Evaluate the Toxicity of Pyrethroid Insecticide Cypermethrin before and after Biodegradation by Lysinibacillus cresolivuorans Strain HIS7
Abstract
:1. Introduction
2. Results and Discussion
2.1. Isolation and Screening of Cypermethrin Degrading Bacteria
2.2. Identification of the Most Effective Bacterial Isolate HIS7
2.3. Optimizing Factors Affecting the Biodegradation Process
2.4. Comparison between Biodegradation Percentages before and after the Optimization Process
2.5. Biodegradation Assay of Cypermethrin in Soil Using HPLC
2.6. GC-MS Analysis of Cypermethrin Biodegradation
2.7. Toxicity Assessment
2.7.1. Seed Germination of Zea mays
2.7.2. Greenhouse Experiment
2.7.3. In Vitro Cytotoxic Efficacy
3. Materials and Methods
3.1. Reagents and Materials Used
3.2. Isolation of Cypermethrin 95% Degrading Bacteria
3.3. Qualitative Screening for Bacterial Isolates
3.4. Quantitative Screening
3.4.1. Extraction of Cypermethrin Residues
3.4.2. Degrading Assay Method
3.5. Identification of Cypermethrin Degrading Bacteria
3.6. Effects of Environmental Factors on Biodegradation of Cypermethrin 95%
3.7. Biodegradation of Cypermethrin in Soil
3.7.1. Inocula Preparation
3.7.2. Soil Samples
3.7.3. Inoculation and Extraction Method
HPLC Analysis of Cypermethrin in Soil
GC/MS Analysis of Cypermethrin and Its Biodegradable Products
3.8. Toxicity Assessment
3.8.1. Seed Germination
3.8.2. Greenhouse Experiment
3.8.3. In Vitro Cytotoxicity Using the MTT Assay Method
3.9. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- DiBartolomeis, M.; Kegley, S.; Mineau, P.; Radford, R.; Klein, K. An assessment of acute insecticide toxicity loading (AITL) of chemical pesticides used on agricultural land in the United States. PLoS ONE 2019, 14, e0220029. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hamza, M.F.; Hamad, D.M.; Hamad, N.A.; Abdel-Rahman, A.A.-H.; Fouda, A.; Wei, Y.; Guibal, E.; El-Etrawy, A.-A.S. Functionalization of magnetic chitosan microparticles for high-performance removal of chromate from aqueous solutions and tannery effluent. Chem. Eng. J. 2021, 428, 131775. [Google Scholar] [CrossRef]
- Sun, S.; Sidhu, V.; Rong, Y.; Zheng, Y. Pesticide Pollution in Agricultural Soils and Sustainable Remediation Methods: A Review. Curr. Pollut. Rep. 2018, 4, 240–250. [Google Scholar] [CrossRef]
- Joko, T.; Anggoro, S.; Sunoko, H.R.; Rachmawati, S. Pesticides Usage in the Soil Quality Degradation Potential in Wanasari Subdistrict, Brebes, Indonesia. Appl. Environ. Soil Sci. 2017, 2017, 5896191. [Google Scholar] [CrossRef]
- Jess, S.; Matthews, D.I.; Murchie, A.K.; Lavery, M.K. Pesticide Use in Northern Ireland’s Arable Crops from 1992–2016 and Implications for Future Policy Development. Agriculture 2018, 8, 123. [Google Scholar] [CrossRef] [Green Version]
- Fouda, A.; Awad, M.A.; Eid, A.M.; Saied, E.; Barghoth, M.G.; Hamza, M.F.; Awad, M.F.; Abdelbary, S.; Hassan, S.E. An Eco-Friendly Approach to the Control of Pathogenic Microbes and Anopheles stephensi Malarial Vector Using Magnesium Oxide Nanoparticles (Mg-NPs) Fabricated by Penicillium chrysogenum. Int. J. Mol. Sci. 2021, 22, 5096. [Google Scholar] [CrossRef]
- Lozowicka, B.; Jankowska, M.; Hrynko, I.; Kaczynski, P. Removal of 16 pesticide residues from strawberries by washing with tap and ozone water, ultrasonic cleaning and boiling. Environ. Monit. Assess. 2016, 188, 51. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhatt, P.; Huang, Y.; Zhang, W.; Sharma, A.; Chen, S. Enhanced Cypermethrin Degradation Kinetics and Metabolic Pathway in Bacillus thuringiensis Strain SG4. Microorganisms 2020, 8, 223. [Google Scholar] [CrossRef] [Green Version]
- Soderlund, D.M. Molecular mechanisms of pyrethroid insecticide neurotoxicity: Recent advances. Arch. Toxicol. 2012, 86, 165–181. [Google Scholar] [CrossRef] [Green Version]
- Sousa, S.; Maia, M.L.; Correira-Sá, L.; Fernandes, V.C.; Delerue-Matos, C.; Calhau, C.; Domingues, V.F. Chemistry and Toxicology Behind Insecticides and Herbicides. In Controlled Release of Pesticides for Sustainable Agriculture; Thomas, S., Volova, T., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 59–109. [Google Scholar]
- Nieder, R.; Benbi, D.K.; Reichl, F.X. Health Risks Associated with Pesticides in Soils. In Soil Components and Human Health; Nieder, R., Benbi, D.K., Reichl, F.X., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 503–573. [Google Scholar]
- Sehrawat, A.; Phour, M.; Kumar, R.; Sindhu, S.S. Bioremediation of Pesticides: An Eco-Friendly Approach for Environment Sustainability. In Microbial Rejuvenation of Polluted Environment; Panpatte, D.G., Jhala, Y.K., Eds.; Springer: Singapore, 2021; Volume 1, pp. 23–84. [Google Scholar]
- Lin, Q.; Chen, S.; Hu, M.Y.; Rizwan-ul-Haq, M.; Yang, L.; Li, H. Biodegradation of Cypermethrin by a newly isolated actinomycetes HU-S-01 from wastewater sludge. Int. J. Environ. Sci. Technol. 2011, 8, 45–56. [Google Scholar] [CrossRef] [Green Version]
- Ray, D. Pyrethroid Insecticides: Mechanisms of Toxicity, Systemic Poisoning Syndromes, Paresthesia, and Therapy. In Handbook of Pesticide Toxicology; Krieger, R.I., Krieger, W.C., Eds.; Academic Press: Cambridge, MA, USA, 2001; pp. 1289–1303. [Google Scholar]
- Anjum, R.; Rahman, M.; Masood, F.; Malik, A. Bioremediation of Pesticides from Soil and Wastewater. In Environmental Protection Strategies for Sustainable Development; Malik, A., Grohmann, E., Eds.; Springer: Dordrecht, The Netherlands, 2012; pp. 295–328. [Google Scholar]
- Chen, S.; Geng, P.; Xiao, Y.; Hu, M. Bioremediation of β-cypermethrin and 3-phenoxybenzaldehyde contaminated soils using Streptomyces aureus HP-S-01. Appl. Microbiol. Biotechnol. 2012, 94, 505–515. [Google Scholar] [CrossRef] [PubMed]
- Majumdar, R.; Kaviraj, A. Acute Toxicity of Cypermethrin to Freshwater Fish Oreochromis niloticus: Influence of Aquatic Weed and Turbidity of Water. Natl. Acad. Sci. Lett. 2021, 44, 5–7. [Google Scholar] [CrossRef]
- Grant, R.J.; Daniell, T.J.; Betts, W.B. Isolation and identification of synthetic pyrethroid-degrading bacteria. J. Appl. Microbiol. 2002, 92, 534–540. [Google Scholar] [CrossRef]
- Anode, S.; Onguso, J. Current Methods of Enhancing Bacterial Bioremediation of Pesticide Residues in Agricultural Farmlands. In Microbial Rejuvenation of Polluted Environment; Panpatte, D.G., Jhala, Y.K., Eds.; Springer: Singapore, 2021; Volume 2, pp. 167–187. [Google Scholar]
- Sharma, I. Bioremediation Techniques for Polluted Environment: Concept, Advantages, Limitations, and Prospects. In Trace Metals in the Environment—New Approaches and Recent Advances; IntechOpen: London, UK, 2020. [Google Scholar]
- Eid, A.M.; Fouda, A.; Abdel-Rahman, M.A.; Salem, S.S.; Elsaied, A.; Oelmüller, R.; Hijri, M.; Bhowmik, A.; Elkelish, A.; Hassan, S.E. Harnessing Bacterial Endophytes for Promotion of Plant Growth and Biotechnological Applications: An Overview. Plants 2021, 10, 935. [Google Scholar] [CrossRef]
- Fouda, A.; Abdel-Maksoud, G.; Abdel-Rahman, M.A.; Salem, S.S.; Hassan, S.E.-D.; El-Sadany, M.A.-H. Eco-friendly approach utilizing green synthesized nanoparticles for paper conservation against microbes involved in biodeterioration of archaeological manuscript. Int. Biodeterior. Biodegrad. 2019, 142, 160–169. [Google Scholar] [CrossRef]
- Zhang, H.; Yuan, X.; Xiong, T.; Wang, H.; Jiang, L. Bioremediation of co-contaminated soil with heavy metals and pesticides: Influence factors, mechanisms and evaluation methods. Chem. Eng. J. 2020, 398, 125657. [Google Scholar] [CrossRef]
- Pankaj; Sharma, A.; Gangola, S.; Khati, P.; Kumar, G.; Srivastava, A. Novel pathway of cypermethrin biodegradation in a Bacillus sp. strain SG2 isolated from cypermethrin-contaminated agriculture field. 3 Biotech 2016, 6, 45. [Google Scholar] [CrossRef] [Green Version]
- Tallur, P.N.; Megadi, V.B.; Ninnekar, H.Z. Biodegradation of cypermethrin by Micrococcus sp. strain CPN 1. Biodegradation 2008, 19, 77–82. [Google Scholar] [CrossRef]
- Wang, B.Z.; Guo, P.; Hang, B.J.; Li, L.; He, J.; Li, S.P. Cloning of a novel pyrethroid-hydrolyzing carboxylesterase gene from Sphingobium sp. strain JZ-1 and characterization of the gene product. Appl. Environ. Microbiol. 2009, 75, 5496–5500. [Google Scholar] [CrossRef] [Green Version]
- Manchola, L.; Dussán, J. Lysinibacillus sphaericus and Geobacillus sp. Biodegradation of Petroleum Hydrocarbons and Biosurfactant Production. Remediat. J. 2014, 25, 85–100. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, P.; Huang, Y.; Zhan, H.; Chen, S. Insight into Microbial Applications for the Biodegradation of Pyrethroid Insecticides. Front. Microbiol. 2019, 10, 1778. [Google Scholar] [CrossRef] [PubMed]
- Anjos, C.S.; Birolli, W.G.; Porto, A.L. Biodegradation of the pyrethroid pesticide esfenvalerate by a bacterial consortium isolated from Brazilian Savannah. J. Braz. Chem. Soc. 2020, 31, 1654–1660. [Google Scholar] [CrossRef]
- Saied, E.; Eid, A.M.; Hassan, S.E.; Salem, S.S.; Radwan, A.A.; Halawa, M.; Saleh, F.M.; Saad, H.A.; Saied, E.M.; Fouda, A. The Catalytic Activity of Biosynthesized Magnesium Oxide Nanoparticles (MgO-NPs) for Inhibiting the Growth of Pathogenic Microbes, Tanning Effluent Treatment, and Chromium Ion Removal. Catalysts 2021, 11, 821. [Google Scholar] [CrossRef]
- Hassan, S.E.; Fouda, A.; Saied, E.; Farag, M.M.S.; Eid, A.M.; Barghoth, M.G.; Awad, M.A.; Hamza, M.F.; Awad, M.F. Rhizopus oryzae-Mediated Green Synthesis of Magnesium Oxide Nanoparticles (MgO-NPs): A Promising Tool for Antimicrobial, Mosquitocidal Action, and Tanning Effluent Treatment. J. Fungi 2021, 7, 372. [Google Scholar] [CrossRef]
- Pankaj; Negi, G.; Gangola, S.; Khati, P.; Kumar, G.; Srivastava, A.; Sharma, A. Differential expression and characterization of cypermethrin-degrading potential proteins in Bacillus thuringiensis strain, SG4. 3 Biotech 2016, 6, 225. [Google Scholar] [CrossRef] [Green Version]
- Gaur, N.; Narasimhulu, K.; PydiSetty, Y. Recent advances in the bio-remediation of persistent organic pollutants and its effect on environment. J. Clean. Prod. 2018, 198, 1602–1631. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, S.; Gao, Y.; Hu, W.; Hu, M.; Zhong, G. Isolation of a novel beta-cypermethrin degrading strain Bacillus subtilis BSF01 and its biodegradation pathway. Appl. Microbiol. Biotechnol. 2015, 99, 2849–2859. [Google Scholar] [CrossRef] [PubMed]
- Gangola, S.; Sharma, A.; Bhatt, P.; Khati, P.; Chaudhary, P. Presence of esterase and laccase in Bacillus subtilis facilitates biodegradation and detoxification of cypermethrin. Sci. Rep. 2018, 8, 12755. [Google Scholar] [CrossRef]
- Bhatt, P.; Bhatt, K.; Huang, Y.; Lin, Z.; Chen, S. Esterase is a powerful tool for the biodegradation of pyrethroid insecticides. Chemosphere 2020, 244, 125507. [Google Scholar] [CrossRef]
- Sidhu, G.K.; Singh, S.; Kumar, V.; Dhanjal, D.S.; Datta, S.; Singh, J. Toxicity, monitoring and biodegradation of organophosphate pesticides: A review. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1135–1187. [Google Scholar] [CrossRef]
- Odukkathil, G.; Vasudevan, N. Toxicity and bioremediation of pesticides in agricultural soil. Rev. Environ. Sci. Bio/Technol. 2013, 12, 421–444. [Google Scholar] [CrossRef]
- Cycoń, M.; Żmijowska, A.; Wójcik, M.; Piotrowska-Seget, Z. Biodegradation and bioremediation potential of diazinon-degrading Serratia marcescens to remove other organophosphorus pesticides from soils. J. Environ. Manag. 2013, 117, 7–16. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.-D.; Saied, E.; Azab, M.S. An eco-friendly app.roach to textile and tannery wastewater treatment using maghemite nanoparticles (γ-Fe2O3-NPs) fabricated by Penicillium expansum strain (K-w). J. Environ. Chem. Eng. 2021, 9, 104693. [Google Scholar] [CrossRef]
- Yang, L.; Chen, S.; Hu, M.; Hao, W.; Geng, P.; Zhang, Y. Biodegradation of carbofuran by Pichia anomala strain HQ-C-01 and its app.lication for bioremediation of contaminated soils. Biol. Fertil. Soils 2011, 47, 917–923. [Google Scholar] [CrossRef]
- Yin, L.; Zhao, L.; Liu, Y.; Zhang, D.; Zhang, S.; Xiao, K. Isolation and characterization of cypermethrin degrading bacteria screened from contaminated soil. In Biodegradation of Hazardous and Special Products; Intech: Rijeka, Croatia, 2013; pp. 1–16. [Google Scholar]
- Selim, M.T.; Salem, S.S.; Mohamed, A.A.; El-Gamal, M.S.; Awad, M.F.; Fouda, A. Biological Treatment of Real Textile Effluent Using Aspergillus flavus and Fusarium oxysporium and Their Consortium along with the Evaluation of Their Phytotoxicity. J. Fungi 2021, 7, 193. [Google Scholar] [CrossRef]
- Salem, S.S.; Mohamed, A.; El-Gamal, M.; Talat, M.; Fouda, A. Biological Decolorization and Degradation of Azo Dyes from Textile Wastewater Effluent by Aspergillus niger. Egypt. J. Chem. 2019, 62, 1799–1813. [Google Scholar]
- Gurjar, M.; Hamde, V. Biodegradation of Pyrethroid-Cypermethrin using Pseudomonas aeruginosa and detection of its plant growth promoting properties. Int. J. Agric. Environ. Biotechnol. 2018, 11, 565–572. [Google Scholar] [CrossRef]
- Selim, M.T.; Salem, S.S.; Fouda, A.; El-Gamal, M.S.; Abdel-Rahman, M.A. Use of Corn-Steep Water Effluent as a Promising Substrate for Lactic Acid Production by Enterococcus faecium Strain WH51–1. Fermentation 2021, 7, 111. [Google Scholar] [CrossRef]
- Chang, J.S.; Chou, C.; Lin, Y.C.; Lin, P.J.; Ho, J.Y.; Hu, T.L. Kinetic characteristics of bacterial azo-dye decolorization by Pseudomonas luteola. Water Res. 2001, 35, 2841–2850. [Google Scholar] [CrossRef]
- Castillo, M.; Felis, N.; Aragón, P.; Cuesta, G.; Sabater, C. Biodegradation of the herbicide diuron by streptomycetes isolated from soil. Int. Biodeterior. Biodegrad. 2006, 58, 196–202. [Google Scholar] [CrossRef]
- Xie, W.; Zhou, J.-M.; Wang, H.-Y.; Chen, X.-Q. Effect of Nitrogen on the Degradation of Cypermethrin and Its Metabolite 3-Phenoxybenzoic Acid in Soil1. Pedosphere 2008, 18, 638–644. [Google Scholar] [CrossRef]
- Zhao, H.; Geng, Y.; Chen, L.; Tao, K.; Hou, T. Biodegradation of cypermethrin by a novel Catellibacterium sp. strain CC-5 isolated from contaminated soil. Can. J. Microbiol. 2013, 59, 311–317. [Google Scholar] [CrossRef]
- Fouda, A.; Hassan, S.E.-D.; Abdel-Rahman, M.A.; Farag, M.M.S.; Shehal-deen, A.; Mohamed, A.A.; Alsharif, S.M.; Saied, E.; Moghanim, S.A.; Azab, M.S. Catalytic degradation of wastewater from the textile and tannery industries by green synthesized hematite (α-Fe2O3) and magnesium oxide (MgO) nanoparticles. Curr. Res. Biotechnol. 2021, 3, 29–41. [Google Scholar] [CrossRef]
- Zhan, H.; Wang, H.; Liao, L.; Feng, Y.; Fan, X.; Zhang, L.; Chen, S. Kinetics and Novel Degradation Pathway of Permethrin in Acinetobacter baumannii ZH-14. Front. Microbiol. 2018, 9, 98. [Google Scholar] [CrossRef] [Green Version]
- Fouda, A.; Eid, A.M.; Elsaied, A.; El-Belely, E.F.; Barghoth, M.G.; Azab, E.; Gobouri, A.A.; Hassan, S.E. Plant Growth-Promoting Endophytic Bacterial Community Inhabiting the Leaves of Pulicaria incisa (Lam.) DC Inherent to Arid Regions. Plants 2021, 10, 76. [Google Scholar] [CrossRef] [PubMed]
- Phugare, S.S.; Kalyani, D.C.; Patil, A.V.; Jadhav, J.P. Textile dye degradation by bacterial consortium and subsequent toxicological analysis of dye and dye metabolites using cytotoxicity, genotoxicity and oxidative stress studies. J. Hazard. Mater. 2011, 186, 713–723. [Google Scholar] [CrossRef]
- Coskun, Y.; Kılıç, S.; Duran, R. The Effects of the Insecticide Pyriproxyfen on Germination, Development and Growth Responses of Maize Seedlings. Fresenius Environ. Bull. 2015, 24, 278–284. [Google Scholar]
- Shakir, S.K.; Kanwal, M.; Murad, W.; Zia ur, R.; Shafiq ur, R.; Daud, M.K.; Azizullah, A. Effect of some commonly used pesticides on seed germination, biomass production and photosynthetic pigments in tomato (Lycopersicon esculentum). Ecotoxicology 2016, 25, 329–341. [Google Scholar] [CrossRef]
- Obidola, S.; Ibrahim, I.I.; Yaroson, A.; Henry, U. Phytotoxicity of cypermethrin pesticide on seed germination, growth and yield parameters of cowpea (Vigna unguiculata). Asian J. Agric. Hortic. Res. 2019, 3, 1–10. [Google Scholar] [CrossRef]
- Fayez, K.; Kristen, U. The influence of herbicides on the growth and proline content of primary roots and on the ultrastructure of root caps. Environ. Exp. Bot. 1996, 36, 71–81. [Google Scholar] [CrossRef]
- Xu, Z.; Shen, X.; Zhang, X.-C.; Liu, W.; Yang, F. Microbial degradation of alpha-cypermethrin in soil by compound-specific stable isotope analysis. J. Hazard. Mater. 2015, 295, 37–42. [Google Scholar] [CrossRef]
- Tejada, M.; Garcia, C.; Hernández, T.; Gómez, I. Response of Soil Microbial Activity and Biodiversity in Soils Polluted with Different Concentrations of Cypermethrin Insecticide. Arch. Environ. Contam. Toxicol. 2015, 69, 8–19. [Google Scholar] [CrossRef]
- Das, R.; Das, S.; Das, A. Effect of synthetic pyrethroid insecticides on N2-fixation and its mineralization in tea soil. Eur. J. Soil Biol. 2016, 74, 9–15. [Google Scholar] [CrossRef]
- Samanta, A.; Jyoti, S.; Jaydeb, J.; Somashree, M. Effect of Cypermethrin on growth, cell division and photosynthetic pigment content in Onion, Maize and Grass pea. Res. J. Chem. Environ. 2019, 23, 126–129. [Google Scholar]
- Suman, G.; Naravaneni, R.; Jamil, K. In vitro cytogenetic studies of cypermethrin on human lymphocytes. Indian J. Exp. Biol. 2006, 44, 233–239. [Google Scholar] [PubMed]
- Calderón-Segura, M.E.; Gómez-Arroyo, S.; Cortés-Eslava, J.; Martínez-Valenzuela, C.; Mojica-Vázquez, L.H.; Sosa-López, M.; Flores-Ramírez, D.; Romero-Velázquez, Z.E. In vitro cytotoxicity and genotoxicity of Furia(®)180 SC (zeta-cypermethrin) and Bulldock 125(®)SC (β-cyfluthrin) pyrethroid insecticides in human peripheral blood lymphocytes. Toxicol. Mech. Methods 2018, 28, 268–278. [Google Scholar] [CrossRef]
- Eid, A.M.; Fouda, A.; Niedbała, G.; Hassan, S.E.; Salem, S.S.; Abdo, A.M.; Hetta, H.F.; Shaheen, T.I. Endophytic Streptomyces laurentii Mediated Green Synthesis of Ag-NPs with Antibacterial and Anticancer Properties for Developing Functional Textile Fabric Properties. Antibiotics 2020, 9, 641. [Google Scholar] [CrossRef] [PubMed]
- Salem, S.S.; El-Belely, E.F.; Niedbała, G.; Alnoman, M.M.; Hassan, S.E.; Eid, A.M.; Shaheen, T.I.; Elkelish, A.; Fouda, A. Bactericidal and In-Vitro Cytotoxic Efficacy of Silver Nanoparticles (Ag-NPs) Fabricated by Endophytic Actinomycetes and Their Use as Coating for the Textile Fabrics. Nanomaterials 2020, 10, 2082. [Google Scholar] [CrossRef] [PubMed]
- Lashin, I.; Fouda, A.; Gobouri, A.A.; Azab, E.; Mohammedsaleh, Z.M.; Makharita, R.R. Antimicrobial and In Vitro Cytotoxic Efficacy of Biogenic Silver Nanoparticles (Ag-NPs) Fabricated by Callus Extract of Solanum incanum L. Biomolecules 2021, 11, 341. [Google Scholar] [CrossRef]
- Kakko, I.; Toimela, T.; Tähti, H. The toxicity of pyrethroid compounds in neural cell cultures studied with total ATP, mitochondrial enzyme activity and microscopic photographing. Environ. Toxicol. Pharmacol. 2004, 15, 95–102. [Google Scholar] [CrossRef]
- AlKahtane, A.A.; Alarifi, S.; Al-Qahtani, A.A.; Ali, D.; Alomar, S.Y.; Aleissia, M.S.; Alkahtani, S. Cytotoxicity and Genotoxicity of Cypermethrin in Hepatocarcinoma Cells: A Dose- and Time-Dependent Study. Dose-Response Publ. Int. Hormesis Soc. 2018, 16, 1559325818760880. [Google Scholar] [CrossRef] [Green Version]
- El-Belely, E.F.; Farag, M.M.S.; Said, H.A.; Amin, A.S.; Azab, E.; Gobouri, A.A.; Fouda, A. Green Synthesis of Zinc Oxide Nanoparticles (ZnO-NPs) Using Arthrospira platensis (Class: Cyanophyceae) and Evaluation of their Biomedical Activities. Nanomaterials 2021, 11, 95. [Google Scholar] [CrossRef] [PubMed]
- Baracca, A.; Sgarbi, G.; Solaini, G.; Lenaz, G. Rhodamine 123 as a probe of mitochondrial membrane potential: Evaluation of proton flux through F0 during ATP synthesis. Bioenergetics 2003, 1606, 137–146. [Google Scholar] [CrossRef] [Green Version]
- Kmetic, I.; Gaurina Srcek, V.; Slivac, I.; Simić, B.; Kniewald, Z.; Kniewald, J. Atrazine exposure decreases cell proliferation in Chinese Hamster Ovary (CHO-K1) cell line. Bull. Environ. Contam. Toxicol. 2008, 81, 205–209. [Google Scholar] [CrossRef]
- Kouretas, D.; Tsatsakis, A.M.; Domingo, J.L.; Wallace Hayes, A. Mechanisms involved in oxidative stress regulation. Food Chem. Toxicol. 2013, 61, 259. [Google Scholar] [CrossRef] [PubMed]
- Raszewski, G.; Lemieszek, M.K.; Łukawski, K.; Juszczak, M.; Rzeski, W. Chlorpyrifos and cypermethrin induce apoptosis in human neuroblastoma cell line SH-SY5Y. Basic Clin. Pharmacol. Toxicol. 2015, 116, 158–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ismail, M.A.; Amin, M.A.; Eid, A.M.; Hassan, S.E.; Mahgoub, H.A.M.; Lashin, I.; Abdelwahab, A.T.; Azab, E.; Gobouri, A.A.; Elkelish, A.; et al. Comparative Study between Exogenously Applied Plant Growth Hormones versus Metabolites of Microbial Endophytes as Plant Growth-Promoting for Phaseolus vulgaris L. Cells 2021, 10, 1059. [Google Scholar] [CrossRef] [PubMed]
- Alsharif, S.M.; Salem, S.S.; Abdel-Rahman, M.A.; Fouda, A.; Eid, A.M.; El-Din Hassan, S.; Awad, M.A.; Mohamed, A.A. Multifunctional properties of spherical silver nanoparticles fabricated by different microbial taxa. Heliyon 2020, 6, e03943. [Google Scholar] [CrossRef]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Saitou, N.; Nei, M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 1987, 4, 406–425. [Google Scholar]
- Bindu, M.; Harikumar, V. Soil Contamination and Remediation Effects on the Structure and Activity of Soil Microbial Communities; Anchor Academic Publishing: Hamburg, Germany, 2016. [Google Scholar]
- Cycoń, M.; Mrozik, A.; Piotrowska-Seget, Z. Bioaugmentation as a strategy for the remediation of pesticide-polluted soil: A review. Chemosphere 2017, 172, 52–71. [Google Scholar] [CrossRef]
- Akbar, S. Biodegradation of Chlorpyrifos and Cypermethrin by Indigenous Bacteria. Ph.D. Thesis, University of Punjab, Lahore, Pakistan, 2014. [Google Scholar]
- Fouda, A.; Hassan, S.E.-D.; Saied, E.; Hamza, M.F. Photocatalytic degradation of real textile and tannery effluent using biosynthesized magnesium oxide nanoparticles (MgO-NPs), heavy metal adsorption, phytotoxicity, and antimicrobial activity. J. Environ. Chem. Eng. 2021, 9, 105346. [Google Scholar] [CrossRef]
- Khalil, A.M.A.; Hassan, S.E.; Alsharif, S.M.; Eid, A.M.; Ewais, E.E.; Azab, E.; Gobouri, A.A.; Elkelish, A.; Fouda, A. Isolation and Characterization of Fungal Endophytes Isolated from Medicinal Plant Ephedra pachyclada as Plant Growth-Promoting. Biomolecules 2021, 11, 140. [Google Scholar] [CrossRef] [PubMed]
- Alkahtani, M.D.F.; Fouda, A.; Attia, K.A.; Al-Otaibi, F.; Eid, A.M.; Ewais, E.E.; Hijri, M.; St-Arnaud, M.; Hassan, S.E.; Khan, N.; et al. Isolation and Characterization of Plant Growth Promoting Endophytic Bacteria from Desert Plants and Their Application as Bioinoculants for Sustainable Agriculture. Agronomy 2020, 10, 1325. [Google Scholar] [CrossRef]
- van Meerloo, J.; Kaspers, G.J.L.; Cloos, J. Cell sensitivity assays: The MTT assay. Methods Mol. Biol. 2011, 731, 237–245. [Google Scholar] [PubMed]
- Shaheen, T.I.; Fouda, A.; Salem, S.S. Integration of Cotton Fabrics with Biosynthesized CuO Nanoparticles for Bactericidal Activity in the Terms of Their Cytotoxicity Assessment. Ind. Eng. Chem. Res. 2021, 60, 1553–1563. [Google Scholar] [CrossRef]
Treatment | RT (min) | Percent (%) | Biodegradable Compounds | Molecular Formula | Molecular Weight |
---|---|---|---|---|---|
Control | 17.08 | 31.51 | Cypermethrin | C22H19Cl2NO3 | 415 |
Lysinibacillus cresolivuorans HIS7 | 4.43 | 0.20 | Acetic acid (4-chloro-2-methylphenoxy) | C9H9ClO3 | 200 |
9.20 | 4.37 | 1H-Purine-2,6-dione,3,7-dihydro-1,3,7trimethy | C8H10N4O2 | 194 | |
10.92 | 1.00 | 9-Octadecenamide | C18H35NO | 281 | |
11.39 | 0.90 | Benzene ethanamine, à-methyl-3-[4-methylphenyloxy] | C16H19NO | 241 | |
11.80 | 1.87 | 1,2-Benzenedicarboxylicacid, 3-nitro | C8H5NO6 | 211 |
Treatment | Root Length (cm) | Root Biomass (mg) | |
---|---|---|---|
Fresh Weight | Dry Weight | ||
Positive control (distilled H2O) | 29.0 ± 0.1 | 1715.4 ± 32.4 | 505.2 ± 23 |
Negative control (cypermethrin before bacterial degradation) | 11.0 ± 0.06 | 862.5 ± 40.2 | 116.1 ± 14.7 |
Biodegradable products | 25.0 ± 0.1 | 1655.5 ± 26.4 | 410.4 ± 12.4 |
Treatment | Root Length (cm) | Shoot Length (cm) | Growth Performance | |||
---|---|---|---|---|---|---|
Fresh Weight (g) | Dry Weight (g) | |||||
Root | Shoot | Root | Shoot | |||
Positive control (distilled H2O) | 14.0 ± 0.6 | 122.0 ± 0.7 | 3.6 ± 1.5 | 21.5 ± 2.3 | 1.9 ± 0.4 | 12.9 ± 2.2 |
Negative control (cypermethrin before bacterial degradation) | 5.0 ± 0.4 | 88.0 ± 0.5 | 2.1 ± 1.0 | 13.2 ± 1.1 | 1.1 ± 0.6 | 5.3 ± 0.9 |
Biodegradable products | 12.0 ± 0.6 | 115.0 ± 0.7 | 3.1 ± 1.1 | 19.9 ± 2.3 | 1.4 ± 0.2 | 11.9 ± 3.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saied, E.; Fouda, A.; Alemam, A.M.; Sultan, M.H.; Barghoth, M.G.; Radwan, A.A.; Desouky, S.G.; Azab, I.H.E.; Nahhas, N.E.; Hassan, S.E.-D. Evaluate the Toxicity of Pyrethroid Insecticide Cypermethrin before and after Biodegradation by Lysinibacillus cresolivuorans Strain HIS7. Plants 2021, 10, 1903. https://doi.org/10.3390/plants10091903
Saied E, Fouda A, Alemam AM, Sultan MH, Barghoth MG, Radwan AA, Desouky SG, Azab IHE, Nahhas NE, Hassan SE-D. Evaluate the Toxicity of Pyrethroid Insecticide Cypermethrin before and after Biodegradation by Lysinibacillus cresolivuorans Strain HIS7. Plants. 2021; 10(9):1903. https://doi.org/10.3390/plants10091903
Chicago/Turabian StyleSaied, Ebrahim, Amr Fouda, Ahmed M. Alemam, Mahmoud H. Sultan, Mohammed G. Barghoth, Ahmed A. Radwan, Salha G. Desouky, Islam H. El Azab, Nihal El Nahhas, and Saad El-Din Hassan. 2021. "Evaluate the Toxicity of Pyrethroid Insecticide Cypermethrin before and after Biodegradation by Lysinibacillus cresolivuorans Strain HIS7" Plants 10, no. 9: 1903. https://doi.org/10.3390/plants10091903