T. Antibacterial effects of vitamin E: In vitro study. J. Biotechnol. Res. Cent. 2013, 7, 17–23. [Google Scholar]
- Baran, R.; Thomas, L. Combination of fluconazole and alpha-tocopherol in the treatment of yellow nail syndrome. J. Drugs Dermatol. 2009, 8, 276–278. [Google Scholar]
- Pejin, B.; Savic, A.; Sokovic, M.; Glamoclija, J.; Ciric, A.; Nikolic, M.; Radotic, K.; Mojovic, M. Further in vitro evaluation of antiradical and antimicrobial activities of phytol. Nat. Prod. Res. 2014, 28, 372–376. [Google Scholar] [CrossRef]
- Buzón-Durán, L.; Langa-Lomba, N.; González-García, V.; Casanova-Gascón, J.; Martín-Gil, J.; Pérez-Lebeña, E.; Martín-Ramos, P. On the applicability of chitosan oligomers-amino acid conjugate complexes as eco-friendly fungicides against grapevine trunk pathogens. Agronomy 2021, 11, 324. [Google Scholar] [CrossRef]
- Langa-Lomba, N.; Buzón-Durán, L.; Martín-Ramos, P.; Casanova-Gascón, J.; Martín-Gil, J.; Sánchez-Hernández, E.; González-García, V. Assessment of conjugate complexes of chitosan and Urtica dioica or Equisetum arvense extracts for the control of grapevine trunk pathogens. Agronomy 2021, 11, 976. [Google Scholar] [CrossRef]
- Santos-Moriano, P.; Fernandez-Arrojo, L.; Mengibar, M.; Belmonte-Reche, E.; Peñalver, P.; Acosta, F.N.; Ballesteros, A.O.; Morales, J.C.; Kidibule, P.; Fernandez-Lobato, M.; et al. Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. Biocatal. Biotransform. 2017, 36, 57–67. [Google Scholar] [CrossRef] [Green Version]
- Buzón-Durán, L.; Martín-Gil, J.; Pérez-Lebeña, E.; Ruano-Rosa, D.; Revuelta, J.L.; Casanova-Gascón, J.; Ramos-Sánchez, M.C.; Martín-Ramos, P. Antifungal agents based on chitosan oligomers, ε-polylysine and Streptomyces spp. secondary metabolites against three Botryosphaeriaceae species. Antibiotics 2019, 8, 99. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Laere, K.; Van Huylenbroeck, J.M.; Van Bockstaele, E. Interspecific hybridisation between Hibiscus syriacus, Hibiscus sinosyriacus and Hibiscus paramutabilis. Euphytica 2007, 155, 271–283. [Google Scholar] [CrossRef]
- Winters, H.F. Our hardy Hibiscus species as ornamentals. Econ. Bot. 1970, 24, 155–164. [Google Scholar] [CrossRef]
- Punasiya, R.; Devre, K.; Pillai, S. Pharmacognostic and pharmacological overview on Hibiscus syriacus L. Int. J. Pharm. Life Sci. 2014, 5, 3617–3621. [Google Scholar]
- Martin, M.T.; Cobos, R. Identification of fungi associated with grapevine decline in Castilla y León (Spain). Phytopathol. Mediterr. 2007, 46, 18–25. [Google Scholar]
- Talwalkar, A.T. IGT/DOE Coal-Conversion Systems Technical Data Book; Institute of Gas Technology: Chicago, IL, USA, 1981; p. 23. [Google Scholar]
- Dudonné, S.; Vitrac, X.; Coutière, P.; Woillez, M.; Mérillon, J.M. Comparative study of antioxidant properties and total phenolic content of 30 plant extracts of industrial interest using DPPH, ABTS, FRAP, SOD, and ORAC assays. J. Agric. Food Chem. 2009, 57, 1768–1774. [Google Scholar] [CrossRef]
- CLSI. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 11th ed.; CLSI Standard M07; Clinical and Laboratory Standards Institute: Wayne, PA, USA, 2018. [Google Scholar]
- Arendrup, M.C.; Cuenca-Estrella, M.; Lass-Flörl, C.; Hope, W. EUCAST technical note on the EUCAST definitive document EDef 7.2: Method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for yeasts EDef 7.2 (EU-CAST-AFST). Clin. Microbiol. Infect. 2012, 18, E246–E247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Levy, Y.; Benderly, M.; Cohen, Y.; Gisi, U.; Bassand, D. The joint action of fungicides in mixtures: Comparison of two methods for synergy calculation. EPPO Bull. 1986, 16, 651–657. [Google Scholar] [CrossRef]
Part of the Plant | C | H | N | S | C/N Ratio |
---|---|---|---|---|---|
Flowers | 42.78% | 6.4% | 2.78% | 0.21% | 15.4 |
Leaves | 34.38% | 6.3% | 2.21% | 0.07% | 15.6 |
Part of the Plant | Assignment | |
---|---|---|
Flower | Leaves | |
3289 | 3335 | Bonded O-H stretching (cellulose) |
2919 | 2917 | –CH2 asymmetric stretching of alkyls (cutine, wax, pectin, fatty acids, and fatty alcohols) |
2850 | 2849 | –CH2 symmetric stretching (cutine and wax, fatty acids, and fatty alcohols) CH2–(C6)—bending (cellulose) |
1734 | 1734 | C=O stretching of alkyl ester; and C=O lactone |
1634 | C=C in coumarin derivatives; amide I/C=O stretch (hemicellulose, bonded ketones, quinones…). | |
1607 | Aromatic C–C and C=C skeletal stretching; COO—antisymmetric stretching (polygalacturonic and pectin ester); and C=N | |
1544 | Amide II/Aromatic skeletal. Typical of carotenoids. | |
1441 | 1443 1417 | C=C stretching, aromatics H2O vapor; O–CH3 stretching; and C–H bending of CH2 or CH3 |
1373 1317 | 1369 1316 | |
C–H (cellulose) | ||
1242 | 1240 | Amide III/C–C–O asymmetric stretching acetylated glucomannan; C–O stretching of aryl ether; and C–O and OH of COOH groups |
1147 | 1147 | C–O–C in bridge asymmetric (cellulose); C–C in plane (β-carotene) |
1100 | 1103 | C–O–C stretching in the pyranose ring skeletal (cellulose) |
1033 | 1050 | C–H bending vibrations in of planes. |
1019 | C–H bending (typical of carotenes); polygalacturonic acid (a variety of pectin in plant cuticles), and pectins. Typical of cyclopropenoid grouping | |
719 | 720 | CH2 rocking |
Peak | Rt (min) | Area (%) | Assignments |
---|---|---|---|
3 | 5.085 | 1.56 | 2-cyclopenten-1-one, 2-hydroxy |
6 | 6.156 | 1.95 | 2-pentanone, 4-hydroxy |
7 | 6.954 | 1.31 | propanal, 2-methyl-, dimethylhydrazone |
8 | 7.563 | 1.32 | 3H-pyrazol-3-one, 2,4-dihydro-2,4,5-trimethyl- |
9 | 7.753 | 1.24 | pentanal |
11 | 8.561 | 4.15 | 2,3-dihydro-3,5-dihydroxy-6-methyl-4H-pyran-4-one (or DDMP-4-one) |
12 | 8.887 | 0.65 | 5,6-epoxy-6-methyl-2-heptanone |
14 | 9.778 | 2.57 | 5-hydroxymethylfurfural |
15 | 10.319 | 0.82 | nonanoic acid |
17 | 12.836 | 1.00 | methylparaben |
19 | 18.026 | 2.59 | hexadecanoic acid, methyl ester |
20 | 18.415 | 5.32 | n-hexadecanoic acid |
21 | 19.666 | 3.61 | 9,12-octadecadienoic acid, methyl ester |
22 | 19.730 | 2.41 | 9,12,15-octadecatrienoic acid, methyl ester |
23 | 20.036 | 1.04 | 9,12-octadecadienoic acid |
24 | 20.105 | 1.04 | 9,12,15-octadecatrienoic acid |
25 | 21.814 | 0.54 | 9,12-octadecadienoic acid, methyl ester |
28 | 23.055 | 1.69 | tetracosane |
29 | 23.177 | 1.67 | hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester |
30 | 24.399 | 1.46 | 1-tetracosanol |
32 | 24.564 | 7.08 | heptacosane |
35 | 25.538 | 0.61 | squalene |
36 | 25.830 | 4.76 | 1-tetracosanol |
37 | 25.884 | 4.92 | 1-tetracosanol |
38 | 25.966 | 15.27 | 1-heptacosanol |
40 | 26.653 | 2.04 | Z-12-pentacosene |
Peak | Rt (min) | Area (%) | Assignments |
---|---|---|---|
1 | 6.078 | 2.51 | urea, (1,1-dimethylethyl)- |
4 | 17.154 | 2.87 | phytol, acetate |
7 | 18.021 | 1.86 | hexadecanoic acid, methyl ester |
8 | 18.396 | 2.38 | n-hexadecanoic acid |
9 | 19.662 | 2.49 | 9,12-octadecadienoic acid, methyl ester |
10 | 19.725 | 2.49 | 9,12,15-octadecatrienoic acid, methyl ester |
11 | 19.842 | 9.03 | phytol |
13 | 23.055 | 1.13 | pentacosane |
14 | 23.177 | 3.09 | hexadecanoic acid, 2-hydroxy-1-(hydroxymethyl)ethyl ester |
15 | 24.555 | 3.85 | heptacosane |
16 | 24.618 | 1.42 | 9,12,15-octadecatrien-1-ol |
17 | 25.538 | 2.96 | squalene |
18 | 25.957 | 3.87 | octadecane |
20 | 28.002 | 15.97 | vitamin E |
21 | 29.092 | 1.63 | campesterol |
22 | 29.448 | 1.66 | stigmasterol |
23 | 30.154 | 5.75 | sitosterol |
25 | 31.575 | 1.16 | vitamin E |
26 | 31.867 | 23.05 | 3,4-dihydro-4,4,6,8-tetramethyl-coumarin (or 4,4,6,8-tetramethyl-2-chromanone) |
27 | 32.111 | 2.11 | 6-isopropenyl-4,8a-dimethyl-3,5,6,7,8,8a-hexahydro-2(1H)-naphthalenone |
28 | 32.802 | 3.46 | selina-6-en-4-ol |
Pathogen | Compound | Concentration (μg·mL−1) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
62.5 | 93.75 | 125 | 187.5 | 250 | 375 | 500 | 750 | 1000 | 1500 | ||
E. amylovora | COS | + | + | + | + | + | + | + | + | + | − |
Flower extract | + | + | + | + | + | + | + | − | − | − | |
Leaf extract | + | + | + | + | + | + | + | + | − | − | |
Heptacosanol | + | + | + | + | + | + | + | + | + | − | |
DHTMC | + | + | + | + | + | + | + | + | − | − | |
Vitamin E | + | + | + | + | + | + | + | − | − | − | |
COS–Flower extract | + | + | + | + | + | + | − | − | − | − | |
COS–Leaf extract | + | + | + | + | + | − | − | − | − | − | |
COS–Heptacosanol | + | + | + | + | + | + | + | + | − | − | |
COS–DHTMC | + | + | + | + | + | + | − | − | − | − | |
COS–Vitamin E | + | + | + | + | - | - | - | - | - | - | |
E. vitivora | COS | + | + | + | + | + | + | + | + | + | − |
Flower extract | + | + | + | + | + | + | − | − | − | − | |
Leaf extract | + | + | + | + | + | + | + | + | + | − | |
Heptacosanol | + | + | + | + | + | + | − | − | − | − | |
DHTMC | + | + | + | + | + | + | + | − | − | − | |
Vitamin E | + | + | + | + | + | + | − | − | − | − | |
COS–Flower extract | + | + | + | + | − | − | − | − | − | − | |
COS–Leaf extract | + | + | + | + | + | + | − | − | − | − | |
COS–Heptacosanol | + | + | + | − | − | − | − | − | − | − | |
COS–DHTMC | + | + | + | − | − | − | − | − | − | − | |
COS–Vitamin E | + | + | + | + | - | - | - | - | - | - |
EC | COS | Flower Extract | COS–Flower Extract | Leaf Extract | COS–Leaf Extract | Hepta | COS–Hepta | DHTMC | COS–DHTMC | Vit. E | COS–Vit. E |
---|---|---|---|---|---|---|---|---|---|---|---|
EC50 | 744.4 | 834.7 | 753.1 | 1053.3 | 301.0 | 187.6 | 122.4 | 452.1 | 217.7 | 237.3 | 217.4 |
EC90 | 1179.9 | 1530.5 | 975.8 | 2376.0 | 603.5 | 378.3 | 221.0 | 608.3 | 484.9 | 479.4 | 406.1 |
EC | COS–Flower Extract | COS–Leaf Extract | COS–Heptacosanol | COS–DHTMC | COS–Vitamin E |
---|---|---|---|---|---|
EC50 | 1.07 | 2.90 | 2.45 | 2.58 | 0.89 |
EC90 | 1.37 | 2.61 | 2.59 | 1.66 | 3.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Hernández, E.; Buzón-Durán, L.; Lorenzo-Vidal, B.; Martín-Gil, J.; Martín-Ramos, P. Physicochemical Characterization and Antimicrobial Activity against Erwinia amylovora, Erwinia vitivora, and Diplodia seriata of a Light Purple Hibiscus syriacus L. Cultivar. Plants 2021, 10, 1876. https://doi.org/10.3390/plants10091876
Sánchez-Hernández E, Buzón-Durán L, Lorenzo-Vidal B, Martín-Gil J, Martín-Ramos P. Physicochemical Characterization and Antimicrobial Activity against Erwinia amylovora, Erwinia vitivora, and Diplodia seriata of a Light Purple Hibiscus syriacus L. Cultivar. Plants. 2021; 10(9):1876. https://doi.org/10.3390/plants10091876
Chicago/Turabian StyleSánchez-Hernández, Eva, Laura Buzón-Durán, Belén Lorenzo-Vidal, Jesús Martín-Gil, and Pablo Martín-Ramos. 2021. "Physicochemical Characterization and Antimicrobial Activity against Erwinia amylovora, Erwinia vitivora, and Diplodia seriata of a Light Purple Hibiscus syriacus L. Cultivar" Plants 10, no. 9: 1876. https://doi.org/10.3390/plants10091876
APA StyleSánchez-Hernández, E., Buzón-Durán, L., Lorenzo-Vidal, B., Martín-Gil, J., & Martín-Ramos, P. (2021). Physicochemical Characterization and Antimicrobial Activity against Erwinia amylovora, Erwinia vitivora, and Diplodia seriata of a Light Purple Hibiscus syriacus L. Cultivar. Plants, 10(9), 1876. https://doi.org/10.3390/plants10091876