Anti-Biofilm and Associated Anti-Virulence Activities of Selected Phytochemical Compounds against Klebsiella pneumoniae
Abstract
:1. Introduction
2. Results
2.1. In Vitro Antibacterial Validation of Selected Compounds on K. pneumoniae Strains
2.2. Inhibition of K. pneumoniae Exopolysaccharides
2.3. Microscopic Surface Topography Characterization of K. pneumoniae exopolysaccharides Using Atomic Force Microscopy
2.4. Curli Expression Reduction in K. pneumoniae Strains by Phytochemical Compounds
2.5. K. pneumoniae Hypermucoviscosity Reduction Using the String Test
2.6. Inhibition of Biofilm Formation
2.6.1. Effect of Phytochemical Compounds on Initial Cell Attachment
2.6.2. Effect of Phytochemical Compounds on Preformed Biofilm Inhibition: Biomass Measurement
2.6.3. Disruption of Mature Biofilm by Phytochemical Compounds
2.7. In Situ Visualisation of Biofilms Using Scanning Electron Microscopy
3. Discussion
4. Materials and Methods
4.1. Chemicals, Media and Compounds Used in Assays
4.2. Bacterial Strains and Growth Conditions
4.3. Antibacterial Activity of Phytochemical Compounds against K. pneumoniae Strains
4.4. Inhibition of Biofilm-Associated Virulence Factor—Exopolysaccharide Assay
4.5. Assessment of Exopolysaccharide Inhibition Using Atomic Force Microscopy
4.6. Inhibition of Curli Expression
4.7. Reduction in Hypermucoviscosity Using the String Test
4.8. Effect of Phytochemical Compounds on Biofilm Formation—Initial Cell Attachment, Preformed Biofilm and Mature Biofilm
4.9. In Situ Visualization of Biofilms Using Scanning Electron Microscopy
4.10. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cameel, I.; Elshafie, H.S.; Caputo, L.; Sakr, S.H.; De Feo, V. Bacillus mojavensis: Biofilm Formation and Biochemical Investigation of Its Bioactive Metabolites. J. Biol. Res. 2019, 92, 39–45. [Google Scholar] [CrossRef]
- Sánchez, E.; Rivas Morales, C.; Castillo, S.; Leos-Rivas, C.; García-Becerra, L.; Ortiz Martínez, D.M. Antibacterial and antibiofilm activity of methanolic plant extracts against nosocomial microorganisms. Evid.-Based Complement. Altern. Med. 2016, 2016, 1572697. [Google Scholar] [CrossRef]
- De la Fuente-Núñez, C.; Reffuveille, F.; Fernández, L.; Hancock, R.E.W. Bacterial biofilm development as a multicellular adaptation: Antibiotic resistance and new therapeutic strategies. Curr. Opin. Microbiol. 2013, 16, 580–589. [Google Scholar] [CrossRef]
- Divakar, S.; Lama, M.; Asad, U.K. Antibiotics versus Biofilm: An emerging battleground in microbial communities|enhanced reader. Antimicrob. Resist. Infect. Control 2019, 8, 76. [Google Scholar]
- Mombeshora, M.; Chi, G.F.; Mukanganyama, S. Antibiofilm activity of extract and a compound isolated from Triumfetta welwitschii against Pseudomonas aeruginosa. Biochem. Res. Int. 2021, 2021, 9946183. [Google Scholar] [CrossRef]
- Martin, R.M.; Bachman, M.A. Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front. Cell. Infect. Microbiol. 2018, 8, 4. [Google Scholar] [CrossRef]
- Yao, B.; Xiao, X.; Wang, F.; Zhou, L.; Zhang, X.; Zhang, J. Clinical and molecular characteristics of multi-clone carbapenem-resistant hypervirulent (Hypermucoviscous) Klebsiella pneumoniae isolates in a tertiary hospital in Beijing, China. Int. J. Infect. Dis. 2015, 37, 107–112. [Google Scholar] [CrossRef]
- Fils, P.E.L.; Cholley, P.; Gbaguidi-Haore, H.; Hocquet, D.; Sauget, M.; Bertrand, X. ESBL-Producing Klebsiella pneumoniae in a University Hospital: Molecular features, diffusion of epidemic clones and Evaluation of cross-transmission. PLoS ONE 2021, 16, e0247875. [Google Scholar] [CrossRef]
- Adeosun, I.J.; Oladipo, E.K.; Ajibade, O.A.; Olotu, T.M.; Oladipo, A.A.; Awoyelu, E.H.; Alli, O.A.T.; Oyawoye, O.M. Antibiotic susceptibility of Klebsiella pneumoniae isolated from selected Tertiary Hospitals in Osun State, Nigeria. Iraqi J. Sci. 2019, 60, 1423–1429. [Google Scholar] [CrossRef]
- De Paula Ramos, L.; Da Rocha Santos, C.E.; Camargo Reis Mello, D.; Nishiama Theodoro, L.; De Oliveira, F.E.; Back Brito, G.N.; Campos Junqueira, J.; Cardoso Jorge, A.O.; Dias De Oliveira, L. Klebsiella pneumoniae planktonic and biofilm reduction by different plant extracts: In vitro Study. Sci. World J. 2016, 2016, 3521413. [Google Scholar] [CrossRef]
- Chung, P.Y. The emerging problems of Klebsiella pneumoniae infections: Carbapenem resistance and biofilm formation. FEMS Microbiol. Lett. 2016, 363, fnw219. [Google Scholar] [CrossRef]
- Li, B.; Zhao, Y.; Liu, C.; Chen, Z.; Zhou, D. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol. 2014, 9, 1071–1081. [Google Scholar] [CrossRef]
- Kikuchi, T.; Mizunoe, Y.; Takade, A.; Naito, S.; Yoshida, S.I. Curli fibers are required for development of biofilm architecture in Escherichia coli K-12 and enhance bacterial adherence to human uroepithelial cells. Microbiol. Immunol. 2005, 49, 875–884. [Google Scholar] [CrossRef]
- Boucher, H.W.; Talbot, G.H.; Bradley, J.S.; Edwards, J.E.; Gilbert, D.; Rice, L.B.; Scheld, M.; Spellberg, B.; Bartlett, J. Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin. Infect. Dis. 2009, 48, 1–12. [Google Scholar] [CrossRef]
- Karuppiah, P.; Mustaffa, M. Antibacterial and antioxidant activities of Musa Sp. leaf extracts against multidrug resistant clinical pathogens causing nosocomial infection. Asian Pac. J. Trop. Biomed. 2013, 3, 737–742. [Google Scholar] [CrossRef]
- Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res. 2017, 196, 44–68. [Google Scholar] [CrossRef]
- Elshafie, H.S.; Sakr, S.; Bufo, S.A.; Camele, I. An attempt of biocontrol the Tomato-Wilt disease caused by Verticillium dahliae using Burkholderia gladioli Pv. Agaricicola and its bioactive secondary metabolites. Int. J. Plant Biol. 2017, 8, 57–60. [Google Scholar] [CrossRef]
- Borges, A.; Abreu, A.C.; Ferreira, C.; Saavedra, M.J.; Simões, L.C.; Simões, M. Antibacterial activity and mode of action of selected glucosinolate hydrolysis products against bacterial pathogens. J. Food Sci. Technol. 2015, 52, 4737–4748. [Google Scholar] [CrossRef]
- Borges, A.; Abreu, A.C.; Dias, C.; Saavedra, M.J.; Borges, F.; Simões, M. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules 2016, 21, 877. [Google Scholar] [CrossRef]
- Monte, J.; Abreu, A.C.; Borges, A.; Simões, L.C.; Simões, M. Antimicrobial activity of selected phytochemicals against Escherichia coli and Staphylococcus aureus and their biofilms. Pathogens 2014, 3, 473–498. [Google Scholar] [CrossRef]
- Lahiri, D.; Dash, S.; Dutta, R.; Nag, M. Elucidating the effect of anti-biofilm activity of bioactive compounds extracted from plants. J. Biosci. 2019, 44, 52. [Google Scholar] [CrossRef]
- Gibbons, S. Anti-Staphylococcal plant natural products. Nat. Prod. Rep. 2004, 21, 263–277. [Google Scholar] [CrossRef]
- Mamabolo, M.P.; Muganza, F.M.; Tabize Olivier, M.; Olaokun, O.O.; Nemutavhanani, L.D. Evaluation of Antigonorrhea activity and cytotoxicity of Helichrysum caespititium (DC) harv. whole plant extracts. Biol. Med. 2018, 10, 1–4. [Google Scholar] [CrossRef]
- Mbaveng, A.T.; Sandjo, L.P.; Tankeo, S.B.; Ndifor, A.R.; Pantaleon, A.; Nagdjui, B.T.; Kuete, V. Antibacterial activity of nineteen selected natural products against multi-drug resistant gram-negative phenotypes. Springerplus 2015, 4, 823. [Google Scholar] [CrossRef]
- Cosa, S.; Rakoma, J.R.; Yusuf, A.A.; Tshikalange, T.E. Calpurnia aurea (Aiton) benth extracts reduce Quorum sensing controlled virulence factors in Pseudomonas aeruginosa. Molecules 2020, 25, 2283. [Google Scholar] [CrossRef]
- Cosa, S.; Chaudhary, S.K.; Chen, W.; Combrinck, S.; Viljoen, A. Exploring common culinary herbs and spices as potential anti-quorum sensing agents. Nutrients 2019, 11, 739. [Google Scholar] [CrossRef]
- Vasavi, H.S.; Arun, A.B.; Rekha, P.D. Anti-quorum sensing activity of flavonoid-rich fraction from Centella Asiatica L. against Pseudomonas aeruginosa PAO1. J. Microbiol. Immunol. Infect. 2016, 49, 8–15. [Google Scholar] [CrossRef]
- Rabin, N.; Zheng, Y.; Opoku-Temeng, C.; Du, Y.; Bonsu, E.; Sintim, H.O. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med. Chem. 2015, 7, 493–512. [Google Scholar] [CrossRef]
- Kumar, A.S.; Mody, K.; Jha, B. Bacterial Exopolysaccharides—A perception. J. Basic Microbiol. 2007, 47, 103–117. [Google Scholar] [CrossRef]
- Patro, L.P.P.; Rathinavelan, T. Targeting the sugary armor of Klebsiella species. Front. Cell. Infect. Microbiol. 2019, 9, 367. [Google Scholar] [CrossRef]
- Srinivasan, R.; Mohankumar, R.; Kannappan, A.; Raja, V.K.; Archunan, G.; Pandian, S.K.; Ruckmani, K.; Ravi, A.V. Exploring the anti-quorum sensing and antibiofilm efficacy of phytol against Serratia marcescens associated acute pyelonephritis infection in Wistar rats. Front. Cell. Infect. Microbiol. 2017, 7, 498. [Google Scholar] [CrossRef]
- Hachlafi, N.E.L.; Aanniz, T.; Menyiy, N.; El Baaboua, A.; El Omari, N.; El Balahbib, A.; Shariati, M.A.; Zengin, G.; Fikri-Benbrahim, K.; Bouyahya, A. In vitro and in vivo biological investigations of camphene and its mechanism insights: A review. Food Rev. Int. 2021, 1–28. [Google Scholar] [CrossRef]
- Huang, Q.; Wu, H.; Cai, P.; Fein, J.B.; Chen, W. Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles. Sci. Rep. 2015, 5, 16857. [Google Scholar] [CrossRef]
- Zhao, D.; Jiang, J.; Du, R.; Guo, S.; Ping, W.; Ling, H.; Ge, J. Purification and characterization of an Exopolysaccharide from Leuconostoc Lactis L2. Int. J. Biol. Macromol. 2019, 139, 1224–1231. [Google Scholar] [CrossRef]
- Dufrêne, Y.F. Atomic force microscopy in microbiology: New structural and functional insights into the microbial cell surface. MBio 2014, 5, e01363-14. [Google Scholar] [CrossRef]
- Banerjee, A.; Das, D.; Rudra, S.G.; Mazumder, K.; Andler, R.; Bandopadhyay, R. Characterization of Exopolysaccharide produced by Pseudomonas Sp. PFAB4 for Synthesis of EPS-coated AgNPs with antimicrobial properties. J. Polym. Environ. 2020, 28, 242–256. [Google Scholar] [CrossRef]
- Foschiatti, M.; Cescutti, P.; Tossi, A.; Rizzo, R. Inhibition of cathelicidin activity by bacterial Exopolysaccharides. Mol. Microbiol. 2009, 72, 1137–1146. [Google Scholar] [CrossRef]
- Anes, J.; Hurley, D.; Martins, M.; Fanning, S. Exploring the genome and phenotype of multi-drug resistant Klebsiella pneumoniae of clinical origin. Front. Microbiol. 2017, 8, 1913. [Google Scholar] [CrossRef]
- Chaudhary, M.; Payasi, A. Role of EDTA and CSE1034 in curli formation and biofilm eradication of Klebsiella pneumoniae: A comparison with other drugs. J. Antibiot. 2012, 65, 631–633. [Google Scholar] [CrossRef]
- Gupta, A.; Dwivedi, M.; Mahdi, A.A.; Gowda, G.A.N.; Khetrapal, C.L.; Bhandari, M. Inhibition of adherence of multi-drug resistant E. coli by Proanthocyanidin. Urol. Res. 2012, 40, 143–150. [Google Scholar] [CrossRef]
- Barnhart, M.M.; Chapman, M.R. Plaque assay for detecting lysogeny. Annu. Rev. Microbiol. 2010, 60, 131–147. [Google Scholar] [CrossRef]
- Sánchez-López, J.; García-Caballero, A.; Navarro-San Francisco, C.; Quereda, C.; Ruiz-Garbajosa, P.; Navas, E.; Dronda, F.; Morosini, M.I.; Cantón, R.; Diez-Aguilar, M. Hypermucoviscous Klebsiella pneumoniae: A challenge in community acquired infection. IDCases 2019, 17, e00547. [Google Scholar] [CrossRef]
- Mikei, L.A.; Starki, A.J.; Forsyth, V.S.; Vornhagen, J.; Smith, S.N.; Bachman, M.A.; Mobley, H.L.T. A systematic analysis of Hypermucoviscosity and capsule reveals distinct and overlapping genes that impact Klebsiella pneumoniae fitness. PloS Pathog. 2021, 17, e1009376. [Google Scholar] [CrossRef]
- Jabuk, S.I.A. In vitro and in vivo effect of three aqueous plant extract on pathogenicity of Klebsiella pneumoniae isolated from patient with urinary tract infection. World J. Pharm. Res. 2016, 3, 160–179. [Google Scholar]
- Lin, T.H.; Huang, S.H.; Wu, C.C.; Liu, H.H.; Jinn, T.R.; Chen, Y.; Lin, C.T. Inhibition of Klebsiella pneumoniae growth and capsular Polysaccharide biosynthesis by Fructus Mume. Evid.-Based Complement. Altern. Med. 2013, 2013, 621701. [Google Scholar] [CrossRef]
- Nirwati, H.; Sinanjung, K.; Fahrunissa, F.; Wijaya, F.; Napitupulu, S.; Hati, V.P.; Hakim, M.S.; Meliala, A.; Aman, A.T.; Nuryastuti, T. Biofilm formation and antibiotic resistance of Klebsiella pneumoniae isolated from clinical samples in a tertiary Care Hospital, Klaten, Indonesia. BMC Proc. 2019, 13, 20. [Google Scholar] [CrossRef]
- Famuyide, I.M.; Aro, A.O.; Fasina, F.O.; Eloff, J.N.; McGaw, L.J. Antibacterial and antibiofilm activity of Acetone leaf extracts of nine under-investigated South African Eugenia and Syzygium (Myrtaceae) species and their selectivity indices. BMC Complement. Altern. Med. 2019, 19, 141. [Google Scholar] [CrossRef]
- Ramanathan, S.; Arunachalam, K.; Chandran, S.; Selvaraj, R.; Shunmugiah, K.P.; Arumugam, V.R. Biofilm inhibitory efficiency of Phytol in combination with Cefotaxime against nosocomial pathogen Acinetobacter baumannii. J. Appl. Microbiol. 2018, 125, 56–71. [Google Scholar] [CrossRef]
- Kelmanson, J.E.; Jager, A.K.; Van Staden, J. Zulu medicinal plants with antibacterial activity. J. Ethnopharmacol. 2000, 69, 241–246. [Google Scholar] [CrossRef]
- Lebeaux, D.; Ghigo, J.-M.; Beloin, C. Biofilm-related infections: Bridging the gap between clinical management and fundamental aspects of Recalcitrance toward antibiotics. Microbiol. Mol. Biol. Rev. 2014, 78, 510–543. [Google Scholar] [CrossRef]
- Baloyi, I.T.; Adeosun, I.J.; Yusuf, A.A.; Cosa, S. In silico and in vitro screening of antipathogenic properties of Melianthus comosus (Vahl) against Pseudomonas aeruginosa. Antibiotics 2021, 10, 679. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Chaudhary, S.K.; Sharma, A.; Yadav, K.K.; Nema, N.K.; Sekhoacha, M.; Karmakar, S.; Braga, F.C.; Matsabisa, M.G.; Mukherjee, P.K.; et al. Anti-biofilm activity of Marula—A study with the Standardized bark extract. J. Ethnopharmacol. 2014, 154, 170–175. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Liu, Q.; Dong, D.; Hu, H.; Wu, B.; Ren, H. In-Situ monitoring of the unstable bacterial adhesion process during Wastewater Biofilm formation: A comprehensive study. Environ. Int. 2020, 140, 105722. [Google Scholar] [CrossRef] [PubMed]
- Moreira, J.M.R.; Gomes, L.C.; Araújo, J.D.P.; Miranda, J.M.; Simões, M.; Melo, L.F.; Mergulhão, F.J. The effect of glucose concentration and shaking conditions on Escherichia coli biofilm formation in Microtiter plates. Chem. Eng. Sci. 2013, 94, 192–199. [Google Scholar] [CrossRef]
- Wijesinghe, G.K.; Feiria, S.B.; Maia, F.C.; Oliveira, T.R.; Joia, F.; Barbosa, J.P.; Boni, G.C.; Höfling, J.F. In-vitro antibacterial and antibiofilm activity of Cinnamomum Verum leaf oil against Pseudomonas aeruginosa, Staphylococcus aureus and Klebsiella pneumoniae. An. Acad. Bras. Cienc. 2021, 93, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Alves, M.J.; Ferreira, I.C.F.R.; Froufe, H.J.C.; Abreu, R.M.V.; Martins, A.; Pintado, M. Antimicrobial activity of phenolic compounds identified in Wild Mushrooms, SAR Analysis and docking studies. J. Appl. Microbiol. 2013, 115, 346–357. [Google Scholar] [CrossRef]
- Gopu, V.; Shetty, P.H. Cyanidin inhibits quorum Signalling pathway of a food borne opportunistic pathogen. J. Food Sci. Technol. 2016, 53, 968–976. [Google Scholar] [CrossRef]
- Santana, H.F.; Barbosa, A.A.T.; Ferreira, S.O.; Mantovani, H.C. Bactericidal activity of ethanolic extracts of propolis against Staphylococcus aureus isolated from mastitic cows. World J. Microbiol. Biotechnol. 2012, 28, 485–491. [Google Scholar] [CrossRef]
- Wiskur, B.J.; Hunt, J.J.; Callegan, M.C. Hypermucoviscosity as a Virulence factor in experimental Klebsiella pneumoniae endophthalmitis. Investig. Ophthalmol. Vis. Sci. 2008, 49, 4931–4938. [Google Scholar] [CrossRef]
- Blando, F.; Russo, R.; Negro, C.; De Bellis, L.; Frassinetti, S. Antimicrobial and antibiofilm activity against Staphylococcus aureus of Opuntia ficus-Indica (L.) Mill. cladode polyphenolic extracts. Antioxidants 2019, 8, 117. [Google Scholar] [CrossRef]
- Wijesundara, N.M.; Rupasinghe, H.P.V. Essential Oils from Origanum vulgare and Salvia Officinalis Exhibit antibacterial and anti-biofilm activities against Streptococcus pyogenes. Microb. Pathog. 2018, 117, 118–127. [Google Scholar] [CrossRef] [PubMed]
Compounds | K. pneumoniae Strains and MIC (mg/mL) Values | |
---|---|---|
K. pneumoniae (ATCC BAA-1705) | K. pneumoniae (ATCC 700603) | |
Alpha-terpinene | 0.125 | 0.125 |
Camphene | 0.250 | 0.250 |
Fisetin | 0.0625 | 0.125 |
Glycitein | 0.125 | 0.125 |
Phytol | 0.125 | 0.125 |
Controls | ||
Ciprofloxacin | 0.0025 | 0.0025 |
Quercetin | 0.0625 | 0.0625 |
Compounds | Concentration (mg/mL) (A) | Concentration (mg/mL) (B) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Control | 0.125 | 0.250 | 0.5 | 1.0 | Control | 0.125 | 0.250 | 0.5 | 1.0 | |
Alpha-terpinene | + | + | + | + | + | + | + | + | + | + |
Camphene | + | + | + | + | + | + | + | + | + | + |
Fisetin | + | + | + | - | - | + | + | + | - | - |
Glycitein | + | + | + | - | - | + | + | + | - | - |
Phytol | + | + | + | - | - | + | + | + | - | - |
Controls | ||||||||||
Ciprofloxacin | + | - | - | - | - | + | - | - | - | - |
Quercetin | + | + | + | - | - | + | + | + | - | - |
Untreated | + | + | + | + | + | + | + | + | + | + |
Compounds | Percentage (%) Inhibition of Initial Cell Attachment | Percentage (%) Inhibition of Biofilm Development | ||
---|---|---|---|---|
K. pneumoniae (ATCC BAA-1705) | K. pneumoniae (ATCC 700603) | K. pneumoniae (ATCC BAA-1705) | K. pneumoniae (ATCC 700603) | |
Alpha-terpinene | 33.71 ± 0.01 a,b | 37.05 ± 0.00 a,b | 17.23 ± 0.04 b,c | 19.04 ± 0.03 a,b |
Camphene | 22.27 ± 0.08 a | 18.53 ± 0.01 a | 14.58 ± 0.04 a | 11.08 ± 0.02 a |
Fisetin | 39.81 ± 0.01 a,b | 32.59 ± 0.04 a | 25.79 ± 0.00 a,b | 29.93 ± 0.02 a,b |
Glycitein | 48.35 ± 0.02 b,c | 44.34 ± 0.02 c | 39.61 ± 0.01 d | 32.77 ± 0.04 b |
Phytol | 54.71 ± 0.01 c | 50.05 ± 0.00 c | 43.81 ± 0.01 e | 40.02 ± 0.01 b |
Controls | ||||
Ciprofloxacin | 69.25 ± 0.03 d | 62.45 ± 0.04 d | 56.42 ± 0.03 f | 51.77 ± 0.03 c |
Quercetin | 42.57 ± 0.03 b,c | 40.66 ± 0.01 b,c | 35.15 ± 0.01 c,d | 31.81 ± 0.02 a,b |
1% DMSO | −3.72 ± 0.04 a | −9.76 ± 0.01 a | −5.06 ± 0.03 a | −8.24 ± 0.02 a |
Compounds | Percentage (%) Inhibition of Mature Biofilm Formed under Dynamic Condition (with Shaking) | Percentage (%) Inhibition of Mature Biofilm Formed under Static Condition (without Shaking) | ||
---|---|---|---|---|
K. pneumoniae (ATCC BAA-1705) | K. pneumoniae (ATCC 700603) | K. pneumoniae (ATCC BAA-1705) | K. pneumoniae (ATCC 700603) | |
Alpha-terpinene | 18.55 ± 0.02 b | 17.22 ± 0.13 b | 15.18 ± 0.05 b | 12.15 ± 0.03 c,d |
Camphene | 5.24 ± 0.01 a,b | 2.06 ± 0.05 b | 4.56 ± 0.01 a,b | 4.08 ± 0.05 b, d |
Fisetin | 14.83 ± 0.02 a,b | 12.33 ± 0.02 b | −8.52 ± 0.01 a,b | −32.43 ± 0.02 a,b |
Glycitein | 8.89 ± 0.01 a,b | −5.71 ± 0.01 b | 6.89 ± 0.01 a,b | −12.53 ± 0.01 b,c |
Phytol | 24.94 ± 0.04 b | 25.88 ± 0.00 b | 20.32 ± 0.02 b | 18.07 ± 0.01 d |
Controls | ||||
Ciprofloxacin | 44.73 ± 0.04 c | 51.88 ± 0.00 c | 42.24 ± 0.02 b | 39.15 ± 0.01 e |
Quercetin | −27.08 ± 0.01 a | −44.55 ± 0.01 a | −35.46 ± 0.02 a | −52.25 ± 0.02 a |
1% DMSO | −39.01 ± 0.01 a | −58.35 ± 0.01 a | −45.67 ± 0.02 a | −68.25 ± 0.02 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adeosun, I.J.; Baloyi, I.T.; Cosa, S. Anti-Biofilm and Associated Anti-Virulence Activities of Selected Phytochemical Compounds against Klebsiella pneumoniae. Plants 2022, 11, 1429. https://doi.org/10.3390/plants11111429
Adeosun IJ, Baloyi IT, Cosa S. Anti-Biofilm and Associated Anti-Virulence Activities of Selected Phytochemical Compounds against Klebsiella pneumoniae. Plants. 2022; 11(11):1429. https://doi.org/10.3390/plants11111429
Chicago/Turabian StyleAdeosun, Idowu J., Itumeleng T. Baloyi, and Sekelwa Cosa. 2022. "Anti-Biofilm and Associated Anti-Virulence Activities of Selected Phytochemical Compounds against Klebsiella pneumoniae" Plants 11, no. 11: 1429. https://doi.org/10.3390/plants11111429
APA StyleAdeosun, I. J., Baloyi, I. T., & Cosa, S. (2022). Anti-Biofilm and Associated Anti-Virulence Activities of Selected Phytochemical Compounds against Klebsiella pneumoniae. Plants, 11(11), 1429. https://doi.org/10.3390/plants11111429