Identification of Metabolites Changes and Quality in Strawberry Fruit: Effect of Cultivation in High Tunnel and Open Field
Abstract
:1. Introduction
2. Materials and Methods
2.1. Morphological Properties
2.2. Determination of Phenolic Compounds
2.3. Organic Acid Determination
2.4. Determination of Vitamin C
2.5. Statistical Analysis
3. Results and Discussion
3.1. Fruit Properties
3.2. Organic Acids
3.3. Phenolic Compounds
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Juric, S.; Vlahovicek-Kahlina, K.; Duralija, B.; Maslov Bandic, L.; Nekic, P.; Vincekovic, M. Stimulation of plant secondary metabolites synthesis in soilless cultivated strawberries (Fragaria × ananassa Duchesne) using zinc-alginate microparticles. Turk. J. Agric. For. 2021, 45, 324–334. [Google Scholar] [CrossRef]
- Tas, A.; Berk, S.K.; Orman, E.; Gundogdu, M.; Ercisli, S.; Karatas, N.; Jurikova, T.; Adamkova, A.; Nedomova, S.; Mlcek, J. Influence of pre-harvest gibberellic acid and post-harvest 1-methyl cyclopropane treatments on phenolic compounds, vitamin C and organic acid contents during the shelf life of strawberry fruits. Plants 2021, 10, 121. [Google Scholar] [CrossRef] [PubMed]
- Kilic, N.; Burgut, A.; Gündesli, M.A.; Nogay, G.; Ercisli, S.; Kafkas, N.E.; Ekiert, H.; Elansary, H.O.; Szopa, A. The Effect of Organic, Inorganic Fertilizers and Their Combinations on Fruit Quality Parameters in Strawberry. Horticulturae 2021, 7, 354. [Google Scholar] [CrossRef]
- Urun, I.; Attar, S.H.; Sönmez, D.A.; Gündesli, M.A.; Ercisli, S.; Kafkas, N.E.; Bandic, L.M.; Duralija, B. Comparison of polyphenol, sugar, organic acid, volatile compounds, and antioxidant capacity of commercially grown strawberry cultivars in Turkey. Plants 2021, 10, 1654. [Google Scholar] [CrossRef] [PubMed]
- Gündüz, K.; Özdemir, E. The effects of genotype and growing conditions on antioxidant capacity, phenolic compounds, organic acid and individual sugars of strawberry. Food Chem. 2014, 155, 298–303. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, S.; Feng, K.; Qian, K.; Wang, Y.; Qin, S. Strawberry maturity recognition algorithm combining dark channel enhancement and YOLOv5. Sensors 2022, 22, 419. [Google Scholar] [CrossRef]
- Topcu, H.; Degirmenci, I.; Sonmez, D.A.; Paizila, A.; Karci, H.; Kafkas, S.; Kafkas, E.; Ercisli, S.; Alatawi, A. Sugar, invertase enzyme activities and invertase gene expression in different developmental stages of strawberry fruits. Plants 2022, 11, 509. [Google Scholar] [CrossRef]
- Voca, S.; Jakobek, L.; Druzic, J.; Sindrak, Z.; Dobricevic, N.; Seruga, M.; Kovac, A. Quality of strawberries produced applying two different growing systems. CyTA J. Food 2009, 7, 201–207. [Google Scholar] [CrossRef]
- Hancock, J.F.; Luby, J.J.; Dale, A.; Callow, P.W.; Serce, S.; El-Shiek, A. Utilizing wild Fragaria virginiana in strawberry cultivar development: Inheritance of photoperiod sensitivity, fruit size, gender, female fertility and disease resistance. Euphytica 2002, 126, 177–184. [Google Scholar] [CrossRef]
- Azodanlou, R.; Darbellay, C.; Luisier, J.L.; Villettaz, J.C.; Amado, R. Quality assessment of strawberries (Fragaria species). J. Agric. Food Chem. 2003, 51, 715–721. [Google Scholar] [CrossRef]
- Hannum, S.M. Potential impact of strawberries on human health: A review of the science. Crit. Rev. Food Sci. Nutr. 2004, 44, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Kafkas, E.; Koşar, M.; Paydaş, S.; Kafkas, S.; Başer, K.H.C. Quality characteristics of strawberry genotypes at different maturation stages. Food Chem. 2007, 100, 1229–1236. [Google Scholar] [CrossRef]
- Parr, A.J.; Bolwell, G.P. Phenols in the plant and in man. The potential for possible nutritional enhancement of the diet by modifying the phenols content or profile. J. Sci. Food Agric. 2000, 80, 985–1012. [Google Scholar] [CrossRef]
- Cordenunsi, B.R.; Nascimento, J.R.O.; Lajolo, F.M. Physico-chemical changes related to quality of five strawberry fruit cultivars during cool-storage. Food Chem. 2003, 83, 167–173. [Google Scholar] [CrossRef]
- Yılmaz, H. Çilek. In Hasad Yayıncılık; 2009; p. 348. Available online: https://www.researchgate.net/publication/322109953_Seascape_Cilek_Cesidinin_Meyve_Kalitesi_Uzerine_Gibberellik_Asit_Uygulamasinin_Etkisinin_Belirlenmesi (accessed on 20 February 2020).
- Bazzano, L.A.; He, J.; Ogden, L.G.; Loria, C.M.; Vupputuri, S.; Myers, L.; Whelton, P.K. Fruit and vegetable intake and risk of cardiovascular disease in US adults: The first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am. J. Clin. Nutr. 2002, 76, 93–99. [Google Scholar] [CrossRef] [Green Version]
- Seeram, N.P.; Lee, R.; Scheuller, H.S.; Heber, D. Identification of phenolic compounds in strawberries by liquid chromatography electrospray ionization mass spectroscopy. Food Chem. 2006, 97, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Aaby, K.; Ekeberg, D.; Skrede, G. Characterization of phenolic compounds in strawberry (Fragaria × ananassa) fruits by different HPLC detectors and contribution of individual compounds to total antioxidant capacity. J. Agric. Food Chem. 2007, 55, 4395–4406. [Google Scholar] [CrossRef]
- Hancock, J.F. Strawberries, 2nd ed.; CABI Pub: Oxon, UK; New York, NY, USA, 2020; p. 288. [Google Scholar]
- Wang, S.Y.; Feng, R.T.; Lu, Y.J.; Bowman, L.; Ding, M. Inhibitory effect on activator protein-1, nuclear factor-kappa b, and cell transformation by extracts of strawberries (Fragaria × ananassa Duch.). J. Agric. Food Chem. 2005, 53, 4187–4193. [Google Scholar] [CrossRef]
- Tulipani, S.; Mezzetti, B.; Capocasa, F.; Bompadre, S.; Beekwilder, J.; Ric de Vos, C.H.; Capanoglu, E.; Bovy, A.; Battino, M. Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. J. Agric. Food Chem. 2008, 56, 696–704. [Google Scholar] [CrossRef]
- Wang, S.Y.; Zheng, W.; Galeta, G.J. Cultural system affects fruit quality and antioxidant capacity in strawberries. J. Agric. Food Chem. 2002, 50, 6534–6542. [Google Scholar] [CrossRef]
- Davey, M.W.; Van Montagu, M.; Inze, D.; Sanmartin, M.; Kanellis, A.; Smirnoff, N.; Benzie, I.J.J.; Strain, J.J.; Favell, D.; Fletcher, J. Plant L-ascorbic acid: Chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 2000, 80, 825–860. [Google Scholar] [CrossRef]
- Koşar, M.; Kafkas, E.; Paydaş, S.; Başer, K.H.C. Phenolic composition of strawberry genotypes at different maturation stages. J. Agric. Food Chem. 2004, 52, 1586–1589. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Delgado, M.A.; Malovaná, S.; Pérez, J.P.; Borges, T.; García Montelongo, F.J. Separation of phenolic compounds by high-performance liquid chromatography with absorbance and fluorimetric detection. J. Chromatogr. A. 2001, 912, 249–257. [Google Scholar] [CrossRef]
- Bevilacqua, A.E.; Califano, A.N. Determination of organic acids in dairy products by high performance liquid chromatography. J. Food Sci. 1989, 54, 1076. [Google Scholar] [CrossRef]
- Cemeroglu, B. Food Analysis; No. 34; Food Technology Society Publication: Ankara, Turkey, 2007; pp. 168–171. [Google Scholar]
- Comprehensive, R. Archive Network. 2021. Available online: https://cran.r-project.org/ (accessed on 20 February 2021).
- Lopez-Aranda, J.; Lopez-Montera, R.; Chaves, M.; Alvarez, A.; Bartual, R. Eveluation of new Spanish cultivars of strawberry in Huelva, Southwestern Spain. Acta Hortic. 1993, 348, 213–218. [Google Scholar] [CrossRef]
- Ağgün, Z.; Geçer, M.K.; Aslantaş, R. The effects on fruit yield and fruit properties of plant growth promoting bacteria applications on some strawberry cultivars. Int. J. Agric. Wildl. Sci. 2018, 4, 20–25. [Google Scholar]
- Geçer, M.K.; Gündoğdu, M.; Başar, G. Determining yield of some strawberry cultivars in ecology of Merzifon (Amasya). J. Inst. Sci. Tech. 2018, 8, 11–15. [Google Scholar] [CrossRef]
- Özdemir, E.; Gündüz, K.; Bayazit, S. Determination of yield, quality and precocity ofsome strawberry cultivars grown under high tunnel by using fresh runners rooted in pots in Amik plain. Bahçe 2001, 30, 65–70. [Google Scholar]
- Gündüz, K.; Özdemir, E. The effects of different production places on earliness index, yield and fruit quality characteristics of some strawberry genotypes. J. Agric. Fac. Ege Univ. 2012, 49, 27–36. [Google Scholar]
- Azodanlou, R.; Darbellay, C.; Luisier, J.L.; Villettaz, J.C.; Amado, R. Changes in flavour and texture during the ripening of strawberries. Eur. Food Res. Technol. 2004, 218, 167–172. [Google Scholar]
- Ornelas-Paz, J.J.; Yahia, E.M.; Ramirez-Bustamante, N.; Pérez-Martinez, J.D.; Escalante-Minakata, M.P.; Ibarra-Junquera, V.; Acosta-Muñiz, C.; Guerrero-Prieto, V.; Ochoa-Reyes, E. Physical attributes and chemical composition of organic strawberry fruit (Fragaria x ananassa Duch, Cv. Albion) at six stages of ripening. Food Chem. 2013, 138, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Gunness, P.; Kravchuk, O.; Nottingham, S.M.; D’Arcy, B.R.; Gidley, M.J. Sensory analysis of individual strawberry fruit and comparison with instrumental analysis. Postharvest Biol. Tec. 2009, 52, 164–172. [Google Scholar] [CrossRef]
- Gecer, M.K.; Eyduran, E.; Yilmaz, H. The effect of different applications on fruit yield characteristics of strawberries cultivated under Van ecological condition. J. Anim. Plant Sci. 2013, 23, 1431–1435. [Google Scholar]
- Özbahçali, G.; Aslantaş, R. Some strawberry cultivars (Fragaria × ananassa Duch.) determination of performance in Erzurum ecological conditions. Atatürk Univ. J. Agric. Fac. 2015, 46, 75–84. [Google Scholar]
- Kuru Berk, S. Effect of Arbuscular Mycorhizal Fungi and Putrescine Applications on Physicochemical Properties of Strawberry. Ph.D. Thesis, Bolu Abant Izzet Baysal University, Bolu, Turkey, 2021; p. 193. [Google Scholar]
- González-Domínguez, R.; Sayago, A.; Akhatou, I.; Fernández-Recamales, Á. Multi-chemical profiling of strawberry as a traceability tool to investigate the effect of cultivar and cultivation conditions. Foods 2020, 9, 96. [Google Scholar] [CrossRef] [Green Version]
- Perez, A.G.; Olias, R.; Espada, J.; Olias, J.M.; Sanz, C. Rapid determination of sugars, nonvolatile acids, and ascorbic acid in strawberry and other fruits. J. Agric. Food Chem. 1997, 45, 3545–3549. [Google Scholar] [CrossRef]
- Sturm, K.; Koron, D.; Stampar, F. The composition of fruit of different strawberry varieties depending on maturity stage. Food Chem. 2003, 83, 417–422. [Google Scholar] [CrossRef]
- Skupien, K.; Oszmianski, J. Comparison of six cultivars of strawberries (Fragaria x ananassa Duch.) grown in northwest Poland. Eur. Food Res. Technol. 2004, 219, 66–70. [Google Scholar] [CrossRef]
- Gündoğdu, M.; Yilmaz, H. Organic acid, phenolic profile and antioxidant capacities of pomegranate (Punica granatum L.) cultivars and selected genotypes. Sci. Hortic. 2012, 143, 38–42. [Google Scholar] [CrossRef]
- Kim, J.S.; Kang, E.J.; Chang, Y.E.; Lee, J.H.; Kim, G.C.; Kim, K.M. Characteristics of strawberry jam containing strawberry puree. Korean J. Food Cook. Sci. 2013, 29, 725–731. [Google Scholar] [CrossRef] [Green Version]
- Ikegaya, A.; Toyoizumi, T.; Ohba, S.; Nakajima, T.; Kawata, T.; Ito, S.; Arai, E. Effects of distribution of sugars and organic acids on the taste of strawberries. Food Sci. Nutr. 2019, 7, 2419–2426. [Google Scholar] [CrossRef] [PubMed]
- Bebek Markovinovic, A.; Putnik, P.; Duralija, B.; Krivohlavek, A.; Ivešic, M.; Mandic Andacic, I.; Palac Bešlic, I.; Pavlic, B.; Lorenzo, J.M.; Bursac Kovacevic, D. Chemometric valorization of strawberry (Fragaria × ananassa Duch.) cv. ‘Albion’ for the production of functional juice: The impact of physicochemical, toxicological, sensory, and bioactive value. Foods 2022, 11, 640. [Google Scholar] [CrossRef] [PubMed]
- Pincemail, J.; Kevers, C.; Tabart, J.; Defraigne, J.O.; Dommes, J. Cultivars, culture conditions, and harvest time influence phenolic and ascorbic acid contents and antioxidant capacity of strawberry (Fragaria × ananassa). J. Food Sci. 2012, 77, C205–C210. [Google Scholar] [CrossRef] [PubMed]
- Pantelidis, G.; Vasilakakis, M.; Manganaris, G.; Diamantidis, G. Antioxidant capacity, phenol, anthocyanin and ascorbic acid contents in raspberries, blackberries, red currants, gooseberries and Cornelian cherries. Food Chem. 2007, 102, 777–783. [Google Scholar] [CrossRef]
- Rop, O.; Reznicek, V.; Mlcek, J.; Jurikova, T.; Balik, J.; Sochor, J.; Kramarova, D. Antioxidant and radical oxygen species scavenging activities of 12 cultivars of blue honeysuckle fruit. Hortic. Sci. 2011, 38, 63–70. [Google Scholar] [CrossRef]
- Mahmood, T.; Anwar, F.; Abbas, M.; Saari, N. Effect of maturity on phenolics (phenolic acids and flavonoids) profile of strawberry cultivars and mulberry species from Pakistan. Int. J. Mol. Sci. 2012, 13, 4591–4607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aaby, K.; Mazur, S.; Nes, A.; Skrede, G. Phenolic compounds in strawberry (Fragaria × ananassa Duch.) fruits: Composition in 27 cultivars and changes during ripening. Food Chem. 2012, 132, 86–97. [Google Scholar] [CrossRef] [PubMed]
- Beccaro, G.; Mellano, M.G.; Botta, R.; Chiabrando, V.; Bounous, G. Phenolic and anthocyanin content and antioxidant activity in fruits of bilberry (Vaccinium myrtillus L.) and of highbush blueberry (V. corymbosum L.) cultivars in northwestern Italy. Acta Hortic. 2006, 715, 553–558. [Google Scholar] [CrossRef]
- Da Silva Pinto, M.; Lajolo, F.M.; Genovese, M.I. Bioactive compounds and quantification of total ellagic acid in strawberries (Fragaria × ananassa Duch.). Food Chem. 2008, 107, 1629–1635. [Google Scholar] [CrossRef]
- Dogan, H.; Ercisli, S.; Jurikova, T.; Temim, E.; Leto, A.; Hadziabulic, A.; Tosun, M.; Narmanlioglu, H.K.; Zia-Ul-Haq, M. Physicochemical and antioxidant characteristics of fruits of cape gooseberry (Physalis peruviana L.) from Turkey. Oxid. Commun. 2014, 37, 1005–1014. [Google Scholar]
- Dogan, H.; Ercisli, S.; Temim, E.; Hadziabulic, A.; Tosun, M.; Yilmaz, S.O.; Zia-Ul-Haq, M. Diversity of chemical content and biological activity in flower buds of a wide number of wild grown caper (Capparis ovate Desf.) genotypes from Turkey. Comptes Rendus De L Academie Bulgare Des Sciences 2014, 67, 1593–1600. [Google Scholar]
- Gündüz, K. Strawberry: Phytochemical composition of strawberry (Fragaria × ananassa). In Nutritional Composition of Fruit Cultivars; Simmonds, M.S.J., Preedy, V.R., Eds.; Academic Press: San Diego, CA, USA, 2016; pp. 733–752. [Google Scholar]
- Ersoy, N.; Kupe, M.; Gundogdu, M.; Ilhan, G.; Ercisli, S. Phytochemical and antioxidant diversity in fruits of currant (Ribes spp.) cultivars. Not. Bot. Horti Agrobot. 2018, 46, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Ersoy, N.; Kupe, M.; Sagbas, H.I.; Ercisli, S. Phytochemical diversity among barberry (Berberis vulgaris L.). Not. Bot. Horti Agrobot. 2018, 46, 198–204. [Google Scholar]
- Engin, S.P.; Mert, C. The effects of harvesting time on the physicochemical components of aronia berry. Turk. J. Agric. For. 2020, 44, 361–370. [Google Scholar] [CrossRef]
- Gecer, M.K.; Kan, T.; Gundogdu, M.; Ercisli, S.; Ilhan, G.; Sagbas, H.I. Physicochemical characteristics of wild and cultivated apricots (Prunus armeniaca L.) from Aras valley in Turkey. Genet. Resour. Crop. Evol. 2020, 67, 935–945. [Google Scholar] [CrossRef]
- Kiran, S.; Kusvuran, S.; Ozkay, F.; Ellialtioglu, S. Change in physiological and biochemical parameters under drought stress in salt-tolerant and salt-susceptible eggplant genotypes. Turk. J. Agric. For. 2020, 43, 593–602. [Google Scholar] [CrossRef]
- Kupe, M. Some ampelographic and biochemical characteristics of local grape accessions from Turkey. Genetika 2020, 52, 513–525. [Google Scholar] [CrossRef]
- Ozkan, G.; Ercisli, S.; Sagbas, H.I.; Ilhan, G. Diversity on fruits of wild grown European cranberrybush from Coruh valley in Turkey. Erwerbs-Obstbau 2020, 62, 275–279. [Google Scholar] [CrossRef]
- Grygorieva, O.; Klymenko, S.; Kuklina, A.; Vinogradova, Y.; Vergun, O.; Sedlackova, V.H.; Brindza, J. Evaluation of Lonicera caerulea L. genotypes based on morphological characteristics of fruits germplasm collection. Turk. J. Agric. For. 2021, 45, 850–860. [Google Scholar] [CrossRef]
- Peñarrieta, J.M.; Alvarado, J.A.; Bergenståhl, B.; Ákesson, B. Total antioxidant capacity and content of phenolic compounds in wild strawberries (Fragaria vesca) collected in Bolivia. Int. J. Fruit Sci. 2009, 9, 344–359. [Google Scholar] [CrossRef]
- Vasco, C.; Riihinen, K.; Ruales, R.; Kamal-Eldin, A. Phenolic compounds in Rosaceae fruits from Ecuador. J. Agric. Food Chem. 2009, 57, 1204–1212. [Google Scholar] [CrossRef] [PubMed]
- Maas, J.L.; Wang, S.Y.; Galletta, G.J. Evaluation of strawberry cultivars for ellagic acid content. HortScience 1991, 26, 66–68. [Google Scholar] [CrossRef]
- Williner, M.R.; Pirovani, M.E.; Güemes, D.R. Ellagic acid content in strawberries of different cultivars and ripening stages. J. Sci. Food Agric. 2003, 83, 842–845. [Google Scholar] [CrossRef]
Applications | Varieties | Yield (g/Plant) | Fruit Weight (g/Fruit) | Fruit Number (Number/Plant) | SSC (%) | pH | Acidity (%) |
---|---|---|---|---|---|---|---|
Open Field | Albion | 486.163 ± 19.60 a | 11.470 ± 0.73 ab | 41.667 ± 5.69 a | 8.830 ± 0.52 a | 3.793 ± 0.27 a | 0.916 ± 0.02 ab |
Kabarla | 407.570 ± 12.98 ab | 10.787 ± 0.36 ab | 37.676 ± 2.40 a | 8.476 ± 0.57 a | 3.776 ± 0.32 a | 0.867 ± 0.05 ab | |
Rubygem | 176.285 ± 13.20 b | 13.010 ± 1.24 ab | 14.500 ± 3.50 b | 8.705 ± 0.96 a | 3.740 ± 0.15 a | 0.780 ± 0.03 b | |
High Plastic Tunnel | Albion | 542.743 ± 12.87 a | 14.927 ± 1.08 a | 36.641 ± 3.71 a | 9.973 ± 0.56 a | 4.133 ± 0.15 a | 1.047 ± 0.06 a |
Kabarla | 376.920 ± 10.93 ab | 10.060 ± 0.39 ab | 37.566 ± 2.60 a | 8.946 ± 0.74 a | 3.763 ± 0.05 a | 0.903 ± 0.05 ab | |
Rubygem | 244.885 ± 13.10 b | 8.800 ± 3.54 b | 29.000 ± 4.26 ab | 9.180 ± 0.23 a | 3.740 ± 0.18 a | 0.938 ± 0.05 ab |
Applications | Varieties | Oxalic Acid | Tartaric Acid | Citric Acid | Malic Acid | Succinic Acid | Fumaric Acid | Vitamin C |
---|---|---|---|---|---|---|---|---|
Open Field | Albion | 107.774 ± 09.15 c | 41.845 ± 3.96 ab | 182.249 ± 1.17 a | 594.166 ± 4.21 d | 152.410 ± 6.83 cd | 2.408 ± 0.01 d | 23.978 ± 0.83 a |
Kabarla | 39.634 ± 1.61 d | 10.116 ± 0.10 b | 143.783 ± 3.41 ab | 427.570 ± 5.24 e | 278.015 ± 3.16 b | 9.107 ± 0.37 c | 18.763 ± 0.49 b | |
Rubygem | 145.373 ± 4.96 b | 57.062 ± 0.01 a | 79.090 ± 1.05 b | 723.726 ± 0.05 c | 129.038 ± 0.43 d | 12.842 ± 0.09 b | 25.419 ± 0.79 a | |
High Plastic Tunnel | Albion | 211.959 ± 6.59 a | 16.649 ± 0.65 b | 75.191 ± 4.97 b | 749.491 ± 2.19 bc | 397.680 ± 6.95 a | 13.781 ± 0.08 b | 14.195 ± 0.08 c |
Kabarla | 151.002 ± 4.34 b | 69.296 ± 1.32 a | 222.372 ± 4.24 a | 870.729 ± 5.11 a | 161.822 ± 2.48 c | 18.756 ± 0.30 a | 19.318 ± 0.31 b | |
Rubygem | 48.789 ± 1.09 d | 48.117 ± 6.25 ab | 150.222 ± 2.34 ab | 819.426 ± 8.62 ab | 301.133 ± 0.28 b | 13.452 ± 0.33 b | 25.334 ± 0.72 a |
(a) | |||||||
---|---|---|---|---|---|---|---|
Applications | Cultivars | Gallic acid | Protocatechuic Acid | Catechin | Chlorogenic Acid | Caffeic Acid | Syringic Acid |
Open Field | Albion | 19.079 ± 0.35 bc | 7.890 ± 0.26 ab | 6.423 ± 2.85 a | 6.261 ± 0.43 a | 2.094 ± 0.06 a | 0.303 ± 0.19 b |
Kabarla | 21.244 ± 0.95 bc | 2.746 ± 0.03 d | 3.493 ± 0.03 a | 5.995 ± 0.30 a | 1.157 ± 0.02 b | 0.494 ± 0.08 ab | |
Rubygem | 31.680 ± 0.41 a | 2.602 ± 0.48 d | 2.135 ± 0.58 a | 6.803 ± 2.62 a | 1.064 ± 0.01 bc | 0.068 ± 0.04 b | |
High Plastic Tunnel | Albion | 14.699 ± 1.45 cd | 3.883 ± 0.50 cd | 7.925 ± 0.27 a | 10.146 ± 0.72 a | 0.974 ± 0.12 bc | 0.202 ± 0.02 b |
Kabarla | 25.396 ± 2.57 ab | 9.948 ± 0.94 a | 3.495 ± 0.37 a | 6.869 ± 0.69 a | 1.025 ± 0.10 bc | 1.030 ± 0.10 a | |
Rubygem | 9.246 ± 0.51 d | 5.604 ± 0.21 bc | 5.513 ± 2.35 a | 8.015 ± 0.08 a | 0.599 ± 0.15 c | 0.129 ± 0.01 b | |
(b) | |||||||
Applications | Cultivars | Ferulic acid | p-Coumaric acid | o-Coumaric acid | Rutin | Phloridzin | Quercetin |
Open Field | Albion | 1.523 ± 0.06 a | 0.522 ± 0.07 d | 0.251 ± 0.07 c | 0.521 ± 0.01 c | 0.962 ± 0.05 a | 0.949 ± 0.01 a |
Kabarla | 0.638 ± 0.02 a | 1.329 ± 0.05 bc | 0.735 ± 0.02 ab | 0.355 ± 0.01 c | 0.327 ± 0.07 a | 0.193 ± 0.01 c | |
Rubygem | 0.163 ± 0.04 a | 1.462 ± 0.01 bc | 0.299 ± 0.03 c | 0.528 ± 0.01 c | 0.801 ± 0.02 a | 0.887 ± 0.08 a | |
High Plastic Tunnel | Albion | 1.271 ± 0.29 a | 1.116 ± 0.07 c | 0.477 ± 0.01 bc | 0.798 ± 0.01 bc | 0.681 ± 0.02 a | 0.363 ± 0.18 bc |
Kabarla | 1.082 ± 0.62 a | 1.818 ± 0.15 ab | 0.274 ± 0.08 c | 1.507 ± 0.13 a | 0.400 ± 0.23 a | 0.791 ± 0.04 ab | |
Rubygem | 0.753 ± 0.03 a | 2.248 ± 0.11 a | 0.871 ± 0.11 a | 1.096 ± 0.14 ab | 0.760 ± 0.18 a | 0.569 ± 0.07 abc |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gecer, M.K.; Orman, E.; Gundogdu, M.; Ercisli, S.; Karunakaran, R. Identification of Metabolites Changes and Quality in Strawberry Fruit: Effect of Cultivation in High Tunnel and Open Field. Plants 2022, 11, 1368. https://doi.org/10.3390/plants11101368
Gecer MK, Orman E, Gundogdu M, Ercisli S, Karunakaran R. Identification of Metabolites Changes and Quality in Strawberry Fruit: Effect of Cultivation in High Tunnel and Open Field. Plants. 2022; 11(10):1368. https://doi.org/10.3390/plants11101368
Chicago/Turabian StyleGecer, Mustafa Kenan, Erdal Orman, Muttalip Gundogdu, Sezai Ercisli, and Rohini Karunakaran. 2022. "Identification of Metabolites Changes and Quality in Strawberry Fruit: Effect of Cultivation in High Tunnel and Open Field" Plants 11, no. 10: 1368. https://doi.org/10.3390/plants11101368
APA StyleGecer, M. K., Orman, E., Gundogdu, M., Ercisli, S., & Karunakaran, R. (2022). Identification of Metabolites Changes and Quality in Strawberry Fruit: Effect of Cultivation in High Tunnel and Open Field. Plants, 11(10), 1368. https://doi.org/10.3390/plants11101368