Traditional Uses, Nutritional and Pharmacological Potentials of Clerodendrum volubile
Abstract
:1. Introduction
2. Methodology
3. Traditional Uses of C. volubile
4. Nutritional Compositions of C. volubile
5. Bioactive Compounds Responsible for the Biological Activities
6. Pharmacological Potentials of C. volubile
6.1. Anticancer Activity
6.2. Antioxidant Activity
6.3. Antimicrobial Activity
6.4. Neuroprotective Activity
6.5. Antiviral Activity
6.6. Anti-Inflammatory Activity
6.7. Hepatoprotective Activity
6.8. Antidiabetic Activity
6.9. Anti-Hypertension Activity
6.10. Other Relevant Activities
7. Safety Concerns Regarding the Use of the Plant (Toxicity Studies)
8. Future Perspectives and Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Afolabi, S.; Olorundare, O.; Gyebi, G.; Syed, D.N.; Mukhtar, H.; Albrecht, R.; Koketsu, M. Cytotoxic potentials of Clerodendrum volubile against prostate cell lines and its possible proteomic targets. J. Clin. Nutr. Food Sci. 2019, 2, 46–53. [Google Scholar]
- Mohsenzadegan, M.; Seif, F.; Farajollahi, M.M.; Khoshmirsafa, M. Anti-oxidants as chemopreventive agents in prostate cancer: A gap between preclinical and clinical studies. Recent Pat. Anti-Cancer Drug Discov. 2018, 13, 224–239. [Google Scholar] [CrossRef] [PubMed]
- Apata, J.T.; Ogunleye, S.G.; Ogunbiyi, O.J.; Babalola, O.O. GC-MS Analysis and Phytochemical Screening of n-Hexane Fraction Constituents from the Leaf of Clerodendrum volubile P. Beauv. Inter. J. Biosci. Technol. 2017, 10, 80. [Google Scholar]
- Govender, L.; Pillay, K.; Siwela, M.; Modi, A.; Mabhaudhi, T. Food and nutrition insecurity in selected rural communities of KwaZulu-Natal, South Africa—Linking human nutrition and Agriculture. Int. J. Environ. Res. Public Health 2017, 14, 17. [Google Scholar] [CrossRef] [Green Version]
- Kamal, Z.; Bairage, J.J.; Moniruzzaman, D.P.; Islam, M.T.; Faruque, M.O.; Islam, M.R.; Paul, P.K.; Islam, M.A.; Rahmatullah, M. Ethnomedicinal practices of a folk of medicinal practitioner in Pabna district, Bangladesh. World J. Pharm. Sci. 2014, 3, 73–85. [Google Scholar]
- Maseko, I.; Mabhaudhi, T.; Tesfay, S.; Araya, H.T.; Fezzehazion, M.; Du Plooy, C.P. African Leafy Vegetables: A review of status, production and utilization in South Africa. Sustainability 2017, 10, 16. [Google Scholar] [CrossRef] [Green Version]
- Oguntibeju, O.O.; Aboua, Y.G.; Kachepe, P. Possible therapeutic effects of vindoline on testicular and epididymal function in diabetes-induced oxidative stress male Wistar rats. Heliyon 2020, 6, e03817. [Google Scholar] [CrossRef]
- Oreagba, I.A.; Oshikoya, K.A.; Amachree, M. Herbal medicine use among urban residents in Lagos, Nigeria. BMC Complement. Altern. Med. 2011, 11, 117. [Google Scholar] [CrossRef] [Green Version]
- Payyappallimana, U. Role of traditional medicine in primary healthcare: An overview of perspectives and challenging. Yokohama J. Social Sci. 2010, 14, 58–77. [Google Scholar]
- Devadas, R.P.; Saroja, S. Availability of Fe and â-carotene from Amaranthus to children. In Proceeding of the 2nd Amaranthus Conference; Emmaus, P., Ed.; Rodala Press Inc.: Emmaus, PA, USA, 1980; pp. 15–21. [Google Scholar]
- Ejoh, A.R.; Mbiapo, F.T.; Fokou, E. Nutrient composition of the leaves and flowers of Colocasia esculenta and the fruits of Solanum melongena. Plant Foods Hum. Nutr. 1996, 49, 107–112. [Google Scholar] [CrossRef]
- Amole, O.O.; Akinyede, A.A.; Alo, K.T. Antinociceptive and antiinflammatory activities of the hydroethanolic extract of Clerodendrum volubile leaf. J. Basic Pharmacol. Toxicol. 2018, 2, 22–28. [Google Scholar]
- Wines, M. Malnutrition is cheating its survivors and Africa’s future. The New York Times, 28 December 2006. [Google Scholar]
- Ogunwa, T.H.; Ajiboye, S.A.; Sholanke, D.R.; Awe, O.B.; Ademoye, T.A.; Oloye, O.B.; Ilesanmi, O.C. Nutritional evaluation of Clerodendrum volubile (Marugbo) leaves. Asian J. Plant Sci. Res. 2015, 5, 26–31. [Google Scholar]
- Adefegha, S.A.; Oboh, G. Cooking enhances the antioxidant properties of some tropical green leafy vegetables. Afr. J. Biotechnol. 2011, 10, 632–639. [Google Scholar]
- Molehin, O.R.; Oloyede, O.I.; Boligon, A.A. Comparative study on the phenolic content, antioxidant properties and HPLC fingerprinting of the leaf extracts of Clerodendrum volubile P. Beauv. J. Appl. Pharm. Sci. 2017, 7, 135–140. [Google Scholar]
- Ajao, A.A.; Oseni, O.M.; Oladipo, O.T.; Adams, Y.A.; Mukaila, Y.O.; Ajao, A.A. Clerodendrum volubile P. Beauv (Lamiaceae), an underutilized indigenous vegetable of utmost nutritive and pharmacological importance. Beni-Seuf Univ. J. Appl. Sci. 2018, 7, 606–611. [Google Scholar] [CrossRef]
- Adefegha, S.A.; Oboh, G. Antioxidant and inhibitory properties of Clerodendrum volubile leaf extracts on key enzymes relevant to non-insulin dependent diabetes mellitus and hypertension. J. Taibah Univ. Sci. 2016, 10, 521–533. [Google Scholar] [CrossRef] [Green Version]
- Park, K. Role of Micronutrients in Skin Health and Function. Biomol. Ther. 2015, 23, 207–217. [Google Scholar] [CrossRef] [Green Version]
- Erukainure, O.L.; Oke, O.V.; Ajiboye, A.J.; Okafor, O.Y. Nutritional qualities and phytochemical constituents of Clerodendrum volubile, a tropical non-conventional vegetable. Int. Food Res. J. 2011, 18, 1393. [Google Scholar]
- Kumar, M.; Puri, S.; Pundir, A.; Bangar, S.; Changan, S.; Choudhary, P.; Parameswari, E.; Alhariri, A.; Samota, M.; Singh, S.; et al. Evaluation of nutritional, phytochemical, and mineral composition of selected medicinal plants for therapeutic uses from cold desert of Western Himalaya. Plants 2021, 10, 1429. [Google Scholar] [CrossRef]
- MacNee, W. Treatment of stable COPD: Antioxidants. Eur. Respir. Rev. 2005, 14, 12–22. [Google Scholar] [CrossRef]
- Fred-Jaiyesimi, A.; Adekoya, A. Pharmacognostic studies and anti-inflammatory activities of Clerodendrum volubile P Beauv leaf. Int. J. Phytomed. 2012, 4, 414–418. [Google Scholar]
- Ogunwa, T.H.; Adeyelu, T.T.; Fasimoye, R.; Oyewale, M.B.; Ademoye, T.A.; Ilesanmi, O.C.; Awe, O.B.; Ajiboye, S.A.; Oloye, B.O.; Sholanke, D.R. Phytochemical evaluation and in vitro antioxidant status of Clerodendrum volubile (An indigenous medicinal plant). Pak. J. Pharm. Res. 2016, 2, 77. [Google Scholar] [CrossRef]
- Erukainure, O.L.; Sanni, O.; Islam, M.S. Clerodendrum volubile: Phenolics and applications to health. In Polyphenols: Mechanisms of Action in Human Health and Disease; Academic Press: Cambridge, MA, USA, 2018; pp. 53–68. [Google Scholar]
- Erukainure, O.L.; Mesaik, M.A.; Atolani, O.; Muhammad, A.; Chukwuma, C.; Islam, S. Pectolinarigenin from the leaves of Clerodendrum volubile shows potent immunomodulatory activity by inhibiting T−cell proliferation and modulating respiratory oxidative burst in phagocytes. Biomed. Pharmacother. 2017, 93, 529–535. [Google Scholar] [CrossRef] [PubMed]
- Erukainure, O.L.; Zaruwa, M.Z.; Choudhary, M.I.; Naqvi, S.A.; Ashraf, N.; Hafizur, R.M.; Muhammad, A.; Ebuehi, O.A.T.; Elemo, G.N. Dietary fatty acids from leaves of Clerodendrum volubile induce cell cycle arrest, downregulate matrix metalloproteinase-9 expression, and modulate redox status in human breast cancer. Nutr. Cancer 2016, 68, 634–645. [Google Scholar] [CrossRef] [PubMed]
- Ugbaja, R.N.; Akinhanmi, T.F.; James, A.S.; Ugwor, E.I.; Babalola, A.A.; Ezenandu, E.O.; Ugbaja, V.C.; Emmanuel, E.A. Flavonoid-rich fractions from Clerodendrum volubile and Vernonia amygdalina extenuates arsenic-invoked hepato-renal toxicity via augmentation of the antioxidant system in rats. Clin. Nutr. Open Sci. 2021, 35, 12–25. [Google Scholar] [CrossRef]
- Senjobi, C.; Fasola, T.; Aziba, P. Phytochemical and analgesic evaluation of methanol leaf extract of Clerodendrum volubile Linn. Ife J. Sci. 2017, 19, 141. [Google Scholar] [CrossRef] [Green Version]
- Erukainure, O.L.; Hafizur, R.M.; Kabir, N.; Choudhary, M.I.; Atolani, O.; Banerjee, P.; Preissner, R.; Chukwuma, C.; Muhammad, A.; Amonsou, E.; et al. Suppressive Effects of Clerodendrum volubile P Beauv. [Labiatae] methanolic extract and its fractions on type 2 diabetes and its complications. Front. Pharmacol. 2018, 9, 8. [Google Scholar] [CrossRef]
- Yu, M.; Gouvinhas, I.; Rocha, J.; Barros, A.I.R.N.A. Phytochemical and antioxidant analysis of medicinal and food plants towards bioactive food and pharmaceutical resources. Sci. Rep. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Ciz, M.; Pavelková, M.; Gallová, L.; Králová, J.; Kubala, L.; Lojek, A. The influence of wine polyphenols on reactive oxygen and nitrogen species production by murine macrophages RAW 264.7. Physiol. Res. 2008, 57, 393. [Google Scholar] [CrossRef]
- Pereira, D.; Valentão, P.; Pereira, J.A.; Andrade, P. Phenolics: From Chemistry to Biology. Molecules 2009, 14, 2202–2211. [Google Scholar] [CrossRef]
- Jomova, K.; Valko, M. Advances in metal-induced oxidative stress and human disease. Toxicology 2011, 283, 65–87. [Google Scholar] [CrossRef]
- Yang, C.S.; Landau, J.M.; Huang, M.T.; Newmark, H.L. Inhibition of carcinogenesis by dietary polyphenolic compounds. Annu. Rev. Nutr. 2001, 21, 381–406. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khan, M.; Rahman, M.M.; Tania, M.; Uddin, M.; Ahmed, S. Pleurotussajor caju and Pleurotus florida mushrooms improve some extent of the antioxidant systems in the liver of hypercholesterolemic rats. Open Nutraceuticals J. 2011, 4, 20–24. [Google Scholar] [CrossRef] [Green Version]
- Khatua, S.; Paul, S.; Acharya, K. Mushroom as the potential source of new generation of antioxidant: A review. Res. J. Pharm. Technol. 2013, 6, 496–505. [Google Scholar]
- Mujić, I.; Zeković, Z.; Lepojević, Ž.; Vidović, S.; Živković, J. Antioxidant properties of selected edible mushroom species. J. Cent. Eur. Agric. 2010, 11, 387–392. [Google Scholar]
- Zihad, S.M.N.K.; Gupt, Y.; Uddin, S.J.; Islam, M.T.; Alam, R.; Aziz, S.; Hossain, M.; Shilpi, J.A.; Nahar, L.; Sarker, S.D. Nutritional value, micronutrient and antioxidant capacity of some green leafy vegetables commonly used by southern coastal people of Bangladesh. Heliyon 2019, 5, e02768. [Google Scholar] [CrossRef] [Green Version]
- Bello, M.; Amusan, T.; Oladeji, O. Proximate, vitamin assays and anti-oxidant properties of an underutilised indigenous vegetable Heliotropium indicum L. (Lamiales: Boraginaceae) in West Africa in enhancing diet diversification. Rev. Bras. Gestão Ambient. Sustentabilidade 2016, 3, 337–353. [Google Scholar] [CrossRef] [Green Version]
- Khyade, M.S.; Vaikos, N.P. Wrightia tinctoria R. Br.—A review on its ethnobotany, pharmacognosy and pharmacological profile. J. Coast Life Med. 2014, 2, 826–840. [Google Scholar]
- Oboh, G.; Ogunruku, O.; Oyeleye, S.I.; Olasehinde, T.A.; Ademosun, A.O.; Boligon, A.A. Phenolic Extracts from Clerodendrum volubile leaves inhibit cholinergic and monoaminergic enzymes relevant to the management of some neurodegenerative diseases. J. Diet. Suppl. 2016, 14, 358–371. [Google Scholar] [CrossRef] [PubMed]
- Greenwell, M.; Rahman, P. Medicinal plants: Their use in anticancer treatment. Int. J. Pharm. Sci. Res. 2015, 6, 4103–4112. [Google Scholar] [CrossRef] [PubMed]
- Ochwang’I, D.; Kimwele, C.N.; Oduma, J.A.; Gathumbi, P.K.; Mbaria, J.M.; Kiama, S.G. Medicinal plants used in treatment and management of cancer in Kakamega County, Kenya. J. Ethnopharmacol. 2014, 151, 1040–1055. [Google Scholar] [CrossRef]
- Fridlender, M.; Kapulnik, Y.; Koltai, H. Plant derived substances with anti-cancer activity: From folklore to practice. Front. Plant Sci. 2015, 6, 799. [Google Scholar] [CrossRef]
- Erukainure, O.L.; Narainpersad, N.; Singh, M.; Olakunle, S.; Islam, S. Clerodendrum volubile inhibits key enzymes linked to type 2 diabetes but induces cytotoxicity in human embryonic kidney (HEK293) cells via exacerbated oxidative stress and proinflammation. Biomed. Pharmacother. 2018, 106, 1144–1152. [Google Scholar] [CrossRef]
- Erukainure, O.L.; Ashraf, N.; Naqvi, A.S.; Zaruwa, M.Z.; Muhammad, A.; Odusote, A.D.; Elemo, G.N. Fatty acids rich extract from Clerodendrum volubile suppresses cell migration; abates oxidative stress; and regulates cell cycle progression in glioblastoma multiforme (U87 MG) cells. Front. Pharmacol. 2018, 9, 251. [Google Scholar] [CrossRef] [PubMed]
- Sapko, O.A.; Chebonenko, O.V.; Utarbaeva, A.S.; Amirkulova, A.Z.; Tursunova, A.K. Antioxidant activity of medicinal plants from Southeastern Kazakhstan. Pharm. Chem. J. 2016, 50, 603–607. [Google Scholar] [CrossRef]
- Pizzino, G.; Irrera, N.; Cucinotta, M.; Pallio, G.; Mannino, F.; Arcoraci, V.; Squadrito, F.; Altavilla, D.; Bitto, A. Oxidative stress: Harms and benefits for human health. Oxidative Med. Cell. Longev. 2017, 2017, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Frankel, E.N.; Finley, J.W. How to standardize the multiplicity of methods to evaluate natural antioxidants. J. Agric. Food Chem. 2008, 56, 4901–4908. [Google Scholar] [CrossRef] [PubMed]
- Halliwell, B.; Gutteridge, J.M.; Cross, C.E. Free radicals, antioxidants, and human disease: Where are we now? J. Lab. Clin. Med. 1992, 119, 598–620. [Google Scholar]
- Gupta, B.; Kumar, B.; Sharma, A.; Sori, D.; Sharma, R.; Mehta, S. Nutraceuticals for Antiaging. In Nutraceuticals in Veterinary Medicine; Gupta, R.C., Srivastava, A., Lall, R., Eds.; Springer: Cham, Switzerland, 2019; pp. 383–392. [Google Scholar]
- Dhalaria, R.; Verma, R.; Kumar, D.; Puri, S.; Tapwal, A.; Kumar, V.; Nepovimova, E.; Kuca, K. Bioactive Compounds of Edible Fruits with Their Anti-Aging Properties: A Comprehensive Review to Prolong Human Life. Antioxidants 2020, 9, 1123. [Google Scholar] [CrossRef] [PubMed]
- Erukainure, L.; Oke, O.; Owolabi, F.; Adenekan, S. Antioxidant nutrient properties and antioxidant activities of Obenetete (Clerodendrum volubile), a nonconventional leafy vegetable consumed in Nigeria. Afr. J. Food Agric. Nutr. Dev. 2010, 10, 4156–4167. [Google Scholar] [CrossRef] [Green Version]
- Erukainure, O.L.; Oyebode, O.; Salau, V.F.; Koorbanally, N.A.; Islam, S. Flowers of Clerodendrum volubile modulates redox homeostasis and suppresses DNA fragmentation in Fe2+− induced oxidative hepatic and pancreatic injuries; and inhibits carbohydrate catabolic enzymes linked to type 2 diabetes. J. Diabetes Metab. Disord. 2019, 18, 513–524. [Google Scholar] [CrossRef]
- Erukainure, O.; Ebuehi, O.A.; Choudhary, I.M.; Adhikari, A.; Hafizur, R.M.; Perveen, S.; Muhammad, A.; Elemo, G.N. Iridoid Glycoside from the Leaves of Clerodendrum volubile Beauv. Shows Potent Antioxidant Activity Against Oxidative Stress in Rat Brain and Hepatic Tissues. J. Diet. Suppl. 2014, 11, 19–29. [Google Scholar] [CrossRef]
- Salahudeen, B.; Abdulazeez, B. Antioxidant Activity of the Leaf Extract of Clerodendrum volubile (Verbenaceae). Acta Sci. Pharm. Sci. 2019, 3, 8–12. [Google Scholar]
- Molehin, O.R.; Elekofehinti, O.O.; Oloyede, O.I. Evaluation of the Antidiabetic Effect of Clerodendrum volubile P. Beauv leaves: In vivo and In Silico Approach. FASEB J. 2020, 34, 1. [Google Scholar] [CrossRef]
- Yang, C.-C.; Chen, Y.-T.; Chen, C.-H.; Chiang, J.Y.; Zhen, Y.-Y.; Yip, H.-K. Assessment of doxorubicin-induced mouse testicular damage by the novel second-harmonic generation microscopy. Am. J. Transl. Res. 2017, 9, 5275–5288. [Google Scholar] [PubMed]
- Molehin, O.R.; Oloyede, O.I.; Adefegha, S.A. Streptozotocin-induced diabetes in rats: Effects of White Butterfly (Clerodendrum volubile) leaves on blood glucose levels, lipid profile and antioxidant status. Toxicol. Mech. Methods 2018, 28, 573–586. [Google Scholar] [CrossRef]
- Kifle, Z.D.; Enyew, E.F. Evaluation of in vivo antidiabetic, in vitro α-amylase inhibitory, and in vitro antioxidant activity of leaves crude extract and solvent fractions of Bersama abyssinica fresen (melianthaceae). J. Evid.-Based Integr. Med. 2020, 25, 2515690X20935827. [Google Scholar] [CrossRef]
- Ríos, J.; Recio, M. Medicinal plants and antimicrobial activity. J. Ethnopharmacol. 2005, 100, 80–84. [Google Scholar] [CrossRef]
- Zhang, R.; Eggleston, K.; Rotimi, V.; Zeckhauser, R.J. Antibiotic resistance as a global threat: Evidence from China, Kuwait and the United States. Glob. Health 2006, 2, 6. [Google Scholar] [CrossRef] [Green Version]
- Eggleston, K.; Zhang, R.; Zeckhauser, R.J. The Global Challenge of Antimicrobial Resistance: Insights from Economic Analysis. Int. J. Environ. Res. Public Health 2010, 7, 3141–3149. [Google Scholar] [CrossRef] [Green Version]
- Alviano, D.S.A.A.C.S.; Alviano, C.S. Plant Extracts: Search for New Alternatives to Treat Microbial Diseases. Curr. Pharm. Biotechnol. 2009, 10, 106–121. [Google Scholar] [CrossRef]
- Khan, U.A.; Rahman, H.; Niaz, Z.; Qasim, M.; Khan, J.; Tayyaba; Rehman, B. Antibacterial activity of some medicinal plants against selected human pathogenic bacteria. Eur. J. Microbiol. Immunol. 2013, 3, 272–274. [Google Scholar] [CrossRef] [Green Version]
- Jeff-Agboola, Y.A.; Awe, L.B. Antifungal and phytochemical screening of some Nigerian medicinal plant extracts against toxigenic Aspergillus flavus. Cogent. Food Agric. 2016, 2, 1–12. [Google Scholar] [CrossRef]
- Mattson, M.P. Metal-Catalyzed Disruption of Membrane Protein and Lipid Signaling in the Pathogenesis of Neurodegenerative Disorders. Ann. N. Y. Acad. Sci. 2004, 1012, 37–50. [Google Scholar] [CrossRef] [PubMed]
- Fu, W.; Zhuang, W.; Zhou, S.; Wang, X. Plant-derived neuroprotective agents in Parkinson’s disease. Am. J. Transl. Res. 2015, 7, 1189–1202. [Google Scholar] [PubMed]
- Olcese, J.; Cao, C.; Mori, T.; Mamcarz, M.B.; Maxwell, A.; Runfeldt, M.J.; Wang, L.; Zhang, C.; Lin, X.; Zhang, G.; et al. Protection against cognitive deficits and markers of neurodegeneration by long-term oral administration of melatonin in a transgenic model of Alzheimer disease. J. Pineal Res. 2009, 47, 82–96. [Google Scholar] [CrossRef]
- Khaldy, H.; Escames, G.; León, J.; Vives, F.; Luna, J.; Acuña-Castroviejo, D. Comparative effects of melatonin, l -deprenyl, Trolox and ascorbate in the suppression of hydroxyl radical formation during dopamine autoxidation in vitro. J. Pineal Res. 2000, 29, 100–107. [Google Scholar] [CrossRef] [Green Version]
- Camello-Almaraz, C.; Gomez-Pinilla, P.J.; Pozo, M.J.; Camello, C. Age-related alterations in Ca2+ signals and mitochondrial membrane potential in exocrine cells are prevented by melatonin. J. Pineal Res. 2008, 45, 191–198. [Google Scholar] [CrossRef]
- Floyd, R.A.; Carney, J.M. Free radical damage to protein and DNA: Mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann. Neurol. 1992, 32, S22–S27. [Google Scholar] [CrossRef] [PubMed]
- Khazdair, M.R.; Anaeigoudari, A.; Hashemzehi, M.; Mohebbati, R. Neuroprotective potency of some spice herbs, a literature review. J. Tradit. Complement. Med. 2018, 9, 98–105. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Ramassamy, C. In vitro screening of neuroprotective activity of Indian medicinal plant Withania somnifera. J. Nutr. Sci. 2017, 6, E54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ben-Shabat, S.; Yarmolinsky, L.; Porat, D.; Dahan, A. Antiviral effect of phytochemicals from medicinal plants: Applications and drug delivery strategies. Drug Deliv. Transl. Res. 2019, 10, 354–367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nováková, L.; Pavlík, J.; Chrenková, L.; Martinec, O.; Červený, L. Current antiviral drugs and their analysis in biological materials—Part II: Antivirals against hepatitis and HIV viruses. J. Pharm. Biomed. Anal. 2018, 147, 378–399. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.-K.; Ng, T.-B. A protein with antiproliferative, antifungal and HIV-1 reverse transcriptase inhibitory activities from caper (Capparis spinosa) seeds. Phytomedicine 2009, 16, 444–450. [Google Scholar] [CrossRef]
- Yarmolinsky, L.; Zaccai, M.; Ben-Shabat, S.; Mills, D.; Huleihel, M. Antiviral activity of ethanol extracts of Ficus binjamina and Lilium candidum in vitro. New Biotechnol. 2009, 26, 307–313. [Google Scholar] [CrossRef] [PubMed]
- Rafieian-Kopaei, M.; Saeedi, M.; Asgari, S.; Karimi, A.; Moradi, M.-T. Antiviral activity of Quercus persica L.: High efficacy and low toxicity. Adv. Biomed. Res. 2013, 2, 36. [Google Scholar] [CrossRef]
- Lv, J.-J.; Yu, S.; Wang, Y.-F.; Wang, D.; Zhu, H.-T.; Cheng, R.-R.; Yang, C.-R.; Xu, M.; Zhang, Y.-J. Anti-Hepatitis B Virus Norbisabolane Sesquiterpenoids from Phyllanthus acidus and the Establishment of Their Absolute Configurations Using Theoretical Calculations. J. Org. Chem. 2014, 79, 5432–5447. [Google Scholar] [CrossRef]
- Abdullahi, L.; Onyango, J.J.; Mukiira, C.; Wamicwe, J.; Githiomi, R.; Kariuki, D.; Mugambi, C.; Wanjohi, P.; Githuka, G.; Nzioka, C.; et al. Community interventions in Low—And Middle-Income Countries to inform COVID-19 control implementation decisions in Kenya: A rapid systematic review. PLoS ONE 2020, 15, e0242403. [Google Scholar] [CrossRef]
- Mitjà, O.; Clotet, B. Use of antiviral drugs to reduce COVID-19 transmission. Lancet Glob. Health 2020, 8, e639–e640. [Google Scholar] [CrossRef] [Green Version]
- Alam, S.; Kamal, T.B.; Sarker, M.R.; Zhou, J.-R.; Rahman, S.M.A.; Mohamed, I.N. Therapeutic Effectiveness and Safety of Repurposing Drugs for the Treatment of COVID-19: Position Standing in 2021. Front. Pharmacol. 2021, 12, 659577. [Google Scholar] [CrossRef]
- Shi, Y.; Wang, Y.; Shao, C.; Huang, J.; Gan, J.; Huang, X.; Bucci, E.; Piacentini, M.; Ippolito, G.; Melino, G. COVID-19 infection: The perspectives on immune responses. Cell Death Differ. 2020, 27, 1451–1454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erukainure, O.L.; Atolani, O.; Muhammad, A.; Katsayal, S.B.; Ebhuoma, O.O.; Ibeji, C.U.; Mesaik, M.A. Targeting the initiation and termination codons of SARS-CoV-2 spike protein as possible therapy against COVID-19: The role of novel harpagide 5-O-β-D-glucopyranoside from Clerodendrum volubile P Beauv. (Labiatae). J. Biomol. Struct. Dyn. 2020, 3, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Hou, Y.; Shen, J.; Huang, Y.; Martin, W.; Cheng, F. Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discov. 2020, 6, 14–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olarenwaju, O.; Apata, J.T.; Akinpelu, B.O.; Akomolafe, R.O.; Oyemitan, I.A.; Asaolu, F.T.; Ologe, M.O.; Iwalewa, E.O. Anti-inflammatory potentials, membrane stabilizing and xanthine oxidase inhibitory activities of Clerodendrum volibule ethanolic leaf extract on carragenaan-induced inflammation in rats. Int. J. Pharmacol. Toxicol. 2018, 6, 7–11. [Google Scholar]
- Kindt, T.J.; Goldsby, R.A.; Osborne, B.A.; Kuby, J. Kuby Immunology, 6th ed.; W.H. Freemann and Company: New York, NY, USA, 2004. [Google Scholar]
- Iwalewa, E.O.; McGaw, L.J.; Naidoo, V.; Eloff, J.N. Inflammation: The foundation of diseases and disorders. A review of phytomedicines of South African origin used to treat pain and inflammatory conditions. Afr. J. Biotechnol. 2007, 6, 2868–2885. [Google Scholar]
- Pacher, P.; Nivorozhkin, A.; Szabó, C. Therapeutic Effects of Xanthine Oxidase Inhibitors: Renaissance Half a Century after the Discovery of Allopurinol. Pharmacol. Rev. 2006, 58, 87–114. [Google Scholar] [CrossRef]
- Mohapatra, S.; Kabiraj, P.; Agarwal, T.; Asthana, S.; Annamalai, N.; Arsad, H.; Siddiqui, M.H.; Khursheed, A. Targeting jatropha derived phytochemicals to inhibit the xanthine oxidase & cyclooxygenase-2: In silico analysis towards gout treatment. Int. J. Pharm. Pharm. Sci. 2015, 7, 360–363. [Google Scholar]
- Oyedapo, O.O.; Akinpelu, B.A.; Orefuwa, S.O. Anti-inflammatory effect of Theobroma cacao, L. root extract. J. Trop. Med. Plants (Malaysia) 2004, 5, 161–166. [Google Scholar]
- Oguntibeju, O.O. Medicinal plants with anti-inflammatory activities from selected countries and regions of Africa. J. Inflamm. Res. 2018, 11, 307–317. [Google Scholar] [CrossRef] [Green Version]
- Gupta, M.; Mazumder, U.K.; Kumar, T.S.; Gomathi, P.; Kumar, R.S. Antioxidant and hepatoprotective effects of Bauhinia racemosa against paracetamol and carbon tetrachloride induced liver damage in rats. Iran. J. Pharmacol. Ther. 2004, 3, 12–20. [Google Scholar]
- Ali, S.A.; Sharief, N.H.; Mohamed, Y.S. Hepatoprotective Activity of Some Medicinal Plants in Sudan. Evidence-Based Complement. Altern. Med. 2019, 2019, 2196315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Adamu, B.A.; Emiru, Y.K.; Sintayehu, B.; Araya, E.M.; Periasamy, G.; Hiben, M.G. In vivo Hepatoprotective and in vitro Radical Scavenging Activities of Extracts of Rumex abyssinicus Jacq. Rhizome. J. Exp. Pharmacol. 2020, 12, 221–231. [Google Scholar] [CrossRef] [PubMed]
- Krithika, R.; Verma, R.J. Solanum nigrum confers protection against CCl4-induced experimental hepatotoxicity by increasing hepatic protein synthesis and regulation of energy metabolism. Clin. Phytoscience 2019, 5, 1. [Google Scholar] [CrossRef] [Green Version]
- Tung, B.T.; Hai, N.T.; Hue, P.T.M.; Huong, L.T.; Huong, D.T.; Duc, L.V. Protective effect of Tetracera scandens L leaf extract against CCl4-induced acute liver injury in rats. Asian Pac. J. Trop. Biomed. 2015, 5, 221–227. [Google Scholar]
- Ajayi, E.I.O.; Modo, E.U.; Kiakubu, O.T.; Molehin, O.R. Diabetes Care and Wound Healing Using Nauclea latifolia Manihot esculenta, and Other Natural Products. In Bioactive Food as Dietary Interventions for Diabetes; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar] [CrossRef]
- WHO. Global Report on Diabetes; World Health Organization: Geneva, Switzerland, 2016. [Google Scholar]
- Telagari, M.; Hullatti, K. In-vitro α-amylase and α-glucosidase inhibitory activity of Adiantum caudatum Linn. and Celosia argentea Linn. extracts and fractions. Indian J. Pharmacol. 2015, 47, 425–429. [Google Scholar]
- Yin, Z.; Zhang, W.; Feng, F.; Zhang, Y.; Kang, W. α-Glucosidase inhibitors isolated from medicinal plants. Food Sci. Hum. Wellness 2014, 3, 136–174. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Li, Y.; Zhang, X.; Lei, Y.; Ding, W.; Zhao, X.; Wang, H.; Song, X.; Yao, Q.; Zhang, Y.; et al. Synthesis, a-glucosidase inhibitory and molecular docking studies of prenylated and geranylated flavones, isoflavones and chalcones. Bioorg. Med. Chem. Lett. 2015, 25, 4567–4571. [Google Scholar] [CrossRef]
- Robertson, R.P.; Harmon, J.S. Pancreatic islet β-cell and oxidative stress: The importance of glutathione peroxidase. FEBS Lett. 2007, 581, 3743–3748. [Google Scholar] [CrossRef] [Green Version]
- Adiels, M.; Olofsson, S.-O.; Taskinen, M.-R.; Borén, J. Overproduction of Very Low–Density Lipoproteins Is the Hallmark of the Dyslipidemia in the Metabolic Syndrome. Arter. Thromb. Vasc. Biol. 2008, 28, 1225–1236. [Google Scholar] [CrossRef]
- Constantino, M.I.; Molyneaux, L.; Limacher-Gisler, F.; Al-Saeed, A.; Luo, C.; Wu, T.; Twigg, S.M.; Yue, D.K.; Wong, J. Long-Term Complications and Mortality in Young-Onset Diabetes: Type 2 diabetes is more hazardous and lethal than type 1 diabetes. Diabetes Care 2013, 36, 3863–3869. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, B.K.; Pandey, K.B.; Abidi, A.B.; Rizvi, S.I. Markers of Oxidative Stress during Diabetes Mellitus. J. Biomark. 2013, 2013, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Patel, D.K.; Prasad, S.K.; Kumar, R.; Hemalatha, S. An overview on antidiabetic medicinal plants having insulin mimetic property. Asian Pac. J. Trop. Biomed. 2012, 2, 320–330. [Google Scholar] [CrossRef] [Green Version]
- Chikezie, P.; Ojiako, O.; Nwufo, K. Overview of anti-diabetic medicinal plants: The Nigerian research experience. J. Diabetes Metab. 2015, 6, 546. [Google Scholar] [CrossRef]
- Saeed, N.; Khan, M.R.; Shabbir, M. Antioxidant activity, total phenolic and total flavonoid contents of whole plant extracts Torilis leptophylla L. BMC Complement. Altern. Med. 2012, 12, 221. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Erukainure, O.L.; Ebuehi, O.A.; Adeboyejo, F.O.; Okafor, E.N.; Muhammad, A.; Elemo, G.N. Fiber-enriched biscuit enhances insulin secretion, modulates β-cell function, improves insulin sensitivity, and attenuates hyperlipidemia in diabetic rats. PharmaNutrition 2013, 1, 58–64. [Google Scholar] [CrossRef]
- Erukainure, O.L.; Zaruwa, M.Z.; Mesaik, A.M.; Muhammad, A.; Adoga, J.O.; Ogunyemi, I.O.; Ebuehi, O.A.; Elemo, G.N. Suppression of phagocytic oxidative burst, cytotoxic effect, and computational prediction of oral toxicity of dietary fatty acids of Clerodendrum volubile stem. Comp. Haematol. Int. 2017, 26, 663–671. [Google Scholar] [CrossRef]
- Erukainure, O.L.; Hafizur, R.M.; Choudhary, M.I.; Adhikari, A.; Mesaik, A.M.; Atolani, O.; Banerjee, P.; Preissner, R.; Muhammad, A.; Islam, S. Anti-diabetic effect of the ethyl acetate fraction of Clerodendrum volubile: Protocatechuic acid suppresses phagocytic oxidative burst and modulates inflammatory cytokines. Biomed. Pharmacother. 2017, 86, 307–315. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. A Global Brief on Hypertension; World Health Organization: Geneva, Switzerland, 2013. [Google Scholar]
- Verma, T.; Sinha, M.; Bansal, N.; Yadav, S.R.; Shah, K.; Chauhan, N.S. Plants Used as Antihypertensive. Nat. Prod. Bioprospecting 2020, 11, 155–184. [Google Scholar] [CrossRef]
- Palmieri, V.O.; Grattagliano, I.; Portincasa, P.; Palasciano, G. Systemic oxidative alterations are associated with visceral adiposity and liver steatosis in patients with metabolic syndrome. J. Nutr. 2006, 136, 3022–3026. [Google Scholar] [CrossRef]
- Adefegha, S.A.; Oboh, G. Phytochemistry and mode of action of some tropical spices in the management of type-2 diabetes and hypertension. Afr. J. Pharm. Pharmacol. 2013, 7, 332–346. [Google Scholar] [CrossRef] [Green Version]
- Je, J.-Y.; Park, P.-J.; Kim, E.-K.; Ahn, C.-B. Antioxidant and angiotensin-I-converting enzyme inhibitory activity of Bambusae caulis in Liquamen. Food Chem. 2009, 113, 932–935. [Google Scholar] [CrossRef]
- Pahor, M.; Psaty, B.M.; Alderman, M.H.; Applegate, W.B.; Williamson, J.D.; Furberg, C.D. Therapeutic benefits of ACE inhibitors and other antihypertensive drugs in patients with type 2 diabetes. Diabetes Care 2000, 23, 888–892. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Umamaheswari, M.; Ajith, M.P.; Asokkumar, K. In vitro angiotensin converting enzyme inhibitory and antioxidant activities of seed extract of Apium graveolens Linn. Ann. Biol. Res. 2012, 3, 1274–1282. [Google Scholar]
- Schiffrin, E.L. Antioxidants in Hypertension and Cardiovascular Disease. Mol. Interv. 2010, 10, 354–362. [Google Scholar] [CrossRef]
- Akinpelu, B.A.; Apata, J.T.; Iwalewa, E.O.; Oyedapo, O.O. Evaluation of anti-hyperlipidemic potential of ethanolic leaf extract of Clerodendrum volubile P. Beauv. Ife J. Sci. 2016, 18, 789–800. [Google Scholar]
- Li, P.; Qi, M.; Hu, H.; Liu, Q.; Yang, Q.; Wang, D.; Guo, F.; Bligh, S.W.A.; Wang, Z.; Yang, L. Structure–inhibition relationship of phenylethanoid glycosides on angiotensin-converting enzyme using ultra-performance liquid chromatography-tandem quadrupole mass spectrometry. RSC Adv. 2015, 5, 51701–51707. [Google Scholar] [CrossRef]
- Olorundare, O.E.; Adeneye, A.A.; Akinsola, A.O.; Sanni, D.A.; Koketsu, M.; Mukhtar, H. Clerodendrum volubile Ethanol Leaf Extract: A Potential Antidote to Doxorubicin-Induced Cardiotoxicity in Rats. J. Toxicol. 2020, 2020, 8859716. [Google Scholar] [CrossRef] [PubMed]
- Tacar, O.; Sriamornsak, P.; Dass, C.R. Doxorubicin: An update on anticancer molecular action, toxicity and novel drug delivery systems. J. Pharm. Pharmacol. 2012, 65, 157–170. [Google Scholar] [CrossRef]
- Olorundare, O.; Adeneye, A.; Akinsola, A.; Soyemi, S.; Mgbehoma, A.; Okoye, I.; Ntambi, J.M.; Mukhtar, H. African Vegetables (Clerodendrum volibile Leaf and Irvingia gabonensis Seed Extracts) Effectively Mitigate Trastuzumab-Induced Cardiotoxicity in Wistar Rats. Oxidative Med. Cell. Longev. 2020, 2020, 9535426. [Google Scholar]
- Adeneye, A.; Olorundare, O.; Akinsola, A.; Soyemi, S.; Mgbehoma, A.; Okoye, I.; Albrecht, R.; Ntambi, J.; Mukhtar, H. Experimental Therapeutic Evaluation of the African Vegetables (Clerodendrum volubile Leaf and Irvingia gabonensis Seed Extracts) in Trastuzumab-Mediated Hepato-Renal Dysfunction in Wistar Rats. Asian J. Pharm. Clin. Res. 2021, 147–157. [Google Scholar] [CrossRef]
- Molehin, O.R. Phytochemical screening and in vitro α-amylase and α-glucosidase inhibitory potential of Clerodendrum volubile leaf extract. Archives 2019, 1, 198–206. [Google Scholar]
- Lachau-Durand, S.; Lammens, L.; Van Der Leede, B.-J.; Van Gompel, J.; Bailey, G.; Engelen, M.; Lampo, A. Preclinical toxicity and pharmacokinetics of a new orally bioavailable flubendazole formulation and the impact for clinical trials and risk/benefit to patients. PLoS Negl. Trop. Dis. 2019, 13, e0007026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef] [Green Version]
- Ezuruike, U.F.; Prieto, J.M. The use of plants in the traditional management of diabetes in Nigeria: Pharmacological and toxicological considerations. J. Ethnopharmacol. 2014, 155, 857–924. [Google Scholar] [CrossRef] [Green Version]
- Okaiyeto, K.; Oguntibeju, O. African Herbal Medicines: Adverse Effects and Cytotoxic Potentials with Different Therapeutic Applications. Int. J. Environ. Res. Public Health 2021, 18, 5988. [Google Scholar] [CrossRef]
- Praptiwi, R.M.; Wulansari, D.; Fathoni, A.; Agusta, A. Antibacterial and antioxidant activities of endophytic fungi extract of medicinal plants from central Sulawesi. J. Appl. Pharm. Sci. 2018, 8, 69–74. [Google Scholar]
- Falade, A.O.; Adewole, K.E.; Ekundayo, T.C. Therapeutic potentials of endophytes for healthcare sustainability. Egypt. J. Basic Appl. Sci. 2021, 8, 117–135. [Google Scholar] [CrossRef]
- Strobel, G.; Yang, X.; Sears, J.; Kramer, R.; Sidhu, R.S.; Hess, W.M. Taxol from Pestalotiopsis microspora, an endophytic fungus of Taxus wallachiana. Microbiology 1996, 142, 435–440. [Google Scholar] [CrossRef] [Green Version]
- Li, J.-Y.; Strobel, G.; Sidhu, R.; Hess, W.M.; Ford, E.J. Endophytic taxol-producing fungi from bald cypress, Taxodium distichum. Microbiology 1996, 142, 2223–2226. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Li, G.; Lu, H.; Zheng, Z.; Huang, Y.; Su, W. Taxol from Tubercularia sp. strain TF5, an endophytic fungus of Taxus mairei. FEMS Microbiol. Lett. 2000, 93, 49–253. [Google Scholar]
- Okaiyeto, K.; Hoppe, H.; Okoh, A. Plant-Based Synthesis of Silver Nanoparticles Using Aqueous Leaf Extract of Salvia officinalis: Characterization and its Antiplasmodial Activity. J. Clust. Sci. 2020, 32, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Rao, P.V.; Nallappan, D.; Madhavi, K.; Rahman, S.; Wei, L.J.; Gan, S.H. Phytochemicals and Biogenic Metallic Nanoparticles as Anticancer Agents. Oxidative Med. Cell. Longev. 2016, 2016, 3685671. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okaiyeto, K.; Ojemaye, M.O.; Hoppe, H.; Mabinya, L.V.; Okoh, A.I. Phytofabrication of Silver/Silver Chloride Nanoparticles Using Aqueous Leaf Extract of Oedera genistifolia: Characterization and Antibacterial Potential. Molecules 2019, 24, 4382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Sheddi, E.S.; Farshori, N.N.; Al-Oqail, M.M.; Al-Massarani, S.M.; Saquib, Q.; Wahab, R.; Musarrat, J.; Al-Khedhairy, A.; Siddiqui, M. Anticancer Potential of Green Synthesized Silver Nanoparticles Using Extract of Nepeta deflersiana against Human Cervical Cancer Cells (HeLA). Bioinorg. Chem. Appl. 2018, 2018, 9390784. [Google Scholar] [CrossRef] [Green Version]
- Vijayan, R.; Joseph, S.; Mathew, B. Anticancer, antimicrobial, antioxidant, and catalytic activities of green-synthesized silver and gold nanoparticles using Bauhinia purpurea leaf extract. Bioprocess Biosyst. Eng. 2018, 42, 305–319. [Google Scholar] [CrossRef]
- Palei, N.N.; Ramu, S.; Vijaya, V.; Thamizhvanan, K.; Balaji, A. Green synthesis of silver nanoparticles using leaf extract of Lantana camara and its antimicrobial activity. Int. J. Green Pharm. 2020, 14, 1. [Google Scholar]
- Mahamadi, C.; Wunganayi, T. Green synthesis of silver nanoparticles using Zanthoxylum chalybeum and their anti-prolytic and antibiotic properties. Cogent Chem. 2018, 4, 1538547. [Google Scholar] [CrossRef]
- Hashemia, Z.; Mortazavi-Derazkolab, S.; Biparvac, P.; Golid, H.R.; Fereshteh, S.; Mostafa, K.; Alireza, R.; Mohammad Ali, E. Green synthesized silver nanoparticles using Feijoa sellowiana leaf extract, evaluation of their antibacterial, anticancer and antioxidant activities. Iran. J. Pharm. Res. 2020, 19, 306–320. [Google Scholar]
Pharmacological Activity | Mechanism of Actions | Reference |
---|---|---|
Antioxidant | Free radical scavenging and chelation of metal ions involved in redox metabolism; increase in endogenous antioxidant enzymes, such as GSH level, SOD, catalase, and GPx activities with a concomitant reduced. | [16,25,35] |
Antidiabetic | Inhibition of α-glucosidase and amylase, key enzymes linked to T2D. | [25] |
Anticancer | Inhibits cell proliferation, arrests cell cycle progression, down-regulates MMP-9 expression, and attenuates oxidative stress. | [25] |
Antihypolipidemia | Lowers plasma cholesterol, LDL, vLDL, and triglyceride levels, as well as increases HDL level. | [16,123] |
Antihypertensive | Inhibits ACE by chelating its hydroxyl groups with the Zn2+ moiety of ACE and inhibiting vasoconstriction of the blood vessels. | [25,124] |
Hepatoprotective | Decreases liver biomarker enzymes such as AST, ALT, ALP, and TB levels; improves hepatic architecture. | [16,25] |
Antiinflammatory | Quenches polymorphonuclear neutrophils’ respiratory oxidative bursts; suppression of T-cell proliferation; inhibition of in vitro lipoxygenase, cyclooxygenase, and xanthine oxidase. | [25,88] |
Neutroprotective | Inhibition of cholinergic and monoaminergic enzymes such as acetylcholisterases, modulation of the redox homeostasis, mitigates against oxidative stress. | [25,42] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okaiyeto, K.; Falade, A.O.; Oguntibeju, O.O. Traditional Uses, Nutritional and Pharmacological Potentials of Clerodendrum volubile. Plants 2021, 10, 1893. https://doi.org/10.3390/plants10091893
Okaiyeto K, Falade AO, Oguntibeju OO. Traditional Uses, Nutritional and Pharmacological Potentials of Clerodendrum volubile. Plants. 2021; 10(9):1893. https://doi.org/10.3390/plants10091893
Chicago/Turabian StyleOkaiyeto, Kunle, Ayodeji Osmund Falade, and Oluwafemi Omoniyi Oguntibeju. 2021. "Traditional Uses, Nutritional and Pharmacological Potentials of Clerodendrum volubile" Plants 10, no. 9: 1893. https://doi.org/10.3390/plants10091893
APA StyleOkaiyeto, K., Falade, A. O., & Oguntibeju, O. O. (2021). Traditional Uses, Nutritional and Pharmacological Potentials of Clerodendrum volubile. Plants, 10(9), 1893. https://doi.org/10.3390/plants10091893